

Lecture 24: Randomized Algorithms

Chapter 12
Study Session tomorrow
Virtual 4th problem set,
Return PS#1, PS#2

4/20/15

Comp 555

Spring 2015

Randomized Algorithms

- Randomized algorithms incorporate random, rather than deterministic, decisions
- Commonly used in situations where no exact and/or fast algorithm is known
- Main advantage is that no input can reliably produce worst-case results because the algorithm runs differently each time.

Select

- Select(L, k) finds the kth smallest element in L
- Select(L,1) find the smallest...
 - Well known O(n) algorithm

```
minv = HUGE
for v in L:
    if (v < minv):
        minv = v</pre>
```

- Select(L, len(L)/2) find the median...
 - How?
 - median = sorted(L)[len(L)/2] \rightarrow O(n logn)
- Can we find medians, or 1st quartiles in O(n)?

Select Recursion

- Select(L, k) finds the kth smallest element in L
 - Select an element *m* from unsorted list L and partition L the array into two smaller lists:

 \mathbf{L}_{lo} - elements smaller than m

 \mathbf{L}_{hi} - elements larger than m.

• If $len(\mathbf{L}_{lo}) > k$ then $Select(\mathbf{L}_{lo}, k)$

and

- else if $k > len(\mathbf{L}_{lo}) + 1$ then $Select(\mathbf{L}_{hi}, k len(\mathbf{L}_{lo}) 1)$
- else *m* is the kth smallest element

Example of Select(L, 5)

Given an array: $L = \{6, 3, 2, 8, 4, 5, 1, 7, 0, 9\}$

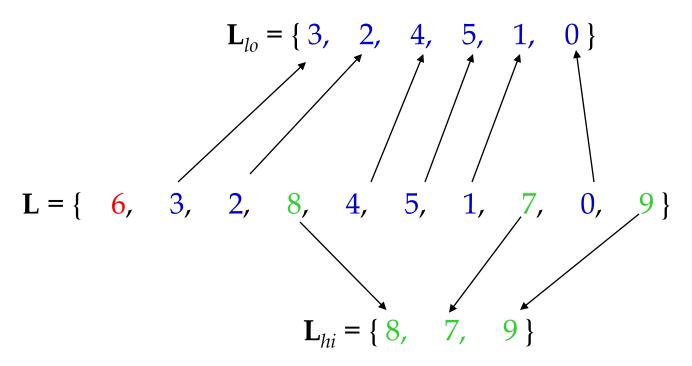
Step 1: Choose the first element as *m*

Our Selection

Example of Select(cont'd)

para a pa

Step 2: Split the array into L_{lo} and L_{hi}



Example of Select(cont'd)

Step 3: Recursively call Select on either \mathbf{L}_{lo} or \mathbf{L}_{hi} until len(\mathbf{L}_{lo}) = k, then return m.

 $len(L_{lo}) > k = 5 \rightarrow Select(\{3, 2, 4, 5, 1, 0\}, 5)$ m = 3 $L_{lo} = \{ 2, 1, 0 \}$ $L_{hi} = \{ 4, 5 \}$ $k = 5 > len(L_{lo}) + 1 \rightarrow Select(\{4, 5\}, 5 - 3 - 1)$ m = 4 $L_{lo} = \{ \text{ empty } \}, L_{hi} = \{ 5 \}$ m = 4 $k = 1 == len(L_{lo}) + 1 \rightarrow return 4$

Select Code

```
def select(L, k):
    value = L[0]
    Llo = [t for t in data if t < value]</pre>
    Lhi = [t for t in data if t > value]
    below = len(Llo) + 1
    if (k < len(Llo)):
        return select(Llo, k)
    elif (k > below):
        return select(Lhi, k - below)
    else:
        return value
```


Select Analysis with Good Splits

- Runtime depends on our selection of *m*:
 - A good selection will split L evenly such that

$$|\mathbf{L}_{lo}| = |\mathbf{L}_{hi}| = |\mathbf{L}|/2$$

- The recurrence relation is:

$$T(n) = T(n/2)$$

$$-n + n/2 + n/4 + n/8 + n/16 + ... = 2n \rightarrow O(n)$$

Select Analysis with Bad Splits

However, a poor selection will split **L** unevenly and in the worst case, all elements will be greater or less than *m* so that one Sublist is full and the other is empty.

For a poor selection, the recurrence relation is

$$T(n) = T(n-1)$$

In this case, the runtime is $O(n^2)$.

I could have sorted first and done better

Our dilemma:

$$O(n)$$
 or $O(n^2)$,

depending on the list... or $O(n \log n)$ independent of it

Select Analysis (cont'd)

- Select seems risky compared to sort
- To improve Select, we need to choose m to give good 'splits'
- It can be proven that to achieve O(n) running time, we don't need a perfect splits, just reasonably good ones.
- In fact, if both subarrays are at least of size n/4, then running time will be O(n).
- This implies that half of the choices of *m* make good splitters.

A Randomized Approach

- To improve Select, *randomly* select *m*.
- Since half of the elements will be good splitters, if we choose *m* at random we will get a 50% chance that *m* will be a good choice.
- This approach will make sure that no matter what input is received, the expected running time is small.

Randomized Select

```
def randomizedSelect(L, k):
    value = random.choice(L)
    Llo = [t for t in data if t < value]
    Lhi = [t for t in data if t > value]
    below = len(Llo) + 1
    if (k < len(Llo)):
        return randomizedSelect(Llo, k)
    elif (k > below):
        return randomizedSelect(Lhi, k-below)
    else:
        return value
```

RandomizedSelect Analysis

- Worst case runtime: $O(n^2)$
- *Expected runtime*: O(n).
- Expected runtime is a good measure of the performance of randomized algorithms, often more informative than worst case runtimes.
- Worst case runtimes are rarely repeated
- RandomizedSelect always returns the correct answer, which offers a way to classify Randomized Algorithms.

Two Types of Randomized Algorithms

- Las Vegas Algorithms always produce the correct solution (i.e. randomizedSelect)
- Monte Carlo Algorithms do not always return the correct solution.
- Las Vegas Algorithms are always preferred, but they are often hard to come by.

The Motif Finding Problem

Motif Finding Problem: Given a list of *t* sequences each of length *n*, find the "best" pattern of length *l* that appears in each of the *t* sequences.

l=8 DNA =5 =5 = 5 = 6 = 8 DNA = 5 = 5 = 6 = 6 = 8 = 6 = 6 = 6 = 8 = 6 = 6 = 6 = 8 = 6 = 6 = 6 = 8 = 6 = 6 = 6 = 6 = 8 = 6 = 6 = 6 = 6 = 6 = 8 = 6

A New Motif Finding Approach

- **Motif Finding Problem**: Given a list of *t* sequences each of length *n*, find the "best" pattern of length *l* that appears in each of the *t* sequences.
- **Previously:** we solved the Motif Finding Problem using a Branch and Bound or a Greedy technique.
- Now: randomly select possible locations and find a way to greedily change those locations until we converge to the hidden motif.

Profiles Revisited

• Let $\mathbf{s} = (s_1, ..., s_t)$ be the starting positions for lmers in our t sequences.

• The substrings corresponding to these starting positions will form:

- t x l alignment matrix
- 4 x l profile matrix*

```
a G g t a c T t
C c A t a c g t
a c g t T A g t
a c g t C c A t
C c g t a c g G
```

```
A 0.6 0.0 0.2 0.0 0.6 0.2 0.2 0.0 C 0.4 0.8 0.0 0.0 0.2 0.8 0.0 0.0 G 0.0 0.2 0.8 0.0 0.0 0.6 0.2 T 0.0 0.0 0.0 1.0 0.2 0.0 0.2 0.8
```

```
P(X|profile)=0.6*0.8*0.8*1.0*0.6*0.8*0.6*0.8 = 0.0885
```

4/20/15

^{*} Note that we now define the profile matrix in terms of frequency, not counts as in Lecture 5.

Scoring Strings with a Profile

- - Let 1-mer $\mathbf{a} = a_1, a_2, a_3, \dots a_l$
 - $P(\mathbf{a} \mid \mathbf{P})$ is defined as the probability that an l-mer \mathbf{a} was created by the Profile \mathbf{P} .
 - If **a** is very similar to the consensus string of **P** then $P(\mathbf{a} \mid \mathbf{P})$ will be high
 - If **a** is very different, then $P(\mathbf{a} \mid \mathbf{P})$ will be low.

$$Prob(\mathbf{a} \mid \mathbf{P}) = \prod_{i=1}^{l} p(a_i, i)$$

Scoring Strings with a Profile (cont'd)

Given a profile: **P** =

A	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
T	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

The probability of the consensus string: Prob(aaacct|P) = ???

Scoring Strings with a Profile (cont'd)

Given a profile: **P** =

A	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
T	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

The probability of the consensus string:

 $Prob(aaacct|P) = 1/2 \times 7/8 \times 3/8 \times 5/8 \times 3/8 \times 7/8 = .033646$

Scoring Strings with a Profile (cont'd)

Given a profile: **P** =

A	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
T	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

The probability of the consensus string:

 $Prob(aaacct|P) = 1/2 \times 7/8 \times 3/8 \times 5/8 \times 3/8 \times 7/8 = .033646$

Probability of a different string:

 $Prob(atacag|P) = 1/2 \times 1/8 \times 3/8 \times 5/8 \times 1/8 \times 1/8 = .001602$

P-Most Probable *l*-mer

• Define the **P**-most probable *l*-mer from a sequence as an *l*-mer in that sequence which has the highest probability of being created from the profile **P**.

$$\mathbf{P} = \begin{bmatrix} A & 1/2 & 7/8 & 3/8 & 0 & 1/8 & 0 \\ C & 1/8 & 0 & 1/2 & 5/8 & 3/8 & 0 \\ T & 1/8 & 1/8 & 0 & 0 & 1/4 & 7/8 \\ G & 1/4 & 0 & 1/8 & 3/8 & 1/4 & 1/8 \end{bmatrix}$$

Given a sequence = ctataaaccttacatc, find the P-most probable l-mer

A	1/2	7/8	3/8	0	1/8	0
C	1/8	0	1/2	5/8	3/8	0
T	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

Find the $Prob(\mathbf{a}|\mathbf{P})$ of every possible 6-mer:

First try: ctataaaccttacatc

Second try: ctataaaccttacatc

Third try: ctataaaccttacatc

-Continue this process to evaluate every possible 6-mer

Compute $prob(\mathbf{a}|\mathbf{P})$ for every possible 6-mer:

String, Highlighted in Red	Calculations	<i>prob</i> (a P)
ctataaaccttacat	1/8 x 1/8 x 3/8 x 0 x 1/8 x 0	0
ctataaaccttacat	$1/2 \times 7/8 \times 0 \times 0 \times 1/8 \times 0$	0
ctataaaccttacat	$1/2 \times 1/8 \times 3/8 \times 0 \times 1/8 \times 0$	0
ctataaaccttacat	1/8 x 7/8 x 3/8 x 0 x 3/8 x 0	0
ctat <mark>aaacct</mark> tacat	$1/2 \times 7/8 \times 3/8 \times 5/8 \times 3/8 \times 7/8$.0336
ctata <mark>aacctt</mark> acat	$1/2 \times 7/8 \times 1/2 \times 5/8 \times 1/4 \times 7/8$.0299
ctataa <mark>acctta</mark> cat	$1/2 \times 0 \times 1/2 \times 0 1/4 \times 0$	0
ctataaa <mark>ccttac</mark> at	1/8 x 0 x 0 x 0 x 0 x 1/8 x 0	0
ctataaaccttacat	1/8 x 1/8 x 0 x 0 x 3/8 x 0	0
ctataaaccttacat	$1/8 \times 1/8 \times 3/8 \times 5/8 \times 1/8 \times 7/8$.0004

P-Most Probable 6-mer in the sequence is aaacct:

String, Highlighted in Red	Calculations	<i>Prob</i> (a P)
ctataaaccttacat	$1/8 \times 1/8 \times 3/8 \times 0 \times 1/8 \times 0$	0
c <mark>tataaa</mark> ccttacat	$1/2 \times 7/8 \times 0 \times 0 \times 1/8 \times 0$	0
ctataaaccttacat	$1/2 \times 1/8 \times 3/8 \times 0 \times 1/8 \times 0$	0
cta <mark>taaacc</mark> ttacat	$1/8 \times 7/8 \times 3/8 \times 0 \times 3/8 \times 0$	0
ctataaaccttacat	1/2 x 7/8 x 3/8 x 5/8 x 3/8 x 7/8	.0336
ctata <mark>aacctt</mark> acat	$1/2 \times 7/8 \times 1/2 \times 5/8 \times 1/4 \times 7/8$.0299
ctataa <mark>acctta</mark> cat	1/2 x 0 x 1/2 x 0 1/4 x 0	0
ctataaa <mark>ccttac</mark> at	1/8 x 0 x 0 x 0 x 0 x 1/8 x 0	0
ctataaaccttacat	1/8 x 1/8 x 0 x 0 x 3/8 x 0	0
ctataaaccttacat	$1/8 \times 1/8 \times 3/8 \times 5/8 \times 1/8 \times 7/8$.0004

aaacct is the **P**-most probable 6-mer in:

ctataaaccttacatc

because $Prob(\mathbf{aaacct}|\mathbf{P}) = .0336$ is greater than the $Prob(\mathbf{a}|\mathbf{P})$ of any other 6-mer in the sequence.

Dealing with Zeroes

- In our toy example *prob*(**a** | **P**)=0 in many cases. In practice, there will be enough sequences so that the number of elements in the profile with a frequency of zero is small.
- To avoid many entries with $prob(\mathbf{a} \mid \mathbf{P})=0$, there exist techniques to equate zero to a very small number so that one zero does not make the entire probability of a string zero (assigning a *prior* probability, we will not address these techniques here).

P-Most Probable *l*-mers in Many Sequences

 Find the P-most probable l-mer in each of the "t" sequences.

	A	1/2	7/8	3/8	0	1/8	0
D-	С	1/8	0	1/2	5/8	3/8	0
Γ-	Т	1/8	1/8	0	0	1/4	7/8
	G	1/4	0	1/8	3/8	1/4	1/8

ctataaacgttacatc atagcgattcgactg cagcccagaaccct cggtataccttacatc tgcattcaatagctta tatcctttccactcac ctccaaatcctttaca ggtcatcctttatcct

P-Most Probable *l*-mers in Many

Sequences (cont'd)

ctataaacgttacatc

1	a	a	a	С	g	t
2	a	t	a	g	С	g
3	a	a	С	С	С	t
4	g	a	a	С	С	t
5	a	t	a	g	С	t
6	g	a	С	С	t	g
7	a	t	С	С	t	t
8	t	a	С	С	t	t
A	5/8	5/8	4/8	0	0	0
С	0	0	4/8	6/8	4/8	0
T	1/8	3/8	0	0	3/8	6/8
G	2/8	0	0	2/8	1/8	2/8

P-Most Probable *I*-mers form a new profile

Comparing New and Old Profiles

 \mathcal{A}

1	a	a	a	С	g	t
2	a	t	a	g	С	g
3	a	a	С	С	С	t
4	g	a	a	С	С	t
5	a	t	a	g	С	t
6	g	a	С	С	t	g
7	a	t	С	С	t	t
8	t	a	С	С	t	t
A	5/8	5/8	4/8	0	0	0
С	0	0	4/8	6/8	4/8	0
T	1/8	3/8	0	0	3/8	6/8
G	2/8	0	0	2/8	1/8	2/8

A	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

Red – frequency increased, Blue – frequency decreased

Greedy Profile Motif Search

Use P-Most probable *l*-mers to adjust start positions until we reach a "best" profile; this is the motif.

- 1) Select random starting positions.
- 3) Create a profile **P** from the substrings at these starting positions.
- 4) Find the **P**-most probable *l*-mer **a** in each sequence and change the starting position to the starting position of **a**.
- 5) Compute a new profile based on the new starting positions after each iteration and proceed until we cannot increase the score anymore.

GreedyProfileMotifSearch Algorithm

POPODO POP

```
<u>GreedyProfileMotifSearch(DNA, t, n, 1)</u>
         Randomly select starting positions \mathbf{s} = (s_1, ..., s_t) from DNA
2.
3.
         bestScore \leftarrow 0
        while Score(s, DNA) > bestScore
4.
5.
           form profile P from s
           bestScore ← Score(s, DNA)
6.
7.
           for i \leftarrow 1 to t
              Find a P-most probable /-mer a from the Ith sequence
8.
              s_i \leftarrow starting position of a
9.
10.
        return hestScore
```


GreedyProfileMotifSearch Analysis

- Since we choose starting positions randomly, there
 is little chance that our guess will be close to an
 optimal motif, meaning it will take a very long time
 to find the optimal motif.
- It is unlikely that the random starting positions will lead us to the correct solution at all.
- In practice, this algorithm is run many times with the hope that random starting positions will be close to the optimum solution simply by chance.

Gibbs Sampling

- GreedyProfileMotifSearch is probably not the best way to find motifs.
- However, we can improve the algorithm by introducing **Gibbs Sampling**, an iterative procedure that discards one *l*-mer after each iteration and replaces it with a new one.
- Gibbs Sampling proceeds more slowly and chooses new *l*-mers at random increasing the odds that it will converge to the correct solution.

How Gibbs Sampling Works

- 1) Randomly choose starting positions $\mathbf{s} = (s_1,...,s_t)$ and form the set of *l*-mers associated with these starting positions.
- 2) Randomly choose one of the *t* sequences.
- 3) Create a profile **P** from the other t -1 sequences.
- 4) For each position in the removed sequence, calculate the probability that the *l*-mer starting at that position was generated by **P**.
- 5) Choose a new starting position for the removed sequence at random based on the probabilities calculated in step 4.
- 6) Repeat steps 2-5 until there is no improvement

Input:

t = 5 sequences, motif length l = 8

- 1. GTAAACAATATTTATAGC
- 2. AAAATTTACCTCGCAAGG
- 3. CCGTACTGTCAAGCGTGG
- 4. TGAGTAAACGACGTCCCA
- 5. TACTTAACACCCTGTCAA

1) Randomly choose starting positions, $s=(s_1,s_2,s_3,s_4,s_5)$ in the 5 sequences:

$s_1 = 7$	GTAAACAATATTTATAGC
s ₂ =11	AAAATTTACCTTAGAAGG
$s_3 = 9$	CCGTACTGTCAAGCGTGG
s ₄ =4	TGAGTAAACGACGTCCCA
$s_{5}=1$	TACTTAACACCCTGTCAA

2) Choose one of the sequences at random: **Sequence 2:** AAAATTTACCTTAGAAGG

$s_1 = 7$	GTAAACAATATTTATAGC
s ₂ =11	AAAATTTACCTTAGAAGG
$s_3 = 9$	CCGTACTGTCAAGCGTGG
s ₄ =4	TGAGTAAACGACGTCCCA
$s_{5}=1$	TACTTAACACCCTGTCAA

0) (1)

2) Choose one of the sequences at random: **Sequence 2:** AAAATTTACCTTAGAAGG

$$s_1$$
=7 GTAAACAATATTTATAGC

 s_3 =9 CCGTACTGTCAAGCGTGG s_4 =4 TGAGTAAACGACGTCCCA s_5 =1 TACTTAACACCCTGTCAA

3) Create profile *P* from *l*-mers in remaining 4 sequences:

1	A	A	Т	A	Т	Т	Т	A
3	Т	С	A	A	G	С	G	T
4	G	Т	A	A	A	С	G	A
5	Т	A	С	Т	Т	A	A	С
A	1/4	2/4	2/4	3/4	1/4	1/4	1/4	2/4
С	0	1/4	1/4	0	0	2/4	0	1/4
Т	2/4	1/4	1/4	1/4	2/4	1/4	1/4	1/4
G	1/4	0	0	0	1/4	0	3/4	0
Consensus String	Т	A	A	A	Т	С	G	A

4) Calculate the $prob(a \mid P)$ for every possible 8-mer in the removed sequence:

Strings Highlighted in Red

prob(**a** | **P**)

AAAATTTA CCTTAGAAGG	.000732
AAAATTTACCTTAGAAGG	.000122
AAAATTTACCTTAGAAGG	0
AAA <mark>ATTTACCT</mark> TAGAAGG	0
AAAATTTACCTTAGAAGG	0
AAAATTTACCTTAGAAGG	0
AAAATT <mark>TACCTTAG</mark> AAGG	0
AAAATTT <mark>ACCTTAGA</mark> AGG	.000183
AAAATTTACCTTAGAAGG	0
AAAATTTACCTTAGAAGG	0
AAAATTTACCTTAGAAGG	0

5) Create a distribution of probabilities of l-mers $prob(a \mid P)$, and randomly select a new starting position based on this distribution.

A) To create this distribution, divide each probability $prob(a \mid P)$ by the total:

Starting Position 1: prob(AAAATTTA | P) = .706

Starting Position 2: prob(AAATTTAC | P) = .118

Starting Position 8: *prob*(ACCTTAGA | P) = .176

B) Select a new starting position at random according to computed distribution:

```
P(selecting starting position 1): .706
```

P(selecting starting position 2): .118

P(selecting starting position 8): .176

Assume we select the substring with the highest probability – then we are left with the following new substrings and starting positions.

$s_1 = 7$	GTAAACAATATTTATAGC
s ₂ =1	AAAATTTACCTCGCAAGG
$s_3 = 9$	CCGTACTGTCAAGCGTGG
s ₄ =5	TGAGTAATCGACGTCCCA
s ₅ =1	TACTTCACACCCTGTCAA

6) We iterate the procedure again with the above starting positions until we cannot improve the score any more.

Gibbs Sampler in Practice

- Gibbs sampling needs to be modified when applied to samples with biased distributions of nucleotides (relative entropy approach).
- Gibbs sampling often converges to locally optimal motifs rather than globally optimal motifs.
- Must be run with many randomly chosen seeds to achieve good results.

Another Randomized Approach

- Random Projection Algorithm is a different way to solve the Motif Finding Problem.
- **Guiding principle:** Instances of a motif agree at a subset of positions.
- However, it is unclear how to find these "non-mutated" positions.
- To bypass the effect of mutations within a motif, we randomly select a subset of positions in the pattern creating a **projection** of the pattern.
- Search for that projection in a hope that the selected positions are not affected by mutations in most instances of the motif.

Projections

- Choose k positions in string of length l.
- Concatenate nucleotides at chosen *k* positions to form *k*-tuple.
- This can be viewed as a projection of *l*-dimensional space onto *k*-dimensional subspace.

$$l = 15$$
 Projection $k = 7$

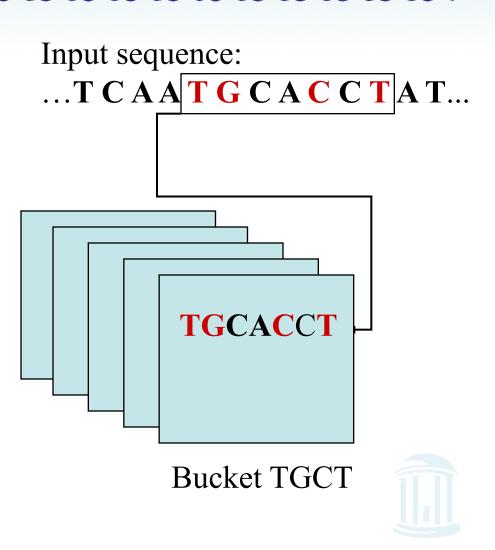
ATGGCATTCAGATTC

TGCTGAT

Projection = (2, 4, 5, 7, 11, 12, 13)

Random Projections Algorithm

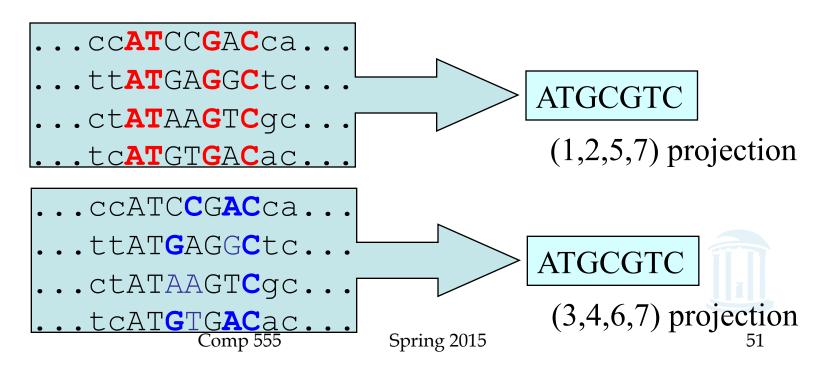
- Select k out of l positions uniformly at random.
- For each *l*-tuple in input sequences, hash into buckets based on the *k* selected positions.
- Recover motif from *enriched* buckets that contain many *l*-tuples with at least one from each sequence.



Random Projections Algorithm (cont'd)

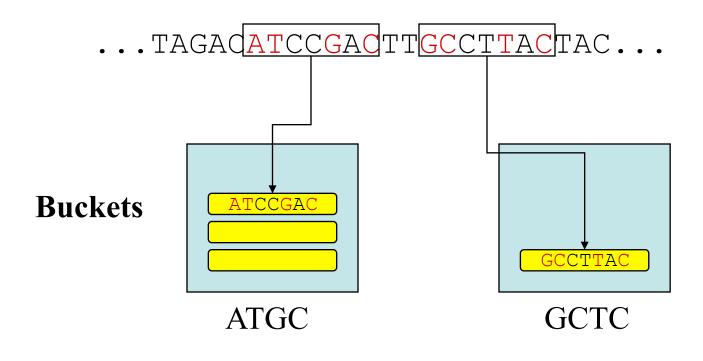
- Some projections will fail to detect motifs but if we try many of them the probability that one of the buckets fills increases.
- In the example below, the bucket **GC*AC is "bad" while the bucket AT**G*C is "good"

4/20/15



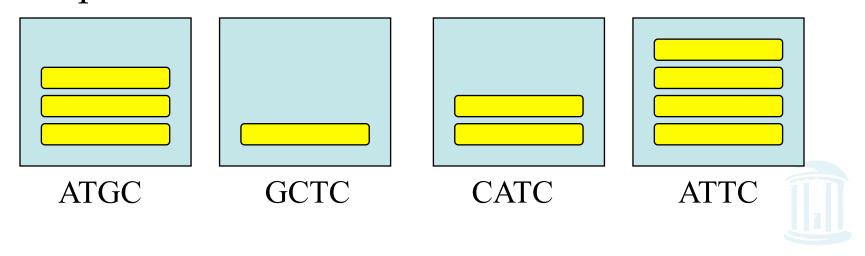
Example

- l = 7 (motif size), k = 4 (projection size)
- Choose projection (1,2,5,7)



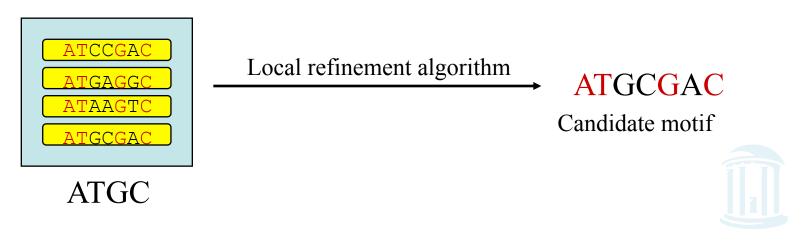
Hashing and Buckets

- Hash function h(x) obtained from k positions of projection.
- Buckets are labeled by values of h(x).
- *Enriched buckets*: contain more than *s l*-tuples, for some parameter *s* with representatives from all sequences



Motif Refinement

- How do we recover the motif from the sequences in enriched buckets?
- k nucleotides are exact matches, (hash key of bucket).
- Use information in other *l-k* positions as starting point for local refinement scheme, e.g. Gibbs sampler.



Synergy between Random Projection and Gibbs Sampler

- Random Projection is a procedure for finding good starting points: every enriched bucket is a potential starting point.
- Feeding these starting points into existing algorithms (like Gibbs sampler) provides good local search in vicinity of every starting point.
- These algorithms work particularly well for "good" starting points.

Building Profiles from Buckets

ATCCGAC
ATGAGGC
ATAAGTC
ATGTGAC

ATGC

Α	1	0	.25	.50	0	.50	0
С	0	0	.25	.25	0	0	1
G	0	0	.50	0	1	.25	0
T	0	1	.25 .25 .50	.25	0	.25	0

Profile P

Gibbs sampler

Refined profile P*

Motif Refinement

For each bucket h containing more than s sequences, form profile P(h)

Use Gibbs sampler algorithm with starting point
 P(h) to obtain refined profile P*

Random Projection Algorithm

A Single Iteration:

- Choose a random *k*-projection.
- Hash each l-mer x in input sequence into bucket labeled by h(x)
- From each enriched bucket (e.g., a bucket with more than *s* sequences), form profile **P** and perform Gibbs sampler motif refinement
- Candidate motif is best found by selecting the best motif among refinements of all enriched buckets.

Choosing Projection Size

- Projection size *k*
 - choose *k* small enough so that several motifinstances hash to the same bucket.

$$k \ll l$$
, $l/2 \ll k \ll l$ - const

- choose *k* large enough to avoid contamination by spurious *l*-mers:

$$4^k >> t (n - l + 1)$$

It's Over

- Final Thursday, 4/30
 - 12:00-3:00PM
 - This room: SN011
 - Open book, open notes, no computer, tablet, eReader, or smartphone
 - Will covers material since midterm
 - Study session?Sunday or Monday?

