
4/20/15 Comp 555 Spring 2015 1

4/20/15 Comp 555 Spring 2015 2

•  Randomized algorithms incorporate random,
rather than deterministic, decisions

•  Commonly used in situations where no exact
and/or fast algorithm is known

• Main advantage is that no input can reliably
produce worst-case results because the
algorithm runs differently each time.

4/20/15 Comp 555 Spring 2015 3

•  Select(L, k) finds the kth smallest element in L
•  Select(L,1) find the smallest…

–  Well known O(n) algorithm

•  Select(L, len(L)/2) find the median…
–  How?
–  median = sorted(L)[len(L)/2] ! O(n logn)

•  Can we find medians, or 1st quartiles in O(n)?

minv = HUGE!
for v in L:!
 if (v < minv):!
 minv = v!

4/20/15 Comp 555 Spring 2015 4

•  Select(L, k) finds the kth smallest element in L
–  Select an element m from unsorted list L and

partition L the array into two smaller lists:

 Llo - elements smaller than m
 and
 Lhi - elements larger than m.

•  If len(Llo) > k then
 Select(Llo, k)

•  else if k > len(Llo) + 1 then
 Select(Lhi, k - len(Llo) - 1)

•  else m is the kth smallest element

4/20/15 Comp 555 Spring 2015 5

Given an array: L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

Step 1: Choose the first element as m

 L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

Our Selection

4/20/15 Comp 555 Spring 2015 6

Step 2: Split the array into Llo and Lhi

 Llo = { 3, 2, 4, 5, 1, 0 }

 L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

 Lhi = { 8, 7, 9 }

4/20/15 Comp 555 Spring 2015 7

Step 3: Recursively call Select on either Llo or Lhi
until len(Llo) = k, then return m.
len(Llo) > k = 5 ! Select({ 3, 2, 4, 5, 1, 0 }, 5)

m = 3

Llo = { 2, 1, 0 } Lhi = { 4, 5 }

m = 4
Llo = { empty }, Lhi = { 5 }

k = 5 > len(Llo) +1 ! Select({4, 5 }, 5 - 3 - 1)

k = 1 == len(Llo) + 1 ! return 4

4/20/15 Comp 555 Spring 2015 8

def select(L, k):!
 value = L[0]!
 Llo = [t for t in data if t < value]!
 Lhi = [t for t in data if t > value]!
 below = len(Llo) + 1!
 if (k < len(Llo)):!
 return select(Llo, k)!
 elif (k > below):!
 return select(Lhi, k - below)!
 else:!
 return value!

4/20/15 Comp 555 Spring 2015 9

•  Runtime depends on our selection of m:

 - A good selection will split L evenly such that

 |Llo | = |Lhi |= |L|/2

 - The recurrence relation is:
 T(n) = T(n/2)

 - n + n/2 + n/4 + n/8 + n/16 + ….= 2n ! O(n)
Same as search
for minimum

4/20/15 Comp 555 Spring 2015 10

However, a poor selection will split L unevenly and in the
worst case, all elements will be greater or less than m so
that one Sublist is full and the other is empty.

For a poor selection, the recurrence relation is
 T(n) = T(n-1)

In this case, the runtime is O(n2).

Our dilemma:
O(n) or O(n2),
 depending on the list… or O(n log n) independent of it

I could have sorted
 first and done
 better

4/20/15 Comp 555 Spring 2015 11

•  Select seems risky compared to sort
•  To improve Select, we need to choose m

to give good ‘splits’
•  It can be proven that to achieve O(n) running

time, we don’t need a perfect splits, just
reasonably good ones.

•  In fact, if both subarrays are at least of size n/4,
then running time will be O(n).

•  This implies that half of the choices of m make
good splitters.

4/20/15 Comp 555 Spring 2015 12

•  To improve Select, randomly select m.
•  Since half of the elements will be good splitters,

if we choose m at random we will get a 50%
chance that m will be a good choice.

•  This approach will make sure that no matter
what input is received, the expected running
time is small.

4/20/15 Comp 555 Spring 2015 13

def randomizedSelect(L, k):!
 value = random.choice(L)!
 Llo = [t for t in data if t < value]!
 Lhi = [t for t in data if t > value]!
 below = len(Llo) + 1!
 if (k < len(Llo)):!
 return randomizedSelect(Llo, k)!
 elif (k > below):!
 return randomizedSelect(Lhi, k-below)!
 else:!
 return value!

4/20/15 Comp 555 Spring 2015 14

• Worst case runtime: O(n2)
•  Expected runtime: O(n).
•  Expected runtime is a good measure of the

performance of randomized algorithms, often
more informative than worst case runtimes.

• Worst case runtimes are rarely repeated
•  RandomizedSelect always returns the correct

answer, which offers a way to classify
Randomized Algorithms.

4/20/15 Comp 555 Spring 2015 15

•  Las Vegas Algorithms – always produce the
correct solution (i.e. randomizedSelect)

• Monte Carlo Algorithms – do not always return
the correct solution.

•  Las Vegas Algorithms are always preferred, but
they are often hard to come by.

cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcgaatctatgcgtttccaaccat

agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

aaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtCcAtataca

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaCcgtacgGc

4/20/15 Comp 555 Spring 2015 16

Motif Finding Problem: Given a list of t sequences
each of length n, find the “best” pattern of length
l that appears in each of the t sequences.

l = 8

t=5

DNA

n = 69

4/20/15 Comp 555 Spring 2015 17

• Motif Finding Problem: Given a list of t
sequences each of length n, find the “best”
pattern of length l that appears in each of the t
sequences.

•  Previously: we solved the Motif Finding
Problem using a Branch and Bound or a
Greedy technique.

• Now: randomly select possible locations and
find a way to greedily change those locations
until we converge to the hidden motif.

4/20/15 Comp 555 Spring 2015 18

•  Let s = (s1,...,st) be the starting positions for l-
mers in our t sequences.

•  The substrings corresponding
to these starting positions
will form:

 - t x l alignment matrix
 - 4 x l profile matrix*

 * Note that we now define the
profile matrix in terms of
frequency, not counts as in
Lecture 5.

 a G g t a c T t
 C c A t a c g t
 a c g t T A g t
 a c g t C c A t
 C c g t a c g G

 A 0.6 0.0 0.2 0.0 0.6 0.2 0.2 0.0
 C 0.4 0.8 0.0 0.0 0.2 0.8 0.0 0.0
 G 0.0 0.2 0.8 0.0 0.0 0.0 0.6 0.2
 T 0.0 0.0 0.0 1.0 0.2 0.0 0.2 0.8

 X a c g t a c g t

P(X|profile)=0.6*0.8*0.8*1.0*0.6*0.8*0.6*0.8 = 0.0885

l

t

4

4/20/15 Comp 555 Spring 2015 19

•  Let l-mer a = a1, a2, a3, … al
•  P(a|P) is defined as the probability that an

l-mer a was created by the Profile P.
•  If a is very similar to the consensus string of P

then P(a|P) will be high
•  If a is very different, then P(a|P) will be low.
 l
 Prob(a|P) =Π p(ai,i)
 i=1

4/20/15 Comp 555 Spring 2015 20

Given a profile: P =

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

 Prob(aaacct|P) = ???
The probability of the consensus string:

4/20/15 Comp 555 Spring 2015 21

Given a profile: P =

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

 Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646
The probability of the consensus string:

4/20/15 Comp 555 Spring 2015 22

Given a profile: P =

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

Prob(atacag|P) = 1/2 x 1/8 x 3/8 x 5/8 x 1/8 x 1/8 = .001602

 Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646
The probability of the consensus string:

Probability of a different string:

4/20/15 Comp 555 Spring 2015 23

•  Define the P-most probable l-mer from a sequence as an
l-mer in that sequence which has the highest probability
of being created from the profile P.

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

P =

Given a sequence = ctataaaccttacatc, find the P-most
probable l-mer

4/20/15 Comp 555 Spring 2015 24

Third try: c t a t a a a c c t t a c a t c

Second try: c t a t a a a c c t t a c a t c

First try: c t a t a a a c c t t a c a t c

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

Find the Prob(a|P) of every possible 6-mer:

-Continue this process to evaluate every possible 6-mer

4/20/15 Comp 555 Spring 2015 25

String, Highlighted in Red Calculations prob(a|P)

ctataaaccttacat 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 0

ctataaaccttacat 1/2 x 7/8 x 0 x 0 x 1/8 x 0 0

ctataaaccttacat 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 0

ctataaaccttacat 1/8 x 7/8 x 3/8 x 0 x 3/8 x 0 0

ctataaaccttacat 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336

ctataaaccttacat 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 .0299

ctataaaccttacat 1/2 x 0 x 1/2 x 0 1/4 x 0 0

ctataaaccttacat 1/8 x 0 x 0 x 0 x 0 x 1/8 x 0 0

ctataaaccttacat 1/8 x 1/8 x 0 x 0 x 3/8 x 0 0

ctataaaccttacat 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8 .0004

Compute prob(a|P) for every possible 6-mer:

4/20/15 Comp 555 Spring 2015 26

String, Highlighted in Red Calculations Prob(a|P)

ctataaaccttacat 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 0

ctataaaccttacat 1/2 x 7/8 x 0 x 0 x 1/8 x 0 0

ctataaaccttacat 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 0

ctataaaccttacat 1/8 x 7/8 x 3/8 x 0 x 3/8 x 0 0

ctataaaccttacat 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336

ctataaaccttacat 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 .0299

ctataaaccttacat 1/2 x 0 x 1/2 x 0 1/4 x 0 0

ctataaaccttacat 1/8 x 0 x 0 x 0 x 0 x 1/8 x 0 0

ctataaaccttacat 1/8 x 1/8 x 0 x 0 x 3/8 x 0 0

ctataaaccttacat 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8 .0004

P-Most Probable 6-mer in the sequence is aaacct:

4/20/15 Comp 555 Spring 2015 27

ctataaaccttacatc
because Prob(aaacct|P) = .0336 is greater
than the Prob(a|P) of any other 6-mer in the
sequence.

aaacct is the P-most probable 6-mer in:

4/20/15 Comp 555 Spring 2015 28

•  In our toy example prob(a|P)=0 in many cases.
In practice, there will be enough sequences so
that the number of elements in the profile with a
frequency of zero is small.

•  To avoid many entries with prob(a|P)=0, there
exist techniques to equate zero to a very small
number so that one zero does not make the
entire probability of a string zero (assigning a
prior probability, we will not address these
techniques here).

4/20/15 Comp 555 Spring 2015 29

•  Find the P-most probable
l-mer in each of the “t”
sequences.

ctataaacgttacatc	
atagcgattcgactg	
cagcccagaaccct	
cggtataccttacatc	
tgcattcaatagctta	
tatcctttccactcac	
ctccaaatcctttaca	
ggtcatcctttatcct	

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

P=

4/20/15 Comp 555 Spring 2015 30

ctataaacgttacatc

atagcgattcgactg

cagcccagaaccct

cggtgaaccttacatc

tgcattcaatagctta

tgtcctgtccactcac

ctccaaatcctttaca

ggtctacctttatcct

P-Most Probable l-mers form a new profile

1 a a a c g t

2 a t a g c g

3 a a c c c t

4 g a a c c t

5 a t a g c t

6 g a c c t g

7 a t c c t t

8 t a c c t t

A 5/8 5/8 4/8 0 0 0

C 0 0 4/8 6/8 4/8 0

T 1/8 3/8 0 0 3/8 6/8

G 2/8 0 0 2/8 1/8 2/8

4/20/15 Comp 555 Spring 2015 31

Red – frequency increased, Blue – frequency decreased

1 a a a c g t

2 a t a g c g

3 a a c c c t

4 g a a c c t

5 a t a g c t

6 g a c c t g

7 a t c c t t

8 t a c c t t

A 5/8 5/8 4/8 0 0 0

C 0 0 4/8 6/8 4/8 0

T 1/8 3/8 0 0 3/8 6/8

G 2/8 0 0 2/8 1/8 2/8

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

4/20/15 Comp 555 Spring 2015 32

Use P-Most probable l-mers to adjust start positions until
we reach a “best” profile; this is the motif.

1)  Select random starting positions.
3)  Create a profile P from the substrings at these starting

positions.
4)  Find the P-most probable l-mer a in each sequence and

change the starting position to the starting position of a.
5)  Compute a new profile based on the new starting

positions after each iteration and proceed until we
cannot increase the score anymore.

4/20/15 Comp 555 Spring 2015 33

1.   GreedyProfileMotifSearch(DNA, t, n, l)
2.   Randomly select starting positions s=(s1,…,st) from DNA
3.   bestScore " 0
4.   while Score(s, DNA) > bestScore
5.  form profile P from s
6.  bestScore " Score(s, DNA)
7.  for i ! 1 to t
8.  Find a P-most probable l-mer a from the ith sequence
9.  si " starting position of a
10.  return bestScore

4/20/15 Comp 555 Spring 2015 34

•  Since we choose starting positions randomly, there
is little chance that our guess will be close to an
optimal motif, meaning it will take a very long time
to find the optimal motif.

•  It is unlikely that the random starting positions will
lead us to the correct solution at all.

•  In practice, this algorithm is run many times with
the hope that random starting positions will be close
to the optimum solution simply by chance.

4/20/15 Comp 555 Spring 2015 35

• GreedyProfileMotifSearch is probably not the
best way to find motifs.

• However, we can improve the algorithm by
introducing Gibbs Sampling, an iterative
procedure that discards one l-mer after each
iteration and replaces it with a new one.

• Gibbs Sampling proceeds more slowly and
chooses new l-mers at random increasing the
odds that it will converge to the correct solution.

4/20/15 Comp 555 Spring 2015 36

 1) Randomly choose starting positions
 s = (s1,...,st) and form the set of l-mers associated
 with these starting positions.
 2) Randomly choose one of the t sequences.

 3) Create a profile P from the other t -1 sequences.
 4) For each position in the removed sequence,
 calculate the probability that the l-mer starting at
 that position was generated by P.
 5) Choose a new starting position for the removed
 sequence at random based on the probabilities
 calculated in step 4.
 6) Repeat steps 2-5 until there is no improvement

4/20/15 Comp 555 Spring 2015 37

Input:
 t = 5 sequences, motif length l = 8

 1. GTAAACAATATTTATAGC

 2. AAAATTTACCTCGCAAGG

 3. CCGTACTGTCAAGCGTGG

 4. TGAGTAAACGACGTCCCA

 5. TACTTAACACCCTGTCAA

4/20/15 Comp 555 Spring 2015 38

1) Randomly choose starting positions,
 s=(s1,s2,s3,s4,s5) in the 5 sequences:

 s1=7 GTAAACAATATTTATAGC
 s2=11 AAAATTTACCTTAGAAGG

 s3=9 CCGTACTGTCAAGCGTGG
 s4=4 TGAGTAAACGACGTCCCA

 s5=1 TACTTAACACCCTGTCAA

4/20/15 Comp 555 Spring 2015 39

2) Choose one of the sequences at random:
 Sequence 2: AAAATTTACCTTAGAAGG

 s1=7 GTAAACAATATTTATAGC
 s2=11 AAAATTTACCTTAGAAGG
 s3=9 CCGTACTGTCAAGCGTGG
 s4=4 TGAGTAAACGACGTCCCA
 s5=1 TACTTAACACCCTGTCAA

4/20/15 Comp 555 Spring 2015 40

2) Choose one of the sequences at random:
 Sequence 2: AAAATTTACCTTAGAAGG

 s1=7 GTAAACAATATTTATAGC

 s3=9 CCGTACTGTCAAGCGTGG
 s4=4 TGAGTAAACGACGTCCCA
 s5=1 TACTTAACACCCTGTCAA

4/20/15 Comp 555 Spring 2015 41

3) Create profile P from l-mers in remaining 4 sequences:

1 A A T A T T T A

3 T C A A G C G T

4 G T A A A C G A

5 T A C T T A A C

A 1/4 2/4 2/4 3/4 1/4 1/4 1/4 2/4

C 0 1/4 1/4 0 0 2/4 0 1/4

T 2/4 1/4 1/4 1/4 2/4 1/4 1/4 1/4

G 1/4 0 0 0 1/4 0 3/4 0
Consensus

String
T A A A T C G A

4/20/15 Comp 555 Spring 2015 42

4) Calculate the prob(a|P) for every possible 8-mer
in the removed sequence:

 Strings Highlighted in Red prob(a|P)

AAAATTTACCTTAGAAGG .000732
AAAATTTACCTTAGAAGG .000122
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG .000183
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0

4/20/15 Comp 555 Spring 2015 43

5) Create a distribution of probabilities of
l-mers prob(a|P), and randomly select a new
starting position based on this distribution.

Starting Position 1: prob(AAAATTTA | P) = .706

Starting Position 2: prob(AAATTTAC | P) = .118

Starting Position 8: prob(ACCTTAGA | P) = .176

A) To create this distribution, divide each
probability prob(a|P) by the total:

4/20/15 Comp 555 Spring 2015 44

 B) Select a new starting position at random
according to computed distribution:

P(selecting starting position 1): .706
P(selecting starting position 2): .118
P(selecting starting position 8): .176

t = random.random()	
if (t < .706):	
 # use position 1	
elif (t < (.706 + .118)):	
 # use position 2	
else:	
 # use position 8	

4/20/15 Comp 555 Spring 2015 45

Assume we select the substring with the highest
probability – then we are left with the following
new substrings and starting positions.

 s1=7 GTAAACAATATTTATAGC
 s2=1 AAAATTTACCTCGCAAGG

 s3=9 CCGTACTGTCAAGCGTGG

 s4=5 TGAGTAATCGACGTCCCA

 s5=1 TACTTCACACCCTGTCAA

4/20/15 Comp 555 Spring 2015 46

6) We iterate the procedure again with the above
starting positions until we cannot improve the
score any more.

4/20/15 Comp 555 Spring 2015 47

•  Gibbs sampling needs to be modified when
applied to samples with biased distributions of
nucleotides (relative entropy approach).

•  Gibbs sampling often converges to locally
optimal motifs rather than globally optimal
motifs.

•  Must be run with many randomly chosen seeds
to achieve good results.

4/20/15 Comp 555 Spring 2015 48

•  Random Projection Algorithm is a different way to
solve the Motif Finding Problem.

•  Guiding principle: Instances of a motif agree at a
subset of positions.

•  However, it is unclear how to find these “non-
mutated” positions.

•  To bypass the effect of mutations within a motif, we
randomly select a subset of positions in the pattern
creating a projection of the pattern.

•  Search for that projection in a hope that the selected
positions are not affected by mutations in most
instances of the motif.

4/20/15 Comp 555 Spring 2015 49

•  Choose k positions in string of length l.
•  Concatenate nucleotides at chosen k positions to

form k-tuple.
•  This can be viewed as a projection of l-

dimensional space onto k-dimensional subspace.

ATGGCATTCAGATTC TGCTGAT

l = 15 k = 7 Projection

Projection = (2, 4, 5, 7, 11, 12, 13)

4/20/15 Comp 555 Spring 2015 50

•  Select k out of l positions
uniformly at random.

•  For each l-tuple in input
sequences, hash into
buckets based on the
k selected positions.

•  Recover motif from
enriched buckets that
contain many l-tuples
with at least one from
each sequence.

Bucket TGCT

TGCACCT

Input sequence:
…T C A A T G C A C C T A T...

4/20/15 Comp 555 Spring 2015 51

•  Some projections will fail to detect motifs but if we try
many of them the probability that one of the buckets fills
increases.

•  In the example below, the bucket **GC*AC is “bad”
while the bucket AT**G*C is “good”

ATGCGTC

...ccATCCGACca...

...ttATGAGGCtc...

...ctATAAGTCgc...

...tcATGTGACac... (1,2,5,7) projection

ATGCGTC

...ccATCCGACca...

...ttATGAGGCtc...

...ctATAAGTCgc...

...tcATGTGACac... (3,4,6,7) projection

4/20/15 Comp 555 Spring 2015 52

•  l = 7 (motif size) , k = 4 (projection size)
•  Choose projection (1,2,5,7)

GCTC

...TAGACATCCGACTTGCCTTACTAC...

Buckets

ATGC

ATCCGAC

GCCTTAC

4/20/15 Comp 555 Spring 2015 53

• Hash function h(x) obtained from k positions of
projection.

•  Buckets are labeled by values of h(x).
•  Enriched buckets: contain more than s l-tuples, for

some parameter s with representatives from all
sequences

ATTC CATC GCTC ATGC

4/20/15 Comp 555 Spring 2015 54

•  How do we recover the motif from the sequences in
enriched buckets?

•  k nucleotides are exact matches, (hash key of bucket).
•  Use information in other l-k positions as starting point

for local refinement scheme, e.g. Gibbs sampler.

Local refinement algorithm ATGCGAC
Candidate motif

ATGC

ATCCGAC

ATGAGGC
ATAAGTC

ATGCGAC

4/20/15 Comp 555 Spring 2015 55

•  Random Projection is a procedure for finding good
starting points: every enriched bucket is a potential
starting point.

•  Feeding these starting points into existing algorithms
(like Gibbs sampler) provides good local search in
vicinity of every starting point.

•  These algorithms work particularly well for “good”
starting points.

4/20/15 Comp 555 Spring 2015 56

A 1 0 .25 .50 0 .50 0

C 0 0 .25 .25 0 0 1

G 0 0 .50 0 1 .25 0

T 0 1 0 .25 0 .25 0

 Profile P

Gibbs sampler

Refined profile P*

ATCCGAC

ATGAGGC

ATAAGTC

ATGTGAC

ATGC

4/20/15 Comp 555 Spring 2015 57

•  For each bucket h containing more than s
sequences, form profile P(h)

• Use Gibbs sampler algorithm with starting point
P(h) to obtain refined profile P*

4/20/15 Comp 555 Spring 2015 58

•  Choose a random k-projection.
•  Hash each l-mer x in input sequence into bucket

labeled by h(x)
•  From each enriched bucket (e.g., a bucket with more

than s sequences), form profile P and perform Gibbs
sampler motif refinement

•  Candidate motif is best found by selecting the best
motif among refinements of all enriched buckets.

A Single Iteration:

4/20/15 Comp 555 Spring 2015 59

•  Projection size k
 - choose k small enough so that several motif

instances hash to the same bucket.
 k << l, l / 2 < k < l - const

 - choose k large enough to avoid contamination
by spurious l-mers:

 4k >> t (n - l + 1)

•  Final Thursday, 4/30
–  12:00-3:00PM
–  This room: SN011
–  Open book, open notes,

no computer, tablet,
eReader, or smartphone

–  Will covers material since
midterm

–  Study session?
Sunday or Monday?

4/20/15 Comp 555 Spring 2015 60

