Lecture 24:
Randomized Algorithms

Chapter 12

Study Session tomorrow

Virtual 4th problem set,
Return PS#1, PS#2

4/20/15 Comp 555 Spring 2015

Randomized Algorlthms

Randomlzed algorlthms mcorporate random
rather than deterministic, decisions

Commonly used in situations where no exact
and/ or fast algorithm is known

* Main advantage is that no input can reliably
produce worst-case results because the
algorithm runs differently each time.

4/20/15 Comp 555 Spring 2015 2

Select

. Select(L k) flnds the kth smallest element in L
* Select(L,1) find the smallest...
— Well known O(n) algorithm

minv = HUGE
for v in L:
if (v < minv):
minv = v

* Select(L, len(L)/2) find the median...
— How?
— median = sorted(L)[len(L)/2] -2 O(n logn)
* Can we find medians, or 1%t quartiles in O(n)?

4/20/15 Comp 555 Spring 2015 3

Select Recursion

. Select(L k) fmds the kth smallest element in L

— Select an element m from unsorted list L and
partition L the array into two smaller lists:

L, - elements smaller than m
and
- elements larger than m.

* If len(L;)) > k then
Select(L,,, k)

* elseif k>len(L;) + 1 then
Select(L,;, k - len(L;)) - 1)

e else m is the kth smallest element

4/20/15 Comp 555 Spring 2015 4

Example of Select(L 5)

leenanarray L =16, 3 2,8,4,5,1,7,0, 9}

Step 1: Choose the first element as m

L={6,3284571,7,0,9)

Our Selection

4/20/15 Comp 555 Spring 2015 5

Example of Select cont’d)

Step 2 Spht the array mto Llo and th

L,=1{3 2 4, 5 1,

/A
N\ //

Lhz_{

4/20/15 Comp 555 Spring 2015 6

Example of Select(cont'd)

Step 3: Recurswely call Select on elther L, orL,
until len(L,)) = k, then return m.

len(L,) >k =5 > Select({ 3, 2, 4, 5, 1, 0}, 5)
{2 1, 0} L,={4,5}
k=5>len(L,)+1 > Select({4, 5},5-3-1)

m=4
L,={empty}, L,;={ 25}
k =1 == len(L,) +1 > return 4

4/20/15 Comp 555 Spring 2015 7

def

4/20/15

Select Code

select (L, k):
value = L[0]
Llo = [t for t in data if t < value]
Lhi = [t for t in data 1f t > value]
below = len(Llo) + 1
if (k < len(Llo)):

return select(Llo, k)
elif (k > below):

return select(Lhi, k - below)
else:

return value

Comp 555 Spring 2015

Select Analy81s with Good Sphts

. Runtlme depends on our selectlon of m:

- A good selection will split L evenly such that

[Lo | = Ly |= |L]/2

- The recurrence relation is:

T(n) = T(n/2)

-n+n/2+n/4+n/8+n/16+....=2n 2> O(n)

Same as search
\g‘or minimum

4/20/15 Comp 555 Spring 2015 9

Select Analy51s with Bad Sphts

However, a poor select10n W111 spht L unevenly and in the
worst case, all elements will be greater or less than m so
that one Sublist is full and the other is empty.

For a poor selection, the recurrence relation is

T(n) = T(n-1)
In thlS case, the runtime iS O(nz) | could have sorted
\‘gfret and done
better
Our dilemma:

O(n) or O(n?),
depending on the list... or O(n log n) independent of it

4/20/15 Comp 555 Spring 2015 10

Select Analy51s cont'd)

Select seems rlsky compared to sort

To improve Select, we need to choose m

to give good “splits’

[t can be proven that to achieve O(n) running

time, we don’t need a perfect splits, just
reasonably good ones.

In fact, if both subarrays are at least of size n/4,
then running time will be O(n).

This implies that half of the choices of m make
good splitters.

4/20/15 Comp 555 Spring 2015 11

A Randomlzecl Approach

. To improve Select mndomly select m.

Since half of the elements will be good splitters,
if we choose m at random we will get a 50%
chance that m will be a good choice.

* This approach will make sure that no matter
what input is received, the expected running
time is small.

4/20/15 Comp 555 Spring 2015 12

Randomlzed Select

def randomizedSelect(L, k):

value = random.choice(L)
Llo = [t for t in data 1f t < value]
Lhi = [t for t in data 1f t > value]
below = len(Llo) + 1
if (k < len(Llo)):

return randomizedSelect(Llo, k)
elif (k > below):

return randomizedSelect(Lhi, k-below)
else:

return value

4/20/15 Comp 555 Spring 2015 13

Random1zed8elect Analys1s

e Worst case runtime: O(1?)
* Expected runtime: O(n).

* Expected runtime is a good measure of the
performance of randomized algorithms, often
more informative than worst case runtimes.

* Worst case runtimes are rarely repeated

* RandomizedSelect always returns the correct
answer, which offers a way to classify
Randomized Algorithms.

4/20/15 Comp 555 Spring 2015 14

Two Types of Randomized Algonthms

. Las Vegas Algorlthms ~ always produce the
correct solution (i.e. randomizedSelect)

* Monte Carlo Algorithms - do not always return
the correct solution.

* Las Vegas Algorithms are always preferred, but
they are often hard to come by.

4/20/15 Comp 555 Spring 2015 15

The Motit Fmdmg Problem

Mot1f Fmdmg Problem leen a hst of t sequences
each of length n, find the “best” pattern of length
| that appears in each of the t sequences.

agtactggtgtacatttgathAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

__£;< iaaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt:
iagcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgthAtataca:

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttachtachcI

4/20/15 Comp 555 Spring 2015 16

A New Motit Fmdmg Approach

. Motlf Fmdmg Problem Given a 11st of ¢
sequences each of length #, find the “best”
pattern of length I that appears in each of the ¢
sequences.

* Previously: we solved the Motif Finding
Problem using a Branch and Bound or a
Greedy technique.

* Now: randomly select possible locations and
find a way to greedily change those locations
until we converge to the hidden motit.

4/20/15 Comp 555 Spring 2015 17

Proflles Revisited

. Let S = (sl, 5,) be the startmg pos1t1ons for l—
mers 1n our t sequences.

* The substrings corresponding
to these starting positions N

.] s ~N
will form: s e g t a e 1 ¢
C c A t a c g t
. N a c g t T A g t t
C
- t x | alignment matrix 29t oA
[) [] *
4 X l pr()flle matrix A 0.6 0.0 0.2 0.00.60.20.20.0
C 0.40.80.00.00.20.80.00.0 \uy
G 0.0 0.2 0.80.00.00.00.60.2
T 0.00.00.01.00.20.00.20.8
* Note that we now define the
profile matrix in terms of ¥ & ¢ 9 t & e g ¢
frequency, not counts as in P (X|profile)=0.6%0.8%0.8%1.0%0.6*0.8%0.6%0.8 = 0.0885

Lecture 5.

4/20/15 Comp 555 Spring 2015 18

Scormg Strmgs W1th a Profﬂe

* Letl-mer a=a, a, a;, ... q

P(a|P) is defined as the probability that an
[-mer a was created by the Profile P.

* If a is very similar to the consensus string of P
then P(a |P) will be high

* If ais very ditferent, then P(a | P) will be low.
l

Prob(a|P) =11 p(a,i)

1=1

4/20/15 Comp 555 Spring 2015 19

Scormg Strmgs W1th a Proflle cont'd)

Given a profile: P =

Al 1/2 | 7/8 | 3/8 0 |1/8| 0
C | 1/8 0 1/2 5/8 | 3/8 0
T | 1/8 1/8 0 0 1/4 | 7/8
G | 1/4 0 1/8 3/8 | 1/4 | 1/8
The probability of the consensus string:
Prob(aaacct|P) = ?7?
4/20/15 Comp 555 Spring 2015

20

Scormg Strmgs W1th a Proflle cont'd)

Given a profile: P =

Al 12| 78 | 38 0 | 1/8] 0
cCl1/8]| 0 1/2 | 58 | 38| 0
T | 1/8 | 1/8 0 0 | 1/4| 7/8
G| 1/4 | 0 1/8 | 3/8 | 1/4 | 1/8

The probability of the consensus string:

Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646

4/20/15

Comp 555

Spring 2015

21

Scormg Strmgs W1th a Profﬂe cont'd)

Given a profile: P =

Al 12 | 7/8 | 38 0 | 18| 0
cCl1/8]| 0 1/2 | 58 |3/8| 0
T | 1/8 | 1/8 0 0 | 1/4| 7/8
G| 1/4 | 0 1/8 | 3/8 | 1/4 | 1/8

The probability of the consensus string:
Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646

Probability of a different string:
Prob(atacag|P) = 1/2 x 1/8 x 3/8 x 5/8 x 1/8 x 1/8 = .001602

4/20/15 Comp 555 Spring 2015 22

P Most Probable l-mer

* Define the P-most probable [-mer from a sequence as an
I-mer in that sequence which has the highest probability

of being created from the profile P.

Al 1/2|7/8 |38 0 |1/8] 0
p - | C|l1/8]| 0 1/2 | 5/8 | 3/8| 0
T | 1/8 | 1/8 0 0 |1/4| 7/8
G| 1/4 | 0 1/8 | 3/8 | 1/4 | 1/8
Given a sequence = ctataaaccttacatc, find the P-most

probable /-mer

4/20/15

Comp 555

Spring 2015

P Most Probable l—mer (cont’ d)

C
T | 1/8 | 1/8 0 0 | 1/4| 7/8
G| 1/4 | 0 1/8 | 3/8 | 1/4 | 1/8

Find the Prob(a|P) of every possible 6-mer:
Firsttry.[ctataaaccttacatc

Second try: ctataa&ccttacatc

Thirdtry: cttataaaccttacatc

-Continue this process to evaluate every possible 6-mer

4/20/15 Comp 555 Spring 2015 24

P-Most Probable [-mer (cont'd)

Compute prob(a|P) for every possible 6-mer:

String, Highlighted in Red Calculations prob(a | P)
ctataaaccttacat 1/8x1/8x3/8x0x1/8x0 0
ctataaaccttacat 1/2x7/8x0x0x1/8x0 0
ctataaaccttacat 1/2x1/8x3/8x0x1/8x0 0
ctataaaccttacat 1/8x7/8x3/8x0x3/8x0 0
ctataaaccttacat 1/2x7/8x3/8x5/8x3/8x7/8 .0336
ctataaaccttacat 1/2x7/8x1/2x5/8x1/4x7/8 .0299
ctataaaccttacat 1/2x0x1/2x01/4x0 0
ctataaaccttacat 1/8x0x0x0x0x1/8x0 0
ctataaaccttacat 1/8x1/8x0x0x3/8x0 0
ctataaaccttacat 1/8x1/8x3/8x5/8x1/8x7/8 .0004

4/20/15 Comp 555 Spring 2015 25

P-Most Probable [-mer (cont d)

P-Most Probable 6-mer In the sequence IS aaacct:

String, Highlighted in Red Calculations Prob(a | P)
ctataaaccttacat 1/8x1/8x3/8x0x1/8x0 0
ctataaaccttacat 1/2x7/8x0x0x1/8x0 0
ctataaaccttacat 1/2x1/8x3/8x0x1/8x0 0
ctataaaccttacat 1/8x7/8x3/8x0x3/8x0 0

ctataaaccttacat 1/2x7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336
ctataaaccttacat 1/2x7/8x1/2x5/8x1/4x7/8 .0299
ctataaaccttacat 1/2x0x1/2x01/4x0 0
ctataaaccttacat 1/8x0x0x0x0x1/8x0 0
ctataaaccttacat 1/8x1/8x0x0x3/8x0 0
ctataaaccttacat 1/8x1/8x3/8x5/8x1/8x7/8 .0004

4/20/15 Comp 555 Spring 2015 26

P Most Probable [-mer (cont d)

aaacct is the P-most probable 6-mer in:

ctataaaccttacatc

because Prob(aaacct|P) = .0336 is greater
than the Prob(a|P) of any other 6-mer in the
sequence.

4/20/15 Comp 555 Spring 2015 27

Dealmg with Zeroes

* In our toy example prob(a | P)=0 in many cases.
In practice, there will be enough sequences so
that the number of elements in the profile with a
frequency of zero is small.

* To avoid many entries with prob(a | P)=0, there
exist techniques to equate zero to a very small
number so that one zero does not make the
entire probability of a string zero (assigning a
prior probability, we will not address these
techniques here).

4/20/15 Comp 555 Spring 2015 28

P-Most Probable I-mers in Many Sequences

. Fmd the P-most probable ctataaacgttacatc

[-mer in each of the “t”

atagcgattcgactg
sequences.

cagcccagaaccct
NEEEEEREE cggtataccttacatc

P cl1/8| o |1/2]5/8|3/8| 0 tgcattcaatagctta

B A A R e el tatcctttccactcac
G|1/4]| 0 1/8 | 3/8 | 1/4 | 1/8

ctccaaatcctttaca

ggtcatcctttatcct

4/20/15 Comp 555 Spring 2015 29

P-Most Probable [-mers in Many

~Ctataaacgttacatc

=+ |+ | =+ | 0O @) @) @) (0)e]

N+ | (00 | |00 | | | D

Q1

8

O

(a)

4/8

1/8

3/8

6/8

OlR|A|>le|v|lca|ulw|w|Nn] ~

2/8

W] | O,
O IN|OIN]Y |+ |99 |+ |0 |0 |+~ | @
| | oo

= |
SloI~NINNIn ||l |l | |n | | ©
oo | OO

1/8

2/8

4/20/15

Comp 555

atagcgattcgactg
cagcccagaaccct
cggtgaaccttacatc
tgcattcaatagctta
tgtcctgtccactcac
ctccaaatcctttaca

ggtctacctttatcct

P-Most Probable I-mers form a new profile

Spring 2015 30

Comparmg New and Old Profﬂes

1 a a a C g t
2 a t a g C g
3 a a C C C t
4 g a a C C t
5 a t a g C t
6 g a C C t g
7 a t C C t t
8 t a C C t t
A 5/8 5/8 4/8 0 0 0
C 0 0 4/8 6/8 4/8 0
T 1/8 3/8 0 0 3/8 6/8
G 2/8 0 0 2/8 1/8 2/8

Al 12| 78 | 38 o | 18| o
C| 18 0 12 | 58 | 38| o0
T| 1718 | 1/8 0 0 | 174 | 78
G|l ya| o 18 | 38 | 114 | 118

Red - frequency increased, Blue — frequency decreased

4/20/15

Comp 555

Spring 2015

31

Greedy Proflle Mot1f Search

Use P-Most probable [-mers to adjust start positions until
we reach a “best” profile; this is the motif.

1) Select random starting positions.

3) Create a profile P from the substrings at these starting
positions.

4) Find the P-most probable [-mer a in each sequence and
change the starting position to the starting position of a.

5) Compute a new profile based on the new starting
positions after each iteration and proceed until we
cannot increase the score anymore.

4/20/15 Comp 555 Spring 2015 32

GreedyProfﬂeMotlfSearch Algonthm

GreedyProfileMotifSearch(DNA, t, n, |)

4/20/15

Randomly select starting positions s=(s,...,s,) from DNA
bestScore < 0
while Score(s, DNA) > bestScore
form profile P from s
bestScore < Score(s, DNA)
for i€ 1 tot
Find a P-most probable /-mer a from the th sequence
s; € starting position of a
return bestScore

Comp 555 Spring 2015 33

GreedyProfﬂeMotlfSearch Ana1y51s

C Smce we choose startmg p051t10ns randomly, there
is little chance that our guess will be close to an
optimal motif, meaning it will take a very long time
to find the optimal motif.

* Itis unlikely that the random starting positions will
lead us to the correct solution at all.

* In practice, this algorithm is run many times with
the hope that random starting positions will be close
to the optimum solution simply by chance.

4/20/15 Comp 555 Spring 2015 34

Gibbs Samphng

. GreedyProflleMotlfSearch is probbly not the
best way to find motifs.

* However, we can improve the algorithm by
introducing Gibbs Sampling, an iterative
procedure that discards one [-mer after each
iteration and replaces it with a new one.

Gibbs Sampling proceeds more slowly and
chooses new [-mers at random increasing the
odds that it will converge to the correct solution.

4/20/15 Comp 555 Spring 2015 35

How Gibbs Samplmg Works

1) Randomly choose startmg posmons
S = (5,...,5;) and form the set of [-mers associated
with these starting positions.

2) Randomly choose one of the ¢ sequences.

3) Create a profile P from the other ¢ -1 sequences.

4) For each position in the removed sequence,
calculate the probability that the l-mer starting at
that position was generated by P.

5) Choose a new starting position for the removed
sequence at random based on the probabilities
calculated in step 4.

6) Repeat steps 2-5 until there is no improvement

4/20/15 Comp 555 Spring 2015 36

Glbbs Samplmg an Example

t =5 sequences, motif length [=8

1. GTAAACAATATTTATAGC
2. AAAATTTACCTCGCAAGG
3. CCGTACTGTCAAGCGTGG
4. TGAGTAAACGACGTCCCA
5. TACTTAACACCCTGTCAA

4/20/15 Comp 555 Spring 2015 37

Gibbs Samplmg an Example

1) Randomly choose startmg pos1t10ns,
s=(54,5,,55,5,55) In the 5 sequences:

S;= GTAAACAATATTTATAGC
s,=11 AAAATTTACCTTAGAAGG
S3= CCGTACTGTCAAGCGTGG
S,= TGAGTAAACGACGTCCCA

S:= TACTTAACACCCTGTCAA

4/20/15 Comp 555 Spring 2015 38

Glbbs Samplmg an Example

2) Choose one of the sequences at random:
Sequence 2: AAAATTTACCTTAGAAGG

S;= GTAAACAATATTTATAGC
s,=11 AAAATTTACCTTAGAAGG
S3= CCGTACTGTCAAGCGTGG
S4= TGAGTAAACGACGTCCCA

5= TACTTAACACCCTGTCAA

4/20/15 Comp 555 Spring 2015 39

Glbbs Samplmg an Example

2) Choose one of the sequences at random:
Sequence 2: AAAATITACCITAGAAGG

5,= GTAAACAATATTTATAGC
5= CCGTACTGTCAAGCGTGG
5= TGAGTAAACGACGTCCCA

Ss= TACTTAACACCCTGTCAA

4/20/15 Comp 555 Spring 2015 40

Glbbs Samplmg an Example

3) Create profile P from I-mers in remaining 4 sequences:

H| Q|4 (>
> = 0>
Q| »| > |-
| > >
= > Q-
>0l 0|(4
> Q0|
Ol »|—|>»

1/4 | 2/4 | 2/4 | 3/4 | 1/4 | 1/4 | 1/4 | 2/4
0 | 1/4 | 1/4 | 0 0 | 2/4| 0 | 1/4
2/4 | 174 | 1/4 | 1/4 | 2/4 | 1/4 | 1/4 | 1/4
G 1/4 | 0 0 0 | 1/4| 0 |3/4] 0
Comsensus | T | A | A | A | T c | g | A

String

O PG| | W=

4/20/15 Comp 555 Spring 2015 41

Glbbs Samplmg an Example

4) Calculate the prob(a | P) for every possible 8-mer
in the removed sequence:

Strings Highlighted in Red prob(a | P)
AAAATTTACCTTAGAAGG .000732
AAAATTTACCITAGAAGG .000122
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG .000183
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCITAGAAGG 0

4/20/15 Comp 555 Spring 2015 42

Glbbs Samplmg an Example

5) Create a distribution of probabilities of
[-mers prob(a | P), and randomly select a new
starting position based on this distribution.

A) To create this distribution, divide each
probability prob(a | P) by the total:

Starting Position 1: prob(AAAATTTA| P)= .706
Starting Position 2: prob(AAATTTAC |P)= .118
Starting Position 8: prob(ACCTTAGA | P)= .176

4/20/15 Comp 555 Spring 2015 43

Glbbs Samplmg an Example

B) Select a new starting position at random
according to computed distribution:

P(selecting starting position 1): .706
P(selecting starting position 2): .118
P(selecting starting position 8): .176

t = random.random()
1f (t < .7006):

use position 1
elif (t < (.706 + .118)):
use position 2

else:
use position 8

4/20/15 Comp 555 Spring 2015 44

Glbbs Samplmg an Example

Assume we select the substrmg W1th the hlghest
probability - then we are left with the following
new substrings and starting positions.

5,=7 GTAAACAATATTTATAGC
5,= AAAATTTACCTCGCAAGG
54= CCGTACTGTCAAGCGTGG
5,= TGAGTAATCGACGTCCCA

s:=1 TACTTCACACCCTGTCAA

4/20/15 Comp 555 Spring 2015 45

Glbbs Samplmg an Example

6) We 1terate the procedure agam W1th the above
starting positions until we cannot improve the
score any more.

4/20/15 Comp 555 Spring 2015 46

Glbbs Sampler in Practlce

* Gibbs sampling needs to be moditied when
applied to samples with biased distributions of
nucleotides (relative entropy approach).

* Gibbs sampling often converges to locally
optimal motifs rather than globally optimal
motifs.

* Must be run with many randomly chosen seeds
to achieve good results.

4/20/15 Comp 555 Spring 2015 47

Random Projection Algorithm is a different way to
solve the Motif Finding Problem.

Guiding principle: Instances of a motif agree at a
subset of positions.

However, it is unclear how to find these “non-
mutated” positions.

To bypass the effect of mutations within a motif, we
randomly select a subset of positions in the pattern
creating a projection of the pattern.

Search for that projection in a hope that the selected
positions are not atfected by mutations in most
instances of the motif.

4/20/15 Comp 555 Spring 2015 48

Pro]ecuons

* Choose k positions in string of length .

* Concatenate nucleotides at chosen k positions to
form k-tuple.

* This can be viewed as a projection of I-
dimensional space onto k-dimensional subspace.

[=15 Projection k=1

Projection= (2,4, 5,7, 11, 12, 13)

4/20/15 Comp 555 Spring 2015 49

Random Pr0]ect1ons Algonthm

. Select k out of l p051t10ns
uniformly at random. Input sequence:
.TCAATGCACCTAT..

* For each I[-tuple in input
sequences, hash into
buckets based on the

k selected positions. |

e Recover motif from
enriched buckets that TGCACCT K
contain many [-tuples
with at least one from
each sequence.

Bucket TGCT

4/20/15 Comp 555 Spring 2015 50

Random Pro]ectlons Algorlthm (cont’d)

* Some projections will fail to detect motifs but if we try
many of them the probability that one of the buckets fills

INncreases.

* In the example below, the bucket **GC*AC is “bad”
while the bucket AT**G*Cis “good”

.CcATCCGACca. ..
. LtATGAGGCtc. ..
. .CtATAAGTCgc. ..
. LcATGTGACacC. ..

ATGCGTC

(1,2,5,7) projection

4/20/15 — Comp 555

.CCATCCGACca. ..
.LtATGAGGCtc. .
.CtATAAGTCgc. ..
tcATGTGACac. ..

) >| ATGCGTC

(3,4,6,7) projection
51

Spring 2015

Example

e [=7 (motif size) , k = 4 (pro]ectmn size)

* Choose projection (1,2,5,7)

. TAGAC

ATCCGAQ

Buckets (Erccaac)

[

)

[

)

ATGC

4/20/15

Comp 555

TT

GCCTTAC

TAC. ..

A\ 4
[GCCTTAC |

GCTC

Spring 2015

52

Hashmg and Buckets

Hash functlon h(x) obtamed from k p081t10ns of
projection.

Buckets are labeled by values of h(x).

Enriched buckets: contain more than s I-tuples, for
some parameter s with representatives from all
sequences

ATGC GCTC CATC ATTC

4/20/15 Comp 555 Spring 2015 53

Motlf Refmement

* How do we recover the motif from the sequences in
enriched buckets?

* k nucleotides are exact matches, (hash key of bucket).

* Use information in other I-k positions as starting point
for local refinement scheme, e.g. Gibbs sampler.

[ATCCGAC] Local ref ¢ aleorith

orcacoc) ocal refinement algorithm ATGCGAC

[ATAAGTC | . .

() Candidate motif
ATGC

4/20/15 Comp 555 Spring 2015 54

Synergy between Random Projection

* Random Projection is a procedure for finding good
starting points: every enriched bucket is a potential
starting point.

* Feeding these starting points into existing algorithms
(like Gibbs sampler) provides good local search in
vicinity of every starting point.

* These algorithms work particularly well for “good”
starting points.

4/20/15 Comp 555 Spring 2015 55

4/20/15

4 ®© O >

Comp 555

S50 0 1 25 0

0
0O 26 2560 O 1
0
1 0 26 0 25 O

Profile P

Gibbs sampler

Refined profile P*

Spring 2015

56

Motlf Refmement

’al
[

For each bucket h contammg more than s
sequences, form profile P(h)

Use Gibbs sampler algorithm with starting point
P(h) to obtain refined profile P*

4/20/15 Comp 555 Spring 2015 57

Random Pro]ec’uon Algorlthm

A Single Iteration:

Choose a random k-projection.
Hash each [-mer x in input sequence into bucket

labeled by h(x)

From each enriched bucket (e.g., a bucket with more
than s sequences), form profile P and perform Gibbs
sampler motif refinement

Candidate motif is best found by selecting the best
motif among refinements of all enriched buckets.

4/20/15 Comp 555 Spring 2015 58

Choosmg Pro]ectlon Slze

’ Pro]ectlon size k

- choose k small enough so that several motif

instances hash to the same bucket.
k<<l| /2 <k<I- const

- choose k large enough to avoid contamination
by spurious [-mers:
4k>>t(n-1+1)

4/20/15 Comp 555 Spring 2015 59

It's Over

. Fmal Thursday, 4 / 30
— 12:00-3:00PM
— This room: SNO11

— Open book, open notes,
no computer, tablet,
eReader, or smartphone

— WIill covers material since
midterm

— Study session?
Sunday or Monday?

4/20/15 Comp 555 Spring 2015 60

