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Abstract 
We enhance underexposed, low dynamic range videos by 
adaptively and independently varying the exposure at each 
photoreceptor in a post-process. This virtual exposure is a 
dynamic function of both the spatial neighborhood and temporal 
history at each pixel. Temporal integration enables us to expand 
the image’s dynamic range while simultaneously reducing noise. 
Our non-linear exposure variation and denoising filters smoothly 
transition from temporal to spatial for moving scene elements. 
Our virtual exposure framework also supports temporally 
coherent per frame tone mapping. Our system outputs restored 
video sequences with significantly reduced noise, increased 
exposure time of dark pixels, intact motion, and improved details. 
 
CR Categories: I.4.3: Image Processing and Computer Vision – 
enhancement, filtering. I.3.3: Computer Graphics – picture/image 
generation, display algorithms. 
 
Keywords:  Digital video, Noise reduction, Low dynamic range, 
Exposure, Bilateral filter, Restoration, Tone mapping. 

1 Introduction 
 Alternatively, HDR images can be assembled by additively 
combining multiple uniformly exposed digital images [Liu et al 
03] [Jostschulte et al 98]. This approach is particularly compatible 
with digital video, but it has been largely overlooked since it 
requires processing O(N) source images compared to the 
O(log(N)) of variable exposure methods. Nevertheless, the 
combination of multiple uniformly exposed images affords certain 
advantages, including noise reduction. Moreover, if one varies the 
number of uniformly exposed images combined on a pixel-by-
pixel basis, it becomes possible to adjust each pixel’s exposure 
independently, allowing for direct tone mapping without explicit 
construction of an intermediate HDR image. Local exposure 
control also provides a tool for handling dynamic scenes. This 
approach constitutes our Virtual Exposure Camera (VEC) 
conceptual model.   

  

 
Figure 1: A frame from a video processed using virtual exposures.  Upper 
Left: original frame; Upper Right: histogram stretched version; Bottom Left: 
red = number of temporal pixels integrated, green = number of spatial pixels 
integrated; Bottom Right: our result after filtering and tone mapping. 

High dynamic range (HDR) imaging, processing, and display 
have recently received considerable attention. An implicit 
assumption of most HDR systems is a sizeable signal-to-noise 
ratio achieved via long exposures in low-light areas. Generally, 
multiple low dynamic range (LDR) images with different 
exposure settings are combined to generate a single HDR image, 
which implies a static scene. However, people have long been 
accidentally capturing poorly exposed video with camcorders and 
motion-picture cameras (countless home videos of school plays 
and dance recitals lay testament to this phenomenon).  We address 
the problem of enhancing such videos. Aside from the noise 
characteristics of dark videos, there is a surprising commonality 
between HDR and LDR imaging. In this paper, we develop 
methods for enhancing LDR video to simulate the characteristics 
of individually tone-mapped HDR video frames, for applications 
in filmmaking, surveillance, forensics, and high-speed imaging.  Our model of processing brings out hidden details that are 

barely noticeable in video frames due to underexposure and noise. 
It also synthesizes perceptually plausible and temporally 
consistent renditions of each video frame. Our process begins by 
estimating each pixel’s exposure setting based on a spatially 
uniform tone mapping of each frame. It then attempts to recreate a 
corresponding gain ratio at each pixel by combining temporal 
samples of static scene elements and spatial samples of dynamic 
elements. This effectively denoises and tone maps the video.  

Humans simultaneously perceive regions with high luminous 
intensities alongside intensities several orders of magnitude lower 
by spatially adapting the visual field’s local sensitivity. Modern 
digital still cameras, however, rely on a single exposure time 
across the entire frame and photosites with uniform sensitivities 
necessitating that multiple images be taken at varying exposures 
to capture the full nuance of HDR scenes. This is problematic for 
dynamic scenes, where it is seldom possible to capture multiple 
exposures. Furthermore, HDR construction assumes an abundance 
of light and/or exposure intervals long enough to cancel the 
random noise fluctuations characteristic of image sensors. Once 
acquired, the problem becomes the accurate depiction of HDR 
results on LDR displays through tone mapping. 

 Our virtual exposure method significantly enhances low 
dynamic range and noisy videos, making previously unwatchable 
material acceptable.  The quantity of noise present directly affects 
the quality of the result, but so long as the noise is zero-mean, our 
method brings out details that are barely visible in the original. 
 

 The primary contributions of this work are:  
• A virtual exposure camera model for enhancing LDR videos 
• The Adaptive Spatio-Temporal Accumulation (ASTA) filter 
 for reducing noise in LDR videos 
• A tone mapping approach to enhance LDR videos 

 



 Other video filtering approaches have appeared that use 
temporal filtering. Dubois and Sabri [84] performed nonlinear 
temporal noise filtering assisted by displacement estimation. Each 
pixel is combined temporally using a recursive low-pass temporal 
filter weighted by the reliability of the displacement estimate. 
This method requires well-exposed, easy-to-track video to 
correctly filter. Our method adapts from temporal to spatial 
filtering to be robust to tracking inaccuracies.  Jostschulte et al 
[98] presented a spatio-temporal shot noise filter that first 
spatially and then temporally filters video while preserving edges 
that match a template set. A motion-sensing algorithm is used to 
vary the amount of temporal filtering.  We prefer to only use 
temporal filtering when possible and adapt the mix of temporal 
and spatial filtering based on a tone-mapping objective and local 
motion characteristics. Acosta-Serafini et al [04] described an 
HDR camera that selectively resets a pixel based on a prediction 
of when it will saturate. The reset interval and the digitized pixel 
level combine to form a floating-point value. They primarily 
focused on high-speed, HDR sensing and do not specifically 
address low-light situations. Liu et al [03] combined high-speed 
samples to reduce noise and improve dynamic range. Their 
approach is similar, but much lower-level than ours. It depends on 
specific imaging device features such as high-speed non-
destructive reads.  It also relies mostly on linear filters, and uses 
only single pixel areas to detect motion. In contrast, our method 
uses bilateral filtering, considers a larger context for motion 
detection, and targets a tone-mapped objective. Bidermann et al 
[03] described an HDR high-speed CMOS imager platform with 
per-pixel ADCs and storage, which could use the Liu et al [03] 
algorithm and targets well-lit scenes. 

2 Related Work 
Enhancing low-dynamic range images has much in common with 
HDR acquisition, processing, and display. HDR representations 
have long been recognized as essential for accurately modeling 
light transport [Ward 91]. More recently, Debevec and Malik [97] 
developed accurate methods for assembling HDR images from a 
series of still photographs with increasingly long exposure times.   
 The problem of mapping an HDR image for display on 
devices with limited dynamic range was formalized by 
Tumblin and Rushmier [93], and has led to a variety of spatially 
uniform [Drago et al 03] and spatially varying 
[Tumblin and Turk 99] [Durand and Dorsey 02] [Fattal et al 02] 
tone mapping approaches.  A variety of methods have been 
proposed to tone map HDR images so that the maximum amount 
of information is visible on a monitor.  Retinex theory, such as in 
the multiscale Retinex [Jobson et al 97], suggests that a Gaussian-
like kernel can be convolved at each point in the image and 
subtracted from the original image in log space, providing for a 
more “viewable” version of a still image.  The advantage of the 
Retinex approach is that it is non-iterative, but it can generate 
unwanted edge blurring artifacts.  Durand and Dorsey [02] built a 
similar system, but used an edge preserving bilateral filter to 
maintain sharp edges. Pattanaik et al [00] presented an approach 
that mimics the time dependent local adaptation of the human 
visual system.  They also discussed temporal coherence to avoid 
introducing frame-by-frame tone mapping “flicker”. In gradient 
domain HDR compression [Fattal et al 02], the gradient of an 
image is attenuated and then reintegrated.  They also described a 
modification for improving images that already use a display’s 
full dynamic range.  Raskar et al [04] also used gradient domain 
methods, but to fuse day and night images together— adding 
daytime context to nighttime footage. 

 Recently, Eisemann and Durand [04] and Petschnigg et al 
[04] have developed methods to remove noise and improve the 
dynamic range of underexposed images by incorporating features 
derived from properly exposed “flash images”. The extent of 
noise removal depends on how well exposed a given region is in 
the flash image. Furthermore, the underlying luminance model 
used in the processing is not HDR, either explicitly (as in 
previous tone-mapping systems) or implicitly (as in our case).  It 
is also unclear how to extend these methods to video sequences. 
The goal of our virtual exposure approach is similar to these 
methods, but we incorporate temporal information instead of flash 
image features to improve the exposure. Thus, the illuminations 
of our enhancements are consistent with the original source. 

 The idea of using multiple temporally adjacent frames to 
enhance knowledge about a pixel’s true or desired value was 
considered in Cohen et al [03].  Multiple images were registered 
and then each pixel of the output image was computed as a 
function of its temporal neighbors.  HDR compression using this 
algorithm was also described.  Sand and Teller [04] discussed a 
video matching method for aligning slightly different video 
sources.  Specifically, it contains a robust system for frame-to-
frame alignment. We handle moving cameras by warping spatio-
temporal volumes as described by Bennett and McMillan [03]. 
 There is a long history of noise filtering methods throughout 
the signal processing literature. We are most interested in edge-
preserving filters from the anisotropic diffusion and bilateral filter 
families.  Anisotropic diffusion of images [Perona and Malik 90] 
provides an iterative filtering method that adapts to the image’s 
gradient.  Bilateral filtering [Tomasi and Manduchi 98] provides a 
single-step noise removal process that shares many visual and 
mathematical qualities with anisotropic diffusion [Barash 02].  
However, both of these methods are designed for single images 
and not for videos.  The Trilateral filter [Choudhury and Tumblin 
03] builds on the bilateral filter model by biasing its kernel away 
from edges and dynamically choosing the kernel’s size in an 
attempt to model signals as piecewise linear rather than piecewise 
constant functions.  Other modifications have been proposed to 
improve the standard bilateral filter’s ability to handle noise 
[Boomgaard and Weijer 02] [Francis and Jager 03].  We combine 
the attributes of median filters with the bilateral filter. A “bilateral 
median” filter was described by Francis and Jager [03], but it uses 
a weighted median for summation purposes, unlike ours that uses 
it to establish a similarity distance. Spatio-Temporal Anisotropic 
Diffusion [Lee et al 98] discussed the possibility of using a three 
dimensional kernel to remove noise from videos where time is 
handled similarly to the spatial dimensions.  

 Researchers have also constructed actual high dynamic range 
video capture systems. Kang et al [03] built a system based on a 
camera that could sequence through different exposure settings.  
Once the images were registered using optical flow, it was 
possible to combine exposures to improve the dynamic range. The 
small number of frames combined suggests that a high signal-to-
noise ratio (SNR) was assumed, and therefore, it would only be 
useful for well-lit scenes. Nayar and Branzoi [03] presented a 
system whereby a computer controlled LCD panel was placed in 
front of the CCD. The per-pixel transparency was varied to 
modulate the exposure of image regions based on the previous 
frame’s luminance.  They also discussed a local and global tone 
mapping approach that addresses temporal coherence issues. 
Using LCDs implies attenuation of the incoming light, thus 
further complicating low-light imaging. Nayar and Branzoi [04] 
later suggested a second variant using a DLP micromirror array to 
modulate the exposure, via time-division multiplexing (like a 
camera shutter), throughout the image. In theory, such systems 
could provide continuous exposure control at each pixel compared 
to our discretized exposure settings.  However, they require 
additional hardware and are strictly causal; whereas our virtual 
exposure approach allows the incorporation of future information 
into virtual exposure decisions, assuming a constant latency.  
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Figure 2: The VEC model for processing LDR video.  Since no single frame 
contains sufficient information for noise reduction and tone mapping, 
processing is done with knowledge of recent frames and how tone mapping 
was applied.  Rudimentary tone mapping is performed before filtering to 
guide the adaptive filter’s settings. 

 We process a spatio-temporal volume implemented as a FIFO 
queue (Fig. 2), where filtering occurs in the current frame but 
with knowledge of the frames that come before or after it (in a 
real-time, low latency system, the future might not be known). 
Therefore, the processing of a pixel can benefit from information 
in adjacent frames while also ensuring that tone mapping is 
temporally consistent. Pixels are indexed using (x,y,t) notation, 
with t being the frame number. 
 When integrating the contributions of multiple pixels together 
to simulate a longer exposure time,  pixels that come before and 
after temporally can often be used. However, since some frames 
capture individual pixels with varying noise contributions, it is 
advantageous to exclude the noisiest pixels from the integration. 
Similarly, pixels that change due to object motion should not be 
included, to avoid blurring and “ghosting” artifacts. 
 Given LDR video, we apply a tone mapping algorithm 
targeted at improving poorly exposed areas and handling noise. 
Such a tone mapper is discussed in Section 5. 3 The Virtual Exposure Camera Model  Prior to filtering, we estimate a priori the gain factor for each 
pixel that multiplies its original luminance to achieve the pixel’s 
final filtered output level.  Because we cannot know this before 
filtering, we choose to estimate the filtered and tone mapped 
luminance by applying a spatially uniform tone mapping function 
m(x,y) to a Gaussian blurred version of the image. This gain 
factor is used by our non-linear filter, described in section 4, to 
determine how many pixels are additively combined thus 
establishing a per-pixel exposure time.  We call this gain value l 
and we use it to establish our adaptive filter’s support. 

The Virtual Exposure Camera (VEC) is our conceptual model for 
analyzing and enhancing low dynamic range (LDR) video. Many 
common applications result in LDR videos. For instance, filming 
theatrical lighting is difficult because background scenery is 
seldom well exposed in comparison to the spotlights placed on the 
actors. LDR video also results from high speed imaging, where 
fast shutter speeds are desirable.  Small aperture video, to increase 
depth-of-field, can also lead to LDR video. Poor lighting 
scenarios, such as is common in surveillance applications, also 
lead to underexposed videos. 

4 The ASTA Filter 3.1 LDR Video Noise Characteristics  
Our virtual exposure filter seeks out similar pixels to integrate. 
Two major factors affect how ASTA filters: how many pixels it 
wants to combine and if these pixels are in an area of the image 
with motion. ASTA adapts by transitioning between temporal-
only and spatial-only bilateral-inspired filtering while choosing 
parameters based on local illumination. 

The LDR videos we are interested in processing have a small 
signal-to-noise ratio and low precision. Our system also enhances 
videos with “peaky” histograms. Such scenes are composed of 
elements that span a significant dynamic range, but the 
combination of exposure settings and quantization leads to low 
precision renditions of all elements. 

There are a variety of noise sources in CCD and CMOS 
sensors that confound imaging in low-light situations, such as 
readout, photon shot, dark current, and fixed pattern noise in 
addition to photon response non-uniformities [Reibel et al 03]. 
We assume that dark current noise and fixed pattern noise can be 
removed via subtraction of a reference dark image at the same 
temperature and exposure setting. Photon shot and readout noise 
are our primary problems, but we assume they are zero-mean, so 
if we can get multiple samples of the same pixel from temporally 
adjacent frames, we can average out the error.  A significant 
problem for dealing with dark areas captured with CCDs is that 
the amplitude of sensor read noise is independent of exposure 
whereas photon shot noise varies linearly with exposure time. 
Read noise is more significant than shot noise at very dark pixels. 
Thus, for the darkest pixels, the SNR is comparatively smaller. 

4.1 The Spatial Bilateral Filter 
ASTA is based on the edge-preserving bilateral filter 
[Tomasi and Manduchi 98]. The bilateral filter maintains edges 
by performing a Gaussian convolution but attenuates the 
contributions of pixels by how different their intensities are from 
the intensity at the center of the kernel. Although simple 
subtractive difference is often used to measure this difference of 
intensities, we generalize this notion to include non-photometric 
differences which we treat as similarity distances. A similarity 
distance is any relationship that satisfies the following properties: 
D(x,x) = 0 and D(x,y) = D(y,x).  A similarity distance is metric if 
the triangle inequality holds:  D(x,y) + D(y,z) ≥ D(x,z).  
The spatial bilateral filter (for a pixel s), with a subtractive 
similarity distance D(p,s), is shown in Equations 1 and 2: 

 Computing the mean of n samples will improve the precision 
of the luminance readings by a n  factor. These assumptions are 
not true for compressed video footage, where quantization is non-
uniform across frequencies. We assume a linear camera response, 
which is true for raw CCD samples, but not for the hidden post-
processing found in many camcorders. 
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=  3.2 Synthesizing Virtual Exposures 
Our VEC model identifies poorly exposed regions of video and 
increases precision by simulating longer exposure times. This 
simulation involves temporal integration of the contributions of as 
many pixel values as would have been sampled over the interval 
of the longer exposure. 
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 Three variables control the bilateral filter’s operation. First, σh 
controls how quickly the spatial Gaussian falls off. The second, 
σi, controls the Gaussian similarity weighting. It attenuates the 
contributions of neighboring pixels that are that are too different 
and is typically chosen based on an estimate of the signal’s SNR. 
Finally, k determines kernel size. 
 The bilateral filter does a good job of smoothing out small 
imperfections while preserving edges, but it is incapable of 
removing shot noise from a signal (Fig. 3). When the filter kernel 
is centered on an outlier pixel, the intensity Gaussian will exclude 
all other values, leaving it unchanged, which accentuates it 
compared to the otherwise cleaned signal.  

4.2 Bilateral Filtering in Time  
In the case of a fixed camera, the best estimate of a pixel’s true 
value is predicted from those pixels at the same location in 
different frames. In the absence of motion, a simple average of all 
pixels at each (x,y) coordinate through time gives an optimal 
answer, assuming zero-mean noise. However, averaging in the 
presence of motion creates “ghosting” artifacts. Our solution is to 
consider changes in a pixel’s value due to motion as “temporal 
edges”. A bilateral filter maintains edges while providing noise 
reduction in areas with small amplitude noise. Thus, we employ a 
temporal 1D-bilateral filter as a primary component in our noise 
reduction process.   
 A difficulty of applying a temporal bilateral filter is choosing 
an appropriate value for σi (the similarity falloff) that 
simultaneously removes noise while preserving motion based 
entirely on differences of pixel luminance. If σi is too large, 
“ghosting” still results, and if σi is too small, noise will remain. 
Such a simple σi does often not exist for noisy video. 

An alternative is to filter video with a volumetric bilateral 
kernel that operates in spatio-temporal volumes, much like how 
anisotropic diffusion was extended to 3D by Lee et al [98]. 
However, this symmetric approach does not take into account the 
difference in sampling density between space and time in a 
spatio-temporal volume. 

4.3 Alternate Similarity Distances 
As a solution to the typical bilateral filter’s inability to remove 
shot noise, we introduce an alternate similarity distance D(p,s) in 
the bilateral filter. Instead of using the simple intensity difference, 
we substitute an arbitrary function that returns a value for each 
pair of pixels in a video or image that may or may not be solely 
intensity-based. 
 For example, the similarity measure could be the difference 
between p and some statistic of the local spatial neighborhood 
around s, making the filter more robust to shot noise. We use a 
median-centered bilateral filter that uses a small kernel median 
filter centered at s to improve quality in noisy image areas. The 
problem of choosing the intensity at the bilateral filter’s center as 

the sole reference was discussed by Boomgaard and Weijer [02], 
but no suggestion of an alternative statistic was given. A wide 
variety of statistics could be applied to choose the s pixel’s 
intensity, such as local minima, local maxima, or even other 
bilateral filters. Even measures not directly associated with 
luminance could be used. 
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Figure 3: Left: The bilateral filter recovers the signal (blue) from the noisy 
input (red). Right: The bilateral filter is unable to attenuate the shot noise 
because no other pixels fall within the intensity similarity distance. 

4.4 Spatial Neighborhood Similarity Distance 
We use a different similarity distance in our temporal bilateral 
filter. Specifically, the method is to compare the local spatial 
neighborhoods centered at the same pixel in different frames. 
Equation 3 shows our normalized Gaussian weighted similarity 
for an n × n neighborhood and a temporal edge tolerance of σe. 
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The difference between two pixels’ intensities does not 
provide enough information to judge if they are significantly 
different. However, by comparing spatial neighborhoods, a 
judgment can be reached. Thus if only a small percentage of 
pixels change, we assume it to be noise and integrate into the 
filter. If many pixels change, we assume it to be a more 
significant event, and no blending occurs. For clarification, 
despite the fact we are comparing neighborhoods, it is only the 
pixels at the center of each neighborhood that will ultimately be 
blended together. The neighborhood size, often between 3 and 5, 
can be varied depending on noise characteristics, as can σe 
(usually between 2 and 6). Our similarity distance is inspired by 
correspondence measures frequently used in stereo imaging.  We 
have used Sum of Absolute Differences (SAD) and Sum of 
Squared Differences (SSD). We implemented both versions and 
got similar results, although SSD occasionally created artificially 
sharp edges.  Figure 4 illustrates our SAD version. 

  

 
Figure 4: Illustration of our spatial neighborhood similarity distance used in 
temporal filtering. The original frame is shown in the upper left.  Each (x,y) 
for a pair of nearby frames are shown in the upper right.  Two metronome 
arms are seen because the similarity distance is based on absolute value.  
The bottom image is the same frame processed using ASTA and our tone 
mapper. 

 



4.5 Implementing ASTA 
The VEC model determines how many pixels should be combined 
to achieve our tone map brightness target. If only temporal 
bilateral filtering with the spatial neighborhood distance metric is 
used, and it is in an area of high motion, only the center pixel of 
the kernel will make a sizable contribution to the result. In this 
case, it would not integrate enough pixels to achieve the desired 
gain factor. To overcome this problem we instead use an Adaptive 
Spatio-Temporal Accumulation filter (ASTA) that adapts to its 
surroundings to find enough pixels in the presence of motion. For 
a static pixel, it reduces to a temporal bilateral filter with the 
spatial neighborhood difference similarity distance. However, if it 
does not find enough similar pixels to achieve the desired 
exposure based on the size of the normalizing factor in the 
denominator of Equation 1, it transitions to a spatial-only median-
centered bilateral filter, as shown in Figure 5.  Like Yee et al [01], 
we also exploit the psychophysical phenomenon that in areas of 
motion, the human visual system’s ability to perceive high 
frequencies is reduced.  Thus, in areas with insufficient temporal 
information due to motion, we can transition to spatial filtering. 

Temporal bilateral filters are run on the image’s luminance 
and mapped to each channel, but only spatial filtering is done on 
each color channel. Furthermore, spatial filtering is done in the 
log domain, whereas temporal filtering is not. 

 
Figure 5: Illustration of the temporal-only and spatial-only nature of ASTA.  
The temporally filtered red pixels are preferred to be integrated into the filter, 
but if not enough are similar to the center of the kernel, the blue spatial 
pixels begin to be integrated. 

So far, we have assumed that the camera used to capture 
footage is stationary, assuring spatial correspondences for 
background pixels. For moving cameras, feature tracking is used. 
Sand and Teller [03] detail a system for finding accurate frame-
to-frame correspondences which can identify temporal neighbors. 
In our system video registration and alignment takes place prior to 
noise reduction. We only consider “high-confidence” trackable 
points (as determined by OpenCV’s GoodFeaturesToTrack()). 
We then select high-confidence optical-flow vectors (as 
determined using OpenCV’s feature tracking) that correspond to 
the trackable points that occur on the dominant flow field 
(typically the background). Finally, we select the mean of this 
feature set as a translation for each frame. Although more 
complex and further automated tracking methods could also be 
used, our approach effectively removes the dominant motion.  We 
used the spatio-temporal video editing system of [Bennett and 
McMillan 03] to do this. Once stabilized, video can be processed 
and then the stabilization can be removed. Any residual motions 
or misalignment are treated as moving objects by our ASTA filter.  

 One way to conceptualize ASTA is as a voting scheme, where 
each vote is a measure of the support of the filter. Before ASTA is 
run on a pixel, we determine how many votes (pixels) are 
required (defined as l, Section 3.2). The temporal bilateral filter 
gathers some votes, and if they are not sufficient, more votes are 
gathered from the spatial bilateral filter. 
 The number of votes desired is defined as l×g(0,σh) ×g(0,σi).  
The factor g(0,σh)×g(0,σi) is our definition of a vote because it is 
the contribution to the denominator of the bilateral filter from a 
pixel that is an exact match in space and intensity (D(x,y)=0). The 
larger the similarity distance, the lower its contribution to the 
denominator is. Thus, by analyzing the denominator of a bilateral 
filter, we can determine if a sufficient number of votes were 
tallied. ASTA is thus formalized in Equation 4.  The terms n and d 
represent the numerator and denominator of Equation 1, 
respectively. 
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 (4) 5 LDR Tone Mapping 
Our tone mapping approach considers that SNR varies with 
intensity.  Thus, details in dark regions are less accurate than 
those in brighter regions. A tone mapper specialized for 
underexposed video should therefore associate a confidence level 
for details based on their luminous intensity. For instance, in the 
brightest areas of a video where the CCD received a reasonable 
exposure, the mix of details and large-scale features should be 
adjusted to achieve the tone mapping objectives. In darker areas 
the details should be attenuated to suppress noise. 
 Using the tone-mapping approach of Durand and Dorsey [02], 
it is possible to separate an image into details and large scale 
features. Subtracting the original log-image from a bilaterally 
filtered log-image provides an estimate of the image details. 
Durand and Dorsey then attenuate the large scale features by a 
uniform scale factor in the log domain to reduce the overall 
contrast of the HDR image, but leave the details untouched. This 
is not a problem for low-noise source images. In contrast, our 
LDR tone-mapping processes the details and large scale parts 
with different pipelines that attenuate details based on their 
estimated accuracy, as determined by local luminance, and it 
attenuates the large scale features to achieve the desired contrast. 
These two signals are then remixed to form the final output. 

 ASTA changes its filtering settings based on the number of 
pixels it wants to combine. First, not every pixel could ever get a 
full vote, because even though it may have the same 
neighborhood it is attenuated by the distance Gaussian. Therefore, 
we choose the temporal filter kernel size and Gaussian σh 
dynamically such that if every comparison were a perfect match, 
Dt º 2×w. Similarly, if the vote count for the temporal bilateral 
comes up short, the spatial bilateral attempts to have the 
remaining number of votes fall within the area of one standard 
deviation of its distance Gaussian by dynamically choosing σh′. 
The remaining sigmas, σi for the temporal bilateral (and σe for its 
similarity distance) and σi′ for the spatial bilateral, are held 
constant in each video’s processing.  

 The same nonlinear mapping function, with independent 
parameters, is used to attenuate image details and to adjust the 

 



contrast of large scale features. It obeys the Weber-Fechner law of 
just-noticeable difference response in human perception but 
provides a parameter to adapt the logarithmic mapping in a way 
similar to the logmap function of Drago et al [03] and 
Stockham [72]. The mapping is given by: 
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Figure 6: Plots showing our nonlinear mapping function.  The left plot shows 
how our function does not have as severe a slope for luminances near 0 as 
does gamma correction as to not over accentuate dark regions (g=2.0 for 
gamma correction, y=64 for m(x, y)).  The inset shows that over the rest of 
0-255, they are mostly similar. The right plot shows a family of m(x, y)  
curves of y=2 (the most linear) through y=1024 (the most curved). 

Figure 1 depicts the entire VEC process for a noisy piece of 
footage of “walking fingers” with a single, dim light source.  The 
pseudo-color image demonstrates how ASTA adapts its 
integration strategy in different areas of each frame.  All color 
video footage in this paper was captured using a Sony DFW-V500 
4:2:2 uncompressed video camera.  The high-speed grayscale 
footage in the supplementary video was captured using a Point 
Grey Research Dragonfly Express operating at 120 frames per 
second.  Some of the videos in the supplemental video were 
captured via the Point Grey Research Color Flea at 30 frames per 
second.  Figures 8 and 9 show similar examples of our method.  
Figure 8 illustrates the processing of a typical LDR frame, and 
Figure 9 shows an example of initial poor utilization of the full 
dynamic range. Figure 10 illustrates the histograms of raw and 
processed virtual exposures.  ASTA does not noticeably change 
the histogram from the original, but our tone mapped result 
demonstrates the enhanced dynamic range of our virtual exposure 
approach.  

7 Future Work 
Our current system enhances raw uncompressed video streams   
offline. This allows us to consider temporal extents of arbitrary 
lengths into both the past and the future.  Ideally, we would like 
to apply our methods in real-time and assume more modest 
resources— perhaps only a second or two of temporal state 
sampled at 180 fps.  This would allow our enhancement 
algorithms to be performed in-camera prior to compression. Our 
approach is a good fit for next generation video cameras 
incorporating capabilities like those described by Bidermann et al 
[03]. Noise filtering prior to compression might also lead to 
reduced bit rates, and better support compression schemes that 
incorporate foreground and background models.  
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The white level of the input luminance is set by xMax and y 
controls the attenuation profile. As shown in Figure 6, the shape 
of our detail attenuation and contrast mapping function, m(x, y), 
is similar to a traditional gamma function, but it exhibits better 
behavior near the origin. As noted by Drago [03] the high slope of 
standard gamma correction for low intensities can result in loss of 
detail in shadow regions. This is particularly troublesome for 
underexposed images like those we target.   
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Figure 7: A flowchart of the entire process for creating virtual exposures, 
including detail of the LDR tone-mapping process.  The highlighted areas 
show the different processing paths of large scale and detail features. 

 Tone mapping (Fig. 7) begins by extracting the luminance of 
each frame and the chrominance ratio of each color component as 
discussed by Eisemann and Durand [04].  A bilateral filter is then 
applied to the log-image to extract the large scale image features.  
A temporal bilateral filter, with narrow support (small σi), is then 
applied to maintain temporal coherence. This result is then 
subtracted of from the log luminance of the original image to 
yields the detail features. 
 The linear intensities of the large scale features are next 
uniformly tone mapped using Equation 5, with a y1 of 
approximately 40.  The log-intensities of the details are attenuated 
based on the brightness of the linear large scale features. With a 
linear attenuation, a pixel with a brightness of .5×maximum 
would have half of its high frequency masked. Since the 
confidence of details degrades at dark values, we attenuate based 
on the curve in Equation 5 with a different y2 (often around 
700.0), resulting in a steep roll off for low intensities. 
 The log large scale features and log detail features are 
recombined to generate the final output luminance. Noise in the 
chrominance is attenuated via standard Gaussian blurring.  The 
luminance and chrominance ratios are then recombined into the 
final output. 

6 Results 
When looking at LDR video processing results, it is difficult to 
obtain a “ground truth” comparison because increased lighting for 
better exposure would change the scene’s appearance. Still 
images can depict tone mapping well, but it is difficult to discern 
noise reduction from still images. Thus, we suggest that the 
supplementary video be used as the primary source for evaluating 
results.  Its size is large to minimize compression artifacts. 

 



 Our current implementation is slow since it relies on multiple 
non-linear filtering steps. Currently, the processing of 640x480 
video takes approximately one minute per frame, and the 
processing times depend on the lighting level (since the filter’s 
temporal extent varies with luminance) and various parameters 
that control the filter extents. Durand and Dorsey [02] discuss a 
“fast-bilateral” approximation which would significantly improve 
our system’s performance. 
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Figure 8: A frame from a video processed using virtual exposures.  Upper 
Left: original frame; Upper Right: histogram stretched version; Bottom Left: 
red = number of temporal pixels integrated, green = number of spatial pixels 
integrated; Bottom Right: our result after filtering and tone mapping. 

    

 

  

    

  

Figure 10: Inspection of color histograms in our process.  From top to 
bottom: the original video frame and its histogram; a histogram stretched 
frame and its histogram showing quantization error; an ASTA processed 
frame and its histogram which is similar to the unfiltered histogram; the tone 
mapped ASTA frame and its stretched histogram without quantization error.   
Note the vertical scale in these histograms is vertically stretched to show 
maximum detail in each. 

Figure 9: A frame from a video processed using virtual exposures.  Upper 
Left: original frame; Upper Right: histogram stretched version; Bottom Left: 
red = number of temporal pixels integrated, green = number of spatial pixels 
integrated; Bottom Right: our result after filtering and tone mapping. 
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