
Eurographics Workshop on Rendering (2002), pp. 1–10
Paul Debevec and Simon Gibson (Editors)

A Real-Time Distributed Light Field Camera

Jason C. Yang Matthew Everett Chris Buehler Leonard McMillan

Computer Graphics Group
MIT Laboratory for Computer Science

Abstract
We present the design and implementation of a real-time, distributed light field camera. Our system allows multiple
viewers to navigate virtual cameras in a dynamically changing light field that is captured in real-time. Our light
field camera consists of 64 commodity video cameras that are connected to off-the-shelf computers. We employ a
distributed rendering algorithm that allows us to overcome the data bandwidth problems inherent in dynamic light
fields. Our algorithm works by selectively transmitting only those portions of the video streams that contribute to
the desired virtual views. This technique not only reduces the total bandwidth, but it also allows us to scale
the number of cameras in our system without increasing network bandwidth. We demonstrate our system with a
number of examples.

1. Introduction

Image-based rendering (IBR) has found widespread use be-
cause of the ease with which it produces photorealistic im-
agery. In particular, light fields and lumigraphs can gener-
ate realistic images at high framerates with little or no com-
puter graphics modeling. In the past, light field and lumi-
graph techniques have been limited to static scenes, in large
part because a single camera is often used to capture the im-
ages.

More recently, image-based rendering systems have been
developed around multi-camera configurations. Such sys-
tems have found spectacular success in movies such as “The
Matrix,” in commercials on TV, and even at the Super Bowl.
By using large numbers of still cameras, a snap-shot of a dy-
namic scene can be captured and manipulated using image-
based rendering techniques.

A logical extension is to construct an image-based render-
ing system with multiple video cameras, thus allowing ren-
dering in an evolving, photorealistic environment. Several
such systems have been demonstrated 4; 6. However, because
of the large volume of data, relatively small numbers of
widely spaced cameras are typically used. Light field tech-
niques are not directly applicable in these configurations, so
these systems generally reconstruct a geometric model of the
scene to use for virtual view rendering. This reconstruction
process is difficult and time-consuming. Some systems with

small numbers of cameras have performed real-time geome-
try correction, but more often they must do so off- line.

In our work, we propose a scalable architecture for a
distributed image-based rendering system based on a large
number of densely spaced video cameras. By using such
a configuration of cameras, we can avoid the task of dy-
namic geometry creation and instead directly apply high-
performance light field rendering techniques. Our system
uses a novel distributed light field rendering algorithm to re-
duce bandwidth issues and to provide a scalable system. Our
work makes the following contributions:

1. A system architecture that allows multiple viewers to in-
dependently navigate a dynamic light field.

2. A distributed light field rendering algorithm that allows
our system to use bandwidth proportional to the number
of viewers instead of proportional to the number of cam-
eras.

3. A complete implementation of a real-time, distributed
light field camera consisting of 64 commodity video cam-
eras arranged in a dense grid array.

1.1. Previous Work

1.1.1. Light Fields and Lumigraphs

Levoy and Hanrahan 5 and Gortler et al. 2 first introduced
light field techniques: rendering new views from a dense

c
 The Eurographics Association 2002.

Yang et al. / Light Field Camera

Image Fragments

View Requests

Compositor

Cameras

Internet

Local Viewer

Web Viewers

View Requests

Head Mounted

 Display

Video Stream

 Mux/

Compressor

Cameras

Local Renderer

Video Stream

Video Streams

(Compression)

Autostereoscopic

 Display

(a) (b)

Figure 1: Block diagrams for two possible system architectures. (a) The all-viewpoints design, in which the entire light field
is compressed and transmitted to a display. (b) The finite-viewpoints design, in which only the portion of the light field that
is needed for display is copied from the cameras and transmitted.

set of reference views. These techniques are noteworthy be-
cause they produce photorealistic imagery with little or no
geometric model of the scene. This fact not only allows for
very fast rendering algorithms but also suggests that a real-
time, image-based rendering system is possible, since the
time-consuming modeling process is eliminated.

Since the introduction of these papers, there has been a
large volume of research on light field techniques. One tech-
nique is the dynamically reparameterized light field 3, which
allows a user to “focus” the light field on certain portions of
a scene. We make use of this technique in our system. We
also borrow some ideas from unstructured lumigraph ren-
dering 1, since the cameras in our system are somewhat mis-
aligned due to manufacturing irregularities. Other relevant
work includes time critical lumigraph rendering 14, which
uses a similar triangulation-based rendering algorithm.

1.1.2. Dynamic Multi-Camera Systems

Separate from light field research, there has also been much
interest in building multi-video camera dynamic image-
based rendering systems. The Virtualized Reality system of
Kanade et al. 4 has over 50 video cameras arranged in a dome
shape. This system uses about the same number of cameras
as ours, although the dome arrangement is too widely-spaced
for pure light field rendering. Instead, a variety of techniques
are used to construct dynamic scene geometry 12 for off-line
rendering.

At the other end of the spectrum, the image-based visual
hull system 6 uses only four cameras to construct a crude
geometric scene representation in real-time. However, this
system uses silhouette techniques and thus can only repre-
sent the foreground objects of a scene.

1.2. Camera Arrays

In recent years, researchers have begun investigating dense
camera arrays for image-based rendering. The Lumi-Shelf
system 13 uses six cameras in a two by three array. Their
use of Region-of-Interests (ROIs) is similar to our selective
transmission technique, but they distribute the warping, re-
sampling, and compositing differently than in our system.
Most importantly, they use a stereo matching process for ge-
ometry correction, which limits the system’s performance to
1-2 frames per second. By contrast, we exploit the scalable
nature of our rendering algorithm to increase the number of
cameras to the point where geometry correction (except for
focal plane selection) is no longer needed.

Ooi et al. 10 propose a camera array based on a random
access camera, similar to the device we propose later in this
paper. The major difference between our approaches lies in
the capabilities of the cameras we propose. Their camera al-
lows only pixel addressing, whereas our device incorporates
image warping and resampling. They demonstrate a proto-
type of the camera device, but to our knowledge have not
built a system based on it.

More recently, Wilburn et al. 17 have demonstrated a six-
camera prototype of a light-field video camera. Their camera
is targeted at compression and storage of light fields, and
not at real-time interactivity. Naemura et al. 7 8 present a
16-camera array intended for interactive applications. They
compensate for the small number of cameras by using real-
time depth estimation hardware. They also employ a simple
downsampling scheme (i.e., images are downsampled by 4
in both dimensions for a 4� 4 array) to reduce the video
bandwidth in the system, which keeps bandwidth low but
does not scale well.

c
 The Eurographics Association 2002.

Yang et al. / Light Field Camera

2. Design Considerations

A number of considerations affected the design of our light
field camera array, including data bandwidth, scalability, and
desired uses for the system. We also considered overall sys-
tem cost when designing our system.

2.1. Data Bandwidth

Light fields are well-known for requiring large memory re-
sources. In moving to a dynamic, video-based system, the
data management problems become magnified. Thus, one of
the critical design criteria is to keep total data bandwidth
(i.e., the amount of data transferred through the system at
any given time) to a minimum.

2.2. Scalability

The image quality of light field rendering improves with in-
creasing number of images in the light field. Thus, the sys-
tem should be able to accommodate a large number of video
cameras for acceptable quality. Ideally, we would like to be
able to increase the number of video cameras without greatly
increasing the data bandwidth of the system.

2.3. Desired Uses

A dynamic light field system has many potential uses, some
of which may be better suited to one design than another.
For example, a light field camera array may be used to drive
a high-resolution monitor with special lenses that allow au-
tostereoscopic viewing (i.e., a true 3D television). Static ver-
sions of such devices have been demonstrated 3. In this ap-
plication, the camera must have the bandwidth to deliver the
full light field to the display. On the other hand, to gener-
ate real-time stereo pairs for a head-mount display, the light
field camera only needs the bandwidth to generate two vir-
tual views at a time.

3. System Design

In designing our system, we evaluated two possible system
configurations. The fundamental difference between these
two designs is in the number of output views they can de-
liver to an end user. The first system is a straightforward de-
sign that essentially delivers all possible output views (i.e.,
the whole light field) to the end user at every time instant.
We call this system the “all-viewpoints” system.

The second system, the one we chose to implement, is
constrained to deliver only a small set of requested virtual
views to the end user at any time instant. We call this system
the “finite-viewpoints” system.

The all-viewpoints system predictably has high band-
width requirements and poor scalability. However, it offers
the most flexibility in potential uses. The finite-viewpoints

system is designed to be scalable and utilize low data band-
width. On the other hand, it limits the potential uses of the
system.

First, we briefly review the all-viewpoints design to illus-
trate the various tradeoffs involved.

3.1. All-Viewpoints Design

The all-viewpoints design is the simpler of the two that we
considered (see Figure 1a). In this design the camera array
delivers all of the video streams to a display device. We call
this the “all-viewpoints” design because any virtual view-
point can then be synthesized at the display device.

The advantage of this approach is that all of the light field
data is available at the display device. This feature allows,
for example, the light field to be recorded for later viewing.
In addition, this design could permit the light field to gen-
erate any number of virtual views simultaneously, given a
suitable multi-user autostereoscopic display device.

The primary disadvantage is that the data bandwidth re-
quired to transmit large numbers of video streams is large. In
addition, the bandwidth increases with the number of cam-
eras, making the design difficult to scale.

Considering that a single uncompressed CCIR-601 NTSC
video stream is 26.2 Mbytes/sec, a system with 64 cameras
would require aggressive compression capabilities. An opti-
mal compression device would encode all video streams si-
multaneously, which could potentially lead to an asymptotic
bound on the total output bandwidth as the number of cam-
eras are increased. However, the input bandwidth to any such
compression device would increase unbounded. The most
likely compromise is to place compression capabilities on
the cameras themselves, which would reduce the bandwidth
by a constant factor but not bound it.

3.2. Finite-Viewpoints Design

We decided not to pursue an all-viewpoints design because
of the bandwidth requirements. Instead, we decided to im-
plement a “finite-viewpoints” design, which trades off view-
ing flexibility for a great reduction in bandwidth.

In the finite viewpoint design (see Figure 1b), cameras
are treated as “random access” video buffers whose contents
are constantly changing. The cameras are individually ad-
dressable, and subsets of pixels can be copied from their
video buffers. The key idea is that the individual contribu-
tions from each camera to the final output image can be de-
termined independently. These “image fragments” can then
be combined together later (e.g., at a compositing device or
display) to arrive at the final image.

The system shown in Figure 1b operates as follows. An
end user at a display manipulates a virtual view of the light
field. This action sends a virtual view request to a central

c
 The Eurographics Association 2002.

Yang et al. / Light Field Camera

Image Fragments

View Requests

Compositer

Cameras

Random Access
Camera Computers

Internet

Local Viewer

Web Viewers

View Requests

Head Mounted
 Display

Video Stream

Figure 2: A block diagram of our system implementation.
Random access cameras are simulated by normal cameras
connected to a bank of computers. These computers send
image fragments to the image compositor, which assembles
the final image. Users view images from the compositor on
their displays.

compositing engine. The compositor then sends the virtual
view information to each of the cameras in the array, which
reply with image fragments representing parts of the output
image. The compositor combines the image fragments and
sends the final image back to the user’s display.

The system transfers only the data that is necessary to
render a particular virtual view. In this way, the total band-
width of the system is bounded to within a constant factor of
the size of the output image, because only those pixels that
contribute to the output image are transferred from the cam-
eras. In general, the system may be designed to accommo-
date more than one virtual viewpoint, as long as the number
of viewpoints is reasonably small. Note that there is some
bandwidth associated with sending messages to the cameras.
However, with the appropriate camera design, these mes-
sages can in fact be broadcast as a single message to all the
cameras simultaneously.

Along with a reduction in bandwidth, this system design
has other advantages. First, it more readily scales with addi-
tional cameras, as the total bandwidth is related to the num-
ber and size of the output streams instead of the number of
input streams. Second, the display devices can be extremely
lightweight, since only a single video stream is received. A
light field camera employing this design could conceivably
be manipulated over the internet in a web browser.

The main disadvantage of the finite viewpoint system is
that the entire light field is never completely transferred from
the cameras. Thus, it is difficult to record the light field for
future playback, and it is impossible to display all of the data
at once (e.g., on a stereoscopic display).

Camera Array

Focal Plane

Image FragmentI F

(x, y)(, y)

DDeesired View
mera meCamm

Figure 3: A diagram of the rendering algorithm. All tri-
angles associated with a camera are projected onto the fo-
cal plane. These triangles are rendered from the desired
viewpoint with projective texture mapping. The result is an
image fragment that is transmitted for later compositing.

4. Implementation

We have implemented a light field camera array based on
the finite-viewpoints design. In the interest of keeping sys-
tem costs down, we constructed the system from commodity
parts. First, we describe the basic light field rendering al-
gorithm that our system implements. Then we describe the
two key system components, the random access cameras and
the compositing engine, and how they interact (see Figure
2). Finally, we discuss other details that are necessary for a
complete system.

4.1. Rendering Algorithm

The actual implementation of our system is intimately tied to
our choice of light field rendering algorithm. The algorithm
that we use is related to the hardware-assisted algorithms
described in 2; 14; 3; 1. These algorithms are well-suited to our
system since they construct the output image on a camera-
by-camera basis.

First, we assume that we know the positions and orienta-
tions of all of our cameras. While we do not require that the
camera positions strictly conform to a regular grid, we do
assume that the cameras have a fixed regular topology. For
example, in our system, we have configured 64 video cam-
eras in an eight by eight square grid. We triangulate this grid
to arrive at a fixed topology for rendering (see Figure 3).

As in 3, we render the light field with respect to a user-
specified focal plane. Conceptually, rendering proceeds as
follows. For each camera (i.e., vertex) in the grid, the trian-
gles that are connected to the vertex are projected through
the desired view onto the focal plane. These triangles are
then rendered from the desired point of view, with projective
texture mapping of the camera’s current image. The alpha
values of the triangles are set such that the camera’s vertex

c
 The Eurographics Association 2002.

Yang et al. / Light Field Camera

has alpha one and all other vertices have alpha zero. These
rendered triangles constitute the image fragment that this
particular camera contributes to the final image. We accu-
mulate all such image fragments to arrive at the final image.

The details of how we distribute this algorithm depends
on the operation of the random access cameras, which we
discuss next.

4.2. Random Access Cameras

A random access camera returns a portion of its current im-
age in response to a request for data. The amount of “intel-
ligence” on the camera determines how the light field algo-
rithm is distributed.

A simple random access camera knows nothing about it-
self or its neighbors, and looks like a frame buffer to the
compositor. In this case, the compositor knows all infor-
mation about the system, including camera positions, focal
plane position, etc. During rendering, the compositor deter-
mines which pixels are needed from each camera and di-
rectly reads them out of the cameras’ frame buffers and per-
forms all texture filtering, alpha blending, and compositing.
This is the type of camera module described in 10.

However, we have found that a random access camera for
light field applications can benefit greatly from image pro-
cessing capabilities. For example, as discussed previously,
rendering the light field involves projective texture mapping,
which is a simple perspective transformation applied to a
spatially coherent part of the camera’s image buffer. Thus,
an intelligent random access camera should be able to warp
its image fragment given a desired triangular output region
and a 2D perspective transformation matrix. The compositor
could then generate requests for triangular patches instead of
individual pixels and perform only alpha compositing.

A random access camera can be further improved by hav-
ing knowledge of its position in the world. In this case, the
compositor could send just a desired 3D triangle along with
the virtual view information and focal plane information.
The required perspective image warp can then be derived
from that information.

In our system, we assume the camera has knowledge of its
own position and the positions of its neighboring cameras.
Given this information, the camera itself can determine its
contribution to the final output image given just the virtual
view information and the focal plane. All cameras need the
same information, so it can be broadcast to all the cameras
at one time.

We decided to use this camera model because of the sim-
plified communication protocol. However, it is not clear that
this choice is always best. For example, cameras that have no
knowledge of their neighbors might be useful for a fault tol-
erant system. A sophisticated compositor could reconfigure
the camera topology on-the-fly in the case of camera fail-
ures.

4.2.1. Simulating Random Access Cameras

Unfortunately, the type of random access camera that we en-
vision does not yet exist. With the advent of cheap CMOS
imagers, however, these cameras could certainly be built on
a single chip.

In the meantime, we can simulate such cameras with a
regular video camera connected to a graphics hardware-
equipped computer. The video frames are downloaded into
the computer’s memory. As view requests are received over
the network, the computer warps a small part of the video
frame and sends the resulting image fragment back to the
compositor. The image fragment is a small rectangular patch
with associated 2D coordinates (see Figure 3). These coor-
dinates tell the compositor where to position the image frag-
ment in the final image. The fragments are also tagged, so
the compositor can determine to which virtual view and fo-
cal plane they belong. Fragments can also be compressed,
resulting in even further bandwidth reduction. Our system
uses simple JPEG compression for this purpose.

We have found that standard PCs are sufficient for sim-
ulating a random access camera. In fact, a single computer
can easily simulate more than one camera. In our system, we
use a single computer to simulate up to 16 random access
cameras. The computer stores the position and neighbor in-
formation for each camera and performs image processing
and compression.

4.3. Image Compositor

The image compositor is the central communication point in
our system. End users connect to the compositor when they
want to view the light field data.

The user’s display program sends a view request to the
compositor whenever the display needs an update. The view
request consists of a virtual view and focal plane. The virtual
view is specified by position, orientation, and field-of-view,
and the focal plane is specified by a plane equation.

The compositor broadcasts the view request information
to the random access cameras. It then clears a new frame
buffer and waits for the appropriate image fragments to re-
turn from the cameras. When a fragment arrives, the com-
positor aligns the upper-left corner of the fragment with the
proper 2D coordinates returned by the camera. It then adds
the fragment into the frame buffer.

When all fragments have been received, the completed
output image is returned to the user’s display. Because of
the small amount of data involved, the entire process hap-
pens very quickly and there is very little latency. Also, the
system maintains nearly constant throughput because light
field rendering is insensitive to the virtual view selection or
scene complexity.

c
 The Eurographics Association 2002.

Yang et al. / Light Field Camera

Figure 4: A photo of our 64-camera light field camera ar-
ray. The cameras are arranged in rows of eight.

4.4. System Details

4.4.1. Hardware

Cost was a significant constraint in choosing the hardware
for our system. The camera array itself consists of 64 Or-
angeMicro iBot firewire video cameras (see Figure 4). These
cameras, while cheap, have a few major disadvantages. First,
they can not be genlocked, which means that the images in
our light field are not exactly synchronized in time. We have
developed a way to synchronize to within one frame, which
is sufficient for a prototype system (see below). Second, the
color controls on the cameras do not behave in a consis-
tent manner, which makes color calibration difficult (see be-
low). Third, the cameras have noticeable radial distortion,
which complicates camera calibration and introduces geo-
metric distortions in renderings (see below).

To build the array, we stripped the cameras of their casings
and rigidly mounted them to a Plexiglas board. The cameras
are organized into groups of eight, which are connected to
two firewire hubs. Rows of eight cameras are then connected
to PCs, which act as the random access camera simulators
for those cameras. Currently, the cameras are arranged in an
eight by eight grid; however, we can reconfigure the array by
rearranging the eight-camera modules.

Currently, we use six different computers as random ac-
cess camera simulators. They range from 1.5GHz to dual
1.7GHz Pentium 4 PCs. Each computer has two firewire
channels for grabbing video from the cameras. The two
fastest computers each simulate 16 random access cameras,
while the other four computers each simulate 8 cameras. The
computers are equipped with nVidia Quadro2 Pro graphics

cards, and they are attached via a dedicated network to the
compositing machine.

The compositor computer is a slower 1.5GHz Pentium 4
computer, and it does not require an advanced graphics card.
The compositor drives a display that users can use to view
the light field. In the future, users will be able to connect
remotely (e.g., over the web) to the compositor machine, but
we have not enabled this capability at this time.

4.4.2. Camera Calibration

For quality light field rendering, it is important to know ac-
curately the positions, the orientations, and the internal pa-
rameters (e.g., focal length, etc.) of the cameras. Calibrating
a camera is a tedious process; individually calibrating 64 (or
more) cameras is intractable. To make the process easier, we
have developed a largely automatic process.

First, we manually calibrate the intrinsics of one of the
cameras. The intrinsics include focal length, principal point,
and two radial distortion parameters. We do this using
Zhang’s calibration software 18. Initially, we assume that all
of the cameras have the same intrinsics as this first camera.
We relax this assumption later in the calibration process.

Next, we darken the room and move a point light source
in front of the camera array. Each camera tracks the position
of this light source, which is easy to see in the dark environ-
ment. We acquire about 100 points of data.

We then run standard structure-from-motion computer vi-
sion algorithms 15; 16 on this point data to compute an ini-
tial estimate of the cameras’ positions and orientations as
well as the 3D positions of the point light sources. In this
step, we have assumed identical intrinsics, which causes the
structure-from-motion process to yield noisy results.

Finally, we relax the identical intrinsics assumption and
refine the initial estimate using a large nonlinear optimiza-
tion. This optimization improves the position, orientation,
and intrinsics of each camera. (The 3D point light source
positions are improved as well, but we do not use this data.)
Using this process, we generally achieve a calibration with
reprojection errors of less than 1 pixel, which is suitable for
image-based rendering applications.

4.4.3. Color Calibration

When mixing images from many different cameras, it is im-
portant to match the colors between cameras. Again, inde-
pendently adjusting the contrast, brightness, and white bal-
ance controls for 64 cameras is a tedious process. To assist in
this task, we have implemented the simple automatic process
described in 9.

Unfortunately, our low-cost cameras have defective color
controls (similar to the problem reported in 9), so the auto-
matic process does not always succeed on all cameras. In
these cases, we must adjust some color controls manually.

c
 The Eurographics Association 2002.

Yang et al. / Light Field Camera

System Latency

0 20 40 60 80 100 120 140 160

Frame 2

Frame 1

Time (ms)

Legend

Network

Setup

Synchronization

Texture Update

Rendering

Pixel Readback

JPEG Compression

Network

JPEG Decompression

Accumulation

Display

Figure 5: The round trip latency of our system, broken
down into its components. Grabbing images from the cam-
eras happens asynchronously and occurs in the back-
ground. Therefore, the time involved in this operation does
not appear in our latency graph.

4.4.4. Synchronization

Although our cameras are not genlocked, we can ensure that
all the images within our light field are not off by more than
one frame. When the system first starts up, all the computers
synchronize their internal clocks. Once they finish this step,
their clocks differ by no more than 5-10ms.

Then, the camera computers agree on a schedule for when
they will download images from the cameras. Since their
clocks are aligned, they will all receive an image from their
respective cameras within 5-10ms of each other. Because the
cameras run at only 15fps, this scheme is sufficient to keep
the light field images to within a frame of one another.

5. Results and Discussion

Our system generates images at an average of 18 frames per
second, with 320 by 240 video coming from the cameras. We
can achieve this rendering rate because rendering and cap-
ture happen asynchronously on our system. Unfortunately,
the frame rate of the system is limited by the slowest camera
computers. Our fastest computers easily run at 30 frames per
second, so we know the system can attain faster speeds with
minor computer upgrades.

The latency is only 80 milliseconds, which makes the sys-
tem extremely responsive, but it is probably still inadequate
for head-tracked display 11. Figure 5 breaks down the la-
tency of the system into its various components. We can
see that most time is spent copying texture data to and from
the graphics cards. This is an unfortunate artifact of simu-
lating random access cameras; the real cameras would not
suffer this penalty. The synchronization delay represents our
scheme for attempting to synchronize our ungenlocked cam-
eras. We can also see that much time is spent compositing

Average Data per Frame

0

100000

200000

300000

400000

500000

600000

9 16 25 36 49 64

Number of Cameras

B
yt

es

Figure 6: The average data per frame that is transmitted
from the camera computers to the compositor. Bandwidth
stays roughly constant for different numbers of cameras.
These values reflect uncompressed data.

and displaying the final images. However, this time is essen-
tially free, as we can hide it with pipelining as shown by the
second row of the graph. The rendering and image compres-
sion tasks take the least amount of time, with network com-
munication not too far behind. The “setup” category covers
timings that did not belong in other categories.

We also conducted experiments to verify the scalability
of the system. We ran the system with varying numbers of
cameras and measured the data bandwidth of the image frag-
ments entering the compositor. We took care to always use
cameras spread over the whole array so that we could render
the same size output image. For example, when testing four
cameras, we used the cameras at the corners of our array.

We used a pre-programmed camera path and averaged
the results over 20 seconds of running. Ideally, this measure
should show that the bandwidth of our system does not in-
crease as more cameras are added. See Figure 6. Note that
the bandwidth is not identical in all cases because we always
transfer rectangular image fragments, which might contain
extraneous pixels that are known to be zero. We actually see
a reduction in bandwidth as we increase the number of cam-
eras, which may be caused by fewer extraneous pixel trans-
fers at finer camera granularities.

We have used our light field camera to view and manipu-
late a wide range of data. In Figures 7, 8, and 9 we demon-
strate the variable focus capability of our system. These fig-
ures also reveal one of the system’s rendering artifacts: dou-
ble images. These types of artifacts are characteristic of light
field rendering, especially in light fields with only 64 im-
ages. We can improve image quality by increasing the num-
ber of cameras and redesigning the spacing between them.
For example, by using Point Grey’s Firefly cameras in the
extended CCD form factor, we can pack the cameras much

c
 The Eurographics Association 2002.

Yang et al. / Light Field Camera

more tightly than our current design. Additionally, the dou-
ble images could be replaced with perhaps less objectionable
blurring artifacts by blending together more than 3 images
per pixel. This type of blending could be implemented by
using a finer triangle grid with multiple blending weights at
each vertex, as is done in 1.

Figure 12 shows the 64 raw images taken in an instant
of time. The person is these images is jumping in mid-air
while the camera records him. Figure 11 shows a cross-
fusion stereo pair that we synthesized with our system. In
our system, our frame rate is inversely proportional to the
number of virtual views at any one time. In the case of the
stereo pair, the frame rate for each view would be cut in half.
For more examples of the system in action, please see the ac-
companying video.

6. Conclusion and Future Work

We have presented the design and implementation of a real-
time distributed light field camera. Because of our finite-
viewpoints design model, we are able to reduce the neces-
sary bandwidth of the system while still allowing high per-
formance. Our design is also very scalable, which permits
the use of large numbers of cameras. Using a large number
of low-cost cameras permits us to use no geometry correc-
tion, a bottleneck of many previous dynamic image-based
rendering systems.

We have demonstrated the feasibility of this approach by
implementing the system with readily available, low-cost
components. We have described techniques for calibrating
both the pose and the color responses of the individual cam-
eras, tasks that are crucial for success. The 64-camera sys-
tem renders at 18 frames per second with 80 ms latency. We
believe that with further tuning, such systems can run even
more efficiently.

In the future, we would like to expand the size of our array
to 128 or 256 cameras. Such a large array becomes more
feasible as the prices of consumer video cameras continue to
drop. We would also like to experiment with other camera
configurations (e.g., cylindrical or linear arrays) and more
sophisticated rendering algorithms.

We are also continuing to investigate “smart” camera
technology. With the advent of CMOS imaging, these types
of cameras will eventually become prevalent. In this paper,
we have assumed a relatively unambitious camera with the
ability to warp and resample selected portions of its frame
buffer. Cameras with even more intelligence might form the
basis of better systems, such as self-organizing camera webs
or distributed tracking systems.

7. Acknowledgements

We would like to thank Nathan Ackerman and Manu Seth
for their help on this project as well as Mike Bosse and

Figure 7: Focusing on the person to the right.

Figure 8: Focusing on the person to the left.

Figure 9: Focusing on the person in the center.

c
 The Eurographics Association 2002.

Yang et al. / Light Field Camera

Figure 10: Camera positions are triangulated during ren-
dering. This view was taken behind the camera array and
shows the contributions from all 64 cameras.

our anonymous reviewers for their invaluable comments.
This work was supported by grants from Nippon Telegraph
and Telephone, Inc. (NTT), NSF (CCR-9875859), and MIT
Project Oxygen.

References

1. Chris Buehler, Michael Bosse, Leonard McMillan, Steven J.
Gortler, and Michael F. Cohen. Unstructured lumigraph
rendering. In Eugene Fiume, editor, Proceedings of SIG-
GRAPH 2001, Computer Graphics Proceedings, Annual Con-
ference Series, pages 425–432. ACM, ACM Press / ACM SIG-
GRAPH, 2001. 2, 4, 8

2. Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and
Michael F. Cohen. The lumigraph. SIGGRAPH 96, pages
43–54, 1996. 1, 4

3. A Isaksen, L. McMillan, and S. Gortler. Dynamically reparam-
eterized light fields. SIGGRAPH ’00, pages 297–306, 2000. 2,
3, 4

4. Takeo Kanade, Peter Rander, and P.J. Narayanan. Virtual-
ized reality: Constructing virtual worlds from real scenes.
IEEE Multimedia, Immersive Telepresence, 4(1):34–47, Jan-
uary 1997. 1, 2

5. M. Levoy and P. Hanrahan. Light field rendering. SIGGRAPH
96, pages 31–42, 1996. 1

6. Wojciech Matusik, Chris Buehler, Ramesh Raskar, Steven
Gortler, and Leonard McMillan. Image-based visual hulls. In
Kurt Akeley, editor, Proceedings of SIGGRAPH 2000, Com-
puter Graphics Proceedings, Annual Conference Series, pages
369–374. ACM, ACM Press / ACM SIGGRAPH, 2000. 1, 2

7. Takeshi Naemura and Hiroshi Harashima. Real-time video-
based rendering for augmented spatial communication. Visual
Communication and Image Processing 1999 (SPIE), pages
620–631, 1999. 2

8. Takeshi Naemura, Junji Tago, and Hiroshi Harashima. Real-
time video-based modeling and rendering of 3d scenes. IEEE
Computer Graphics and Applications, pages 66–73, 2002. 2

9. Harsh Nanda and Ross Cutler. Practical calibrations for a real-
time digital omnidirectional camera. CVPR 2001 Technical
Sketch, 2001. 6

10. Ryutaro Ooi, Takayuki Hamamoto, Takeshi Naemura, and
Kiyoharu Aizawa. Pixel independent random access image
sensor for real time image-based rendering. IEEE Intern. Conf.
Image Process. (ICIP2001), 20(3):193–196, 2001. 2, 5

11. Matthew J. P. Regan, Gavin S. P. Miller, Steven M. Rubin, and
Chris Kogelnik. A real-time low-latency hardware light-field
renderer. SIGGRAPH ’99, pages 287–290, 1999. 7

12. Hideo Saito, Shigeyuki Baba, Makoto Kimura, Sundar Vedula,
and Takeo Kanade. Appearance-based virtual view genera-
tion of temporally-varying events from multi-camera images
in the 3d room. Second International Conference on 3D Digi-
tal Imaging and Modeling, 1999. 2

13. Hartmut Schirmacher, Li Ming, and Hans-Peter Seidel. On-
the-fly processing of generalized lumigraphs. Eurographics
2001, 20(3), 2001. 2

14. Peter-Pike Sloan, Michael F. Cohen, and Steven J. Gortler.
Time critical lumigraph rendering. 1997 Symposium on In-
teractive 3D Graphics, pages 17–24, 1997. 2, 4

15. Richard Szeliski and Sing Bing Kang. Recovering 3d shape
and motion from image streams using nonlinear least squares.
JVCIP, 5(1):10–28, 1994. 6

16. Bill Triggs, Philip McLauchlan, Richard Hartley, and Andrew
Fitzgibbon. Bundle adjustment–a modern synthesis. Vision
Algorithms: Theory and Practice, pages 298–373, 1999. 6

17. Bennett Wilburn, Michal Smulski, Kevin Lee, and Mark A.
Horowitz. The light field video camera. Proceedings of Media
Processors 2002, SPIE Electronic Imaging 2002, 2002. 2

18. Z. Zhang. A flexible new technique for camera calibration.
Microsoft Research Technical Report: MSR-TR-98-71, 1998.
6

c
 The Eurographics Association 2002.

Yang et al. / Light Field Camera

Figure 11: Cross-eyed stereo pair synthesized from our light field camera.

Figure 12: An array of raw images taken with our light field camera. The person in this light field is jumping in mid-air.
Note that these images are unrectified, so the variations in the cameras’ viewing directions are readily apparent.

c
 The Eurographics Association 2002.

