
Programming Problem. Modify BreakpointReversalSort.py as follows:

The given version of the code outputs only one of many possible solutions. The way to generate
multiple solutions should be that if at any stage of the program, there is more than one reversal that
removes two breakpoints, progam should accept all such reversals and output all solutions. Turn in
Your listing for following inputs:

0 1 2 10 9 3 4 7 6 5 8
0 9 2 1 6 8 7 5 3 4 10

Solution:

*The given code works iteratively (linear fashion) such that it chooses one single reversal at each step, applies that

reversal to the sequence. It takes this kind of steps until sequence is sorted. If there is more than one equally good

reversal then given code just picks the first one. But we want to learn what would be the solution if we take apply each

equally good reversal at each step. So execution would be more like a tree rather than linear. For this purpose we make

two changes:

1. We make pickReversal function return return list of reversals rather than a single reversal

2. we make improvedBreakpointReversalSort function recursive to traverse all solutions in a depth-first

fastion

PYTHON CODE

import random

def makePermutation(n):

 """ generates a random permuation of the numbers 1..n-1 sandwiched between 0

and n """

 seq = range(1,n)

 random.shuffle(seq)

 return [0] + seq + [n]

def hasBreakpoints(seq):

 """ returns True if sequnces in not strictly increasing by 1 """

 for i in xrange(1, len(seq)):

 if (seq[i] != seq[i-1] + 1):

 return True

 return False

def getStrips(seq):

 """ find contained intervals where sequence is ordered, and return intervals

 in as lists, increasing and decreasing. Single elements are considered

 decreasing. "Contained" excludes the first and last interval. """

 deltas = [seq[i+1] - seq[i] for i in xrange(len(seq)-1)]

 increasing = list()

 decreasing = list()

 start = 0

 for i, diff in enumerate(deltas):

 if (abs(diff) == 1) and (diff == deltas[start]):

 continue

 if (start > 0):

 if deltas[start] == 1:

 increasing.append((start, i+1))

 else:

 decreasing.append((start, i+1))

 start = i+1

 return increasing, decreasing

def pickReversal(seq, decreasing):

 """ test each decreasing interval to see if it leads to a reversal that

 removes two breakpoints, otherwise, return a reversal that removes only one

"""

 reversals = list()

 IntervalStarts = [i for i, j in decreasing]

 for i, j in decreasing:

 endValue = seq[j-1] # ending value of decreasing

interval

 predIndex = seq.index(endValue-1) # index of endValue's predecessor

 k = predIndex+1 # index of value following

predecessor

 if (predIndex in IntervalStarts): # indirectly verifies that

predcessor

 continue # is at the end of an increasing

interval

 if (j > k):

 if (seq[k] + 1 == seq[j]):

 print "2:",

 return (k, j) # if reversal removes two

breakpoints, do it add to reversal list

 reversals.append((k,j))

 else:

 if (seq[j] + 1 == seq[k]):

 print "2:",

 return (j, k) # if reversal removes two

breakpoints, do it add to reversal list

 reversals.append((k,j))

 if (j > k):

 j, k = k,j

 print "1:",

 return (j, k) # otherwise, settle for removing

only one

 if len(list()) == 0: #If list is empty -> no reversal removing 2 bp. Settle

for one

 return [(j, k)]

 else:

 return reversals

def doReversal(seq,(i,j)):

 return seq[:i] + [element for element in reversed(seq[i:j])] + seq[j:]

def improvedBreakpointReversalSort(seq):

 while hasBreakpoints(seq):

 if hasBreakpoints(seq): #recursive case

 increasing, decreasing = getStrips(seq)

 if len(decreasing) > 0:

 reversals = pickReversal(seq, decreasing)

 else:

 print "0:",

 reversals = [increasing[0]]

 print seq, "reversals", reversals

 seq = doReversal(seq,reversal)

 for reversal in reversals: #For each reversal, apply reversal and call

improvedBreakpointReversalSort so that we go through each possibility by depth-

first manner.

 seq2 = doReversal(seq,reversal)

 improvedBreakpointReversalSort(seq2)

 else

 print seq, "Sorted" #base case

 return

if __name__ == "__main__":

 print "Python implementation of breakpoint reversal sort on page 135"

 while True:

 input = raw_input('Enter a list, the size of list, or 0 to exit:')

 if (input.find(',') > 0):

 L = [int(v) for v in input.split(',')]

 else:

 n = int(input)

 if (n == 0):

 break

 L = makePermutation(n)

 improvedBreakpointReversalSort(L)

