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•  Randomized algorithms incorporate random, 
rather than deterministic, decisions 

•  Commonly used in situations where no exact 
and/or fast algorithm is known 

• Main advantage is that no input can reliably 
produce worst-case results because the 
algorithm runs differently each time. 
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•  Select(L, k) finds the kth smallest element in L 
•  Select(L,1) find the smallest… 

–  Well known O(n) algorithm 

•  Select(L, len(L)/2) find the median… 
–  How?  
–  median = sorted(L)[len(L)/2]    ! O(n logn) 

•  Can we find medians, or 1st quartiles in O(n)? 

minv = HUGE!
for v in L:!
    if (v < minv):!
        minv = v!
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•  Select(L, k) finds the kth smallest element in L 
–  Select an element m from unsorted list L and  

partition L the array into two smaller lists:  

      Llo - elements smaller than m 
 and 
        Lhi - elements larger than m. 

•  If len(Llo) > k then  
 Select(Llo, k) 

•  else if k > len(Llo) + 1 then  
 Select(Lhi, k - len(Llo) - 1 ) 

•  else m is the kth smallest element 
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Given an array: L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 } 

Step 1:  Choose the first element as m 

      L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 } 

Our  Selection 
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Step 2:  Split the array into Llo and Lhi 

                                             Llo = { 3,    2,    4,    5,    1,    0 } 

 L = {    6,     3,     2,     8,     4,     5,     1,     7,     0,     9 } 

              Lhi = { 8,     7,     9 } 
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Step 3: Recursively call Select on either Llo or Lhi 
until len(Llo) = k, then return m. 
len(Llo) > k = 5  ! Select({ 3,  2,  4,  5,  1,  0 }, 5) 

m = 3 

Llo = { 2,  1,  0 }    Lhi = { 4, 5 }  

m = 4 
Llo = { empty },  Lhi = {  5  } 

k = 5 > len(Llo) +1  ! Select({4,  5 }, 5 - 3 - 1) 

k  = 1  ==  len(Llo) + 1 ! return 4 
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def select(L, k):!
    value = L[0]!
    Llo = [t for t in data if t < value]!
    Lhi = [t for t in data if t > value]!
    below = len(Llo) + 1!
    if (k < len(Llo)):!
        return select(Llo, k)!
    elif (k > below):!
        return select(Lhi, k - below)!
    else:!
        return value!
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•  Runtime depends on our selection of m: 

 - A good selection will split L evenly such that 

  |Llo | = |Lhi |= |L|/2 

 - The recurrence relation is: 
  T(n)  =  T(n/2) 

  - n + n/2 + n/4 + n/8 + n/16 + ….= 2n ! O(n) 
Same as search 
for minimum 
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However, a poor selection will split L unevenly and in the  
worst case, all elements will be greater or less than m so  
that one Sublist is full and the other is empty.   

For a poor selection, the recurrence relation is 
  T(n)  =  T(n-1) 

In this case, the runtime is O(n2). 

Our dilemma:  
O(n) or O(n2), 
 depending on the list… or O(n log n) independent of it 

   

I could have sorted
 first and done  
 better 
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•  Select seems risky compared to sort 
•  To improve Select, we need to choose m  

to give good ‘splits’ 
•  It can be proven that to achieve O(n) running 

time, we don’t need a perfect splits, just 
reasonably good ones.  

•  In fact, if both subarrays are at least of size n/4, 
then running time will be O(n). 

•  This implies that half of the choices of m make 
good splitters.   
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•  To improve Select, randomly select m. 
•  Since half of the elements will be good splitters, 

if we choose m at random we will get a 50% 
chance that m will be a good choice. 

•  This approach will make sure that no matter 
what input is received, the expected running 
time is small. 
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def randomizedSelect(L, k):!
    value = random.choice(L)!
    Llo = [t for t in data if t < value]!
    Lhi = [t for t in data if t > value]!
    below = len(Llo) + 1!
    if (k < len(Llo)):!
        return randomizedSelect(Llo, k)!
    elif (k > below):!
        return randomizedSelect(Lhi, k-below)!
    else:!
        return value!
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• Worst case runtime: O(n2) 
•  Expected runtime: O(n). 
•  Expected runtime is a good measure of the 

performance of randomized algorithms, often 
more informative than worst case runtimes. 

• Worst case runtimes are rarely repeated  
•  RandomizedSelect always returns the correct 

answer, which offers a way to classify 
Randomized Algorithms. 
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•  Las Vegas Algorithms – always produce the 
correct solution (i.e. randomizedSelect) 

• Monte Carlo Algorithms – do not always return 
the correct solution. 

•  Las Vegas Algorithms are always preferred, but 
they are often hard to come by. 



cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcgaatctatgcgtttccaaccat 

agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc 

aaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt 

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtCcAtataca 

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaCcgtacgGc 
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Motif Finding Problem: Given a list of t sequences 
each of length n, find the “best” pattern of length 
l that appears in each of the t sequences. 

l = 8 

t=5 

DNA 

n = 69  
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• Motif Finding Problem: Given a list of t 
sequences each of length n, find the “best” 
pattern of length l that appears in each of the t 
sequences. 

•  Previously: we solved the Motif Finding 
Problem using a Branch and Bound or a  
Greedy technique. 

• Now: randomly select possible locations and 
find a way to greedily change those locations 
until we converge to the hidden motif. 
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•  Let s = (s1,...,st) be the starting positions for l-
mers in our t sequences.   

•  The substrings corresponding 
to these starting positions  
will form: 

    - t x l alignment matrix  
    - 4 x l profile matrix*  

 * Note that we now define the  
profile matrix in terms of  
frequency,  not counts as in  
Lecture 5. 

              a   G   g   t   a   c   T   t 
              C   c   A   t   a   c   g   t 
              a   c   g   t   T   A   g   t 
              a   c   g   t   C   c   A   t 
              C   c   g   t   a   c   g   G 
         ____________________________________ 

          A  0.6 0.0 0.2 0.0 0.6 0.2 0.2 0.0 
          C  0.4 0.8 0.0 0.0 0.2 0.8 0.0 0.0 
          G  0.0 0.2 0.8 0.0 0.0 0.0 0.6 0.2 
          T  0.0 0.0 0.0 1.0 0.2 0.0 0.2 0.8 
         ____________________________________ 

        X     a   c   g   t   a   c   g   t 

P(X|profile)=0.6*0.8*0.8*1.0*0.6*0.8*0.6*0.8 = 0.0885   

l 

t 

4 
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•  Let l-mer  a = a1, a2, a3, … al  
•  P(a|P) is defined as the probability that an  

l-mer a was created by the Profile P.  
•  If a is very similar to the consensus string of P 

then P(a|P)  will be high 
•  If a is very different, then P(a|P) will be low. 
                                               l 
                           Prob(a|P) =Π p(ai,i) 
                                                                i=1 
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Given a profile: P =  

A 1/2 7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 

   Prob(aaacct|P) = ???  
The probability of the consensus string: 
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Given a profile: P =  

A 1/2 7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 

   Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646 
The probability of the consensus string: 
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Given a profile: P =  

A 1/2 7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 

Prob(atacag|P) = 1/2 x 1/8 x 3/8 x 5/8 x 1/8 x 1/8 = .001602 

   Prob(aaacct|P) = 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 = .033646 
The probability of the consensus string: 

Probability of a different string: 
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•  Define the P-most probable l-mer from a sequence as an 
l-mer in that sequence which has the highest probability 
of being created from the profile P. 

A 1/2 7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 

P   = 

Given a sequence = ctataaaccttacatc, find the P-most 
probable l-mer  
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Third try:  c t a t a a a c c t t a c a t c 

Second try:  c t a t a a a c c t t a c a t c 

First try:  c t a t a a a c c t t a c a t c 

A 1/2 7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 

Find the Prob(a|P) of every possible 6-mer:   

-Continue this process to evaluate every possible 6-mer 
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String, Highlighted in Red Calculations prob(a|P) 

ctataaaccttacat 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/2 x 7/8 x 0 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/8 x 7/8 x 3/8 x 0 x 3/8 x 0 0 

ctataaaccttacat 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336 

ctataaaccttacat 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 .0299 

ctataaaccttacat 1/2 x 0 x 1/2 x 0 1/4 x 0 0 

ctataaaccttacat 1/8 x 0 x 0 x 0 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/8 x 1/8 x 0 x 0 x 3/8 x 0 0 

ctataaaccttacat 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8 .0004 

Compute prob(a|P) for every possible 6-mer: 
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String, Highlighted in Red Calculations Prob(a|P) 

ctataaaccttacat 1/8 x 1/8 x 3/8 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/2 x 7/8 x 0 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/2 x 1/8 x 3/8 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/8 x 7/8 x 3/8 x 0 x 3/8 x 0 0 

ctataaaccttacat 1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8 .0336 

ctataaaccttacat 1/2 x 7/8 x 1/2 x 5/8 x 1/4 x 7/8 .0299 

ctataaaccttacat 1/2 x 0 x 1/2 x 0 1/4 x 0 0 

ctataaaccttacat 1/8 x 0 x 0 x 0 x 0 x 1/8 x 0 0 

ctataaaccttacat 1/8 x 1/8 x 0 x 0 x 3/8 x 0 0 

ctataaaccttacat 1/8 x 1/8 x 3/8 x 5/8 x 1/8 x 7/8 .0004 

P-Most Probable 6-mer in the sequence is aaacct: 
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ctataaaccttacatc 
because Prob(aaacct|P) = .0336  is greater 
than the Prob(a|P) of any other 6-mer in the 
sequence. 

aaacct is the P-most probable 6-mer in: 
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•  In our toy example prob(a|P)=0 in many cases. 
In practice, there will be enough sequences so 
that the number of  elements in the profile with a 
frequency of zero is small. 

•  To avoid many entries with prob(a|P)=0, there 
exist techniques to equate zero to a very small 
number so that one zero does not make the 
entire probability of a string zero (assigning a 
prior probability, we will not address these 
techniques here). 
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•  Find the P-most probable 
l-mer in each of the “t” 
sequences. 

ctataaacgttacatc	
atagcgattcgactg	
cagcccagaaccct	
cggtataccttacatc	
tgcattcaatagctta	
tatcctttccactcac	
ctccaaatcctttaca	
ggtcatcctttatcct	

A 1/2 7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 

P= 
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ctataaacgttacatc 

atagcgattcgactg 

cagcccagaaccct 

cggtgaaccttacatc 

tgcattcaatagctta 

tgtcctgtccactcac 

ctccaaatcctttaca 

ggtctacctttatcct 

P-Most Probable l-mers form a new profile 

1 a a a c g t 

2 a t a g c g 

3 a a c c c t 

4 g a a c c t 

5 a t a g c t 

6 g a c c t g 

7 a t c c t t 

8 t a c c t t 

A 5/8 5/8 4/8 0 0 0 

C 0 0 4/8 6/8 4/8 0 

T 1/8 3/8 0 0 3/8 6/8 

G 2/8 0 0 2/8 1/8 2/8 
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Red – frequency increased, Blue – frequency decreased 

1 a a a c g t 

2 a t a g c g 

3 a a c c c t 

4 g a a c c t 

5 a t a g c t 

6 g a c c t g 

7 a t c c t t 

8 t a c c t t 

A 5/8 5/8 4/8 0 0 0 

C 0 0 4/8 6/8 4/8 0 

T 1/8 3/8 0 0 3/8 6/8 

G 2/8 0 0 2/8 1/8 2/8 

A 1/2  7/8 3/8 0 1/8 0 

C 1/8 0 1/2 5/8 3/8 0 

T 1/8 1/8 0 0 1/4 7/8 

G 1/4 0 1/8 3/8 1/4 1/8 
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Use P-Most probable l-mers to adjust start positions until 
we reach a “best” profile; this is the motif. 

1)  Select random starting positions. 
3)  Create a profile P from the substrings at these starting 

positions. 
4)  Find the P-most probable l-mer a in each sequence and 

change the starting position to the starting position of a. 
5)  Compute a new profile based on the new starting 

positions after each iteration and proceed until we 
cannot increase the score anymore. 
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1.   GreedyProfileMotifSearch(DNA, t, n, l ) 
2.    Randomly select starting positions s=(s1,…,st) from DNA 
3.    bestScore " 0 
4.        while Score(s, DNA) > bestScore 
5.          form profile P from s 
6.      bestScore " Score(s, DNA) 
7.      for   i ! 1  to  t 
8.          Find a P-most probable l-mer a from the ith sequence 
9.          si " starting position of a 
10.   return bestScore 
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•  Since we choose starting positions randomly, there 
is little chance that our guess will be close to an 
optimal motif, meaning it will take a very long time 
to find the optimal motif. 

•  It is unlikely that the random starting positions will 
lead us to the correct solution at all. 

•  In practice, this algorithm is run many times with 
the hope that random starting positions will be close 
to the optimum solution simply by chance. 
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• GreedyProfileMotifSearch is probably not the 
best way to find motifs. 

• However, we can improve the algorithm by 
introducing Gibbs Sampling, an iterative 
procedure that discards one l-mer after each 
iteration and replaces it with a new one. 

• Gibbs Sampling proceeds more slowly and 
chooses new l-mers at random increasing the 
odds that it will converge to the correct solution. 
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 1)  Randomly choose starting positions  
         s = (s1,...,st) and form the set of  l-mers associated  
         with these starting positions. 
    2)  Randomly choose one of the t sequences. 

 3)  Create a profile P from the other t -1 sequences. 
 4)  For each position in the removed sequence, 
      calculate the probability that the l-mer starting at 
      that position was generated by P. 
 5)  Choose a new starting position for the removed 
      sequence at random based on the probabilities 
      calculated in step 4. 
 6)  Repeat steps 2-5 until there is no improvement 
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Input:  
 t = 5 sequences, motif length  l = 8 

   1.  GTAAACAATATTTATAGC 

   2.  AAAATTTACCTCGCAAGG 

   3.  CCGTACTGTCAAGCGTGG 

   4.  TGAGTAAACGACGTCCCA 

   5.  TACTTAACACCCTGTCAA 
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1)  Randomly choose starting positions,    
      s=(s1,s2,s3,s4,s5) in the 5 sequences:  

   
 s1=7  GTAAACAATATTTATAGC 
 s2=11  AAAATTTACCTTAGAAGG 

 s3=9  CCGTACTGTCAAGCGTGG 
 s4=4  TGAGTAAACGACGTCCCA 

 s5=1  TACTTAACACCCTGTCAA 
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2) Choose one of the sequences at random: 
 Sequence 2: AAAATTTACCTTAGAAGG  

     s1=7     GTAAACAATATTTATAGC 
 s2=11   AAAATTTACCTTAGAAGG 
 s3=9   CCGTACTGTCAAGCGTGG 
 s4=4   TGAGTAAACGACGTCCCA 
 s5=1   TACTTAACACCCTGTCAA 
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2) Choose one of the sequences at random: 
 Sequence 2: AAAATTTACCTTAGAAGG  

    s1=7      GTAAACAATATTTATAGC 

 s3=9   CCGTACTGTCAAGCGTGG 
 s4=4   TGAGTAAACGACGTCCCA 
 s5=1   TACTTAACACCCTGTCAA 
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3) Create profile P from l-mers in remaining 4 sequences: 

1 A A T A T T T A 

3 T C A A G C G T 

4 G T A A A C G A 

5 T A C T T A A C 

A 1/4 2/4 2/4 3/4 1/4 1/4 1/4 2/4 

C 0 1/4 1/4 0 0 2/4 0 1/4 

T 2/4 1/4 1/4 1/4 2/4 1/4 1/4 1/4 

G 1/4 0 0 0 1/4 0 3/4 0 
Consensus 

String 
T A A A T C G A 
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4) Calculate the prob(a|P) for every possible 8-mer 
in the removed sequence:       

          Strings Highlighted in Red                       prob(a|P)  

AAAATTTACCTTAGAAGG .000732 
AAAATTTACCTTAGAAGG .000122 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG .000183 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
AAAATTTACCTTAGAAGG 0 
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5)  Create a distribution of probabilities of  
l-mers prob(a|P), and randomly select a new 
starting position based on this distribution.  

Starting Position 1:  prob( AAAATTTA | P ) =  .706 

Starting Position 2:  prob( AAATTTAC | P ) =  .118 

Starting Position 8:  prob( ACCTTAGA | P ) = .176 

A) To create this distribution, divide each 
probability  prob(a|P) by the total: 
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 B) Select a new starting position at random 
according to computed distribution: 

P(selecting starting position 1):     .706 
P(selecting starting position 2):     .118 
P(selecting starting position 8):     .176 

t = random.random()	
if (t < .706):	
    # use position 1	
elif (t < (.706 + .118)):	
    # use position 2	
else:	
    # use position 8	
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Assume we select the substring with the highest 
probability – then we are left with the following 
new substrings and starting positions. 

  s1=7  GTAAACAATATTTATAGC 
  s2=1  AAAATTTACCTCGCAAGG 

  s3=9  CCGTACTGTCAAGCGTGG 

  s4=5  TGAGTAATCGACGTCCCA 

  s5=1  TACTTCACACCCTGTCAA 
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6) We iterate the procedure again with the above 
starting positions until we cannot improve the 
score any more. 
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•  Gibbs sampling needs to be modified when 
applied to samples with biased distributions of 
nucleotides (relative entropy approach).  

•  Gibbs sampling often converges to locally  
optimal motifs rather than globally optimal 
motifs. 

•  Must be run with many randomly chosen seeds 
to achieve good results.  
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•  Random Projection Algorithm is a different way to 
solve the Motif Finding Problem. 

•  Guiding principle: Instances of a motif agree at a 
subset of positions. 

•  However, it is unclear how to find these “non-
mutated” positions. 

•  To bypass the effect of mutations within a motif, we 
randomly select a subset of positions in the pattern 
creating a projection of the pattern.   

•  Search for that projection in a hope that the selected 
positions are not affected by mutations in most 
instances of the motif.   
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•  Choose k positions in string of length l. 
•  Concatenate nucleotides at chosen k positions to 

form k-tuple. 
•  This can be viewed as a projection of l-

dimensional space onto k-dimensional subspace. 

ATGGCATTCAGATTC TGCTGAT 

l = 15 k = 7      Projection 

Projection = (2, 4, 5, 7, 11, 12, 13) 
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•  Select k out of l positions 
uniformly at random. 

•  For each l-tuple in input 
sequences, hash into 
buckets based on the  
k selected positions. 

•  Recover motif from 
enriched buckets that 
contain many l-tuples 
with at least one from 
each sequence. 

Bucket TGCT 

TGCACCT 

Input sequence: 
…T C A A T G C A C C T A T... 
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•  Some projections will fail to detect motifs but if we try 
many of them the probability that one of the buckets fills 
increases.  

•  In the example below, the bucket **GC*AC is “bad” 
while the bucket   AT**G*C is “good” 

ATGCGTC 

...ccATCCGACca... 

...ttATGAGGCtc... 

...ctATAAGTCgc... 

...tcATGTGACac... (1,2,5,7) projection 

ATGCGTC 

...ccATCCGACca... 

...ttATGAGGCtc... 

...ctATAAGTCgc... 

...tcATGTGACac... (3,4,6,7) projection 
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•  l = 7 (motif size) , k = 4 (projection size) 
•  Choose projection (1,2,5,7) 

GCTC 

...TAGACATCCGACTTGCCTTACTAC... 

Buckets 

ATGC 

ATCCGAC 

GCCTTAC 
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• Hash function h(x) obtained from k positions of 
projection.  

•  Buckets are labeled by values of h(x). 
•  Enriched buckets: contain more than s  l-tuples, for 

some parameter s with representatives from all 
sequences 

ATTC CATC GCTC ATGC 
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•  How do we recover the motif from the sequences in 
enriched buckets? 

•  k nucleotides are exact matches, (hash key of bucket). 
•  Use information in other l-k positions as starting point 

for local refinement scheme, e.g. Gibbs sampler.  

Local refinement algorithm ATGCGAC 
Candidate motif 

ATGC 

ATCCGAC 

ATGAGGC 
ATAAGTC 

ATGCGAC 
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•  Random Projection is a procedure for finding good 
starting points: every enriched bucket is a potential 
starting point.  

•  Feeding these starting points into existing algorithms 
(like Gibbs sampler) provides good local search in 
vicinity of every starting point.  

•  These algorithms work particularly well for “good” 
starting points.  
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A     1    0    .25    .50    0    .50   0 

C     0    0    .25    .25   0     0     1 

G     0    0    .50     0     1    .25   0 

T      0    1    0      .25    0    .25   0 

      Profile P 

Gibbs sampler  

Refined profile P* 

ATCCGAC 

ATGAGGC 

ATAAGTC 

ATGTGAC 

ATGC 
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•  For each bucket h containing more than s 
sequences, form profile  P(h) 

• Use Gibbs sampler algorithm with starting point  
P(h) to obtain refined profile P* 
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•  Choose a random k-projection. 
•  Hash each l-mer x in input sequence into bucket 

labeled by h(x) 
•  From each enriched bucket (e.g., a bucket with more 

than s sequences), form profile P and perform Gibbs 
sampler motif refinement 

•  Candidate motif is best found by selecting the best 
motif among refinements of all enriched buckets. 

A Single Iteration: 
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•  Projection size k 
    - choose k small enough so that several motif  

instances hash to the same bucket. 
     k << l,   l / 2 < k < l - const 

    - choose k large enough to avoid contamination 
by spurious l-mers:  

                    4k >> t (n - l + 1) 



•  Final Thursday, 4/30 
–  12:00-3:00PM 
–  This room: SN011 
–  Open book, open notes, 

no computer, tablet, 
eReader, or smartphone 

–  Will covers material since 
midterm 

–  Study session? 
Sunday or Monday? 
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