

Lecture 23: Hidden Markov Models

Chapter 11

11/21/13

Comp 555

Fall 2013

Dinucleotide Frequency

- Consider all 2-mers in a sequence {AA,AC,AG,AT,CA,CC,CG,CT,GA,GC,GG,GT,TA,TC,TG,TT}
- Given 4 nucleotides: each with probability of occurrence is ~ ¹/₄. Thus, one would expect that the probability of occurrence of any given dinucleotide is ~ 1/16.
- However, the frequencies of dinucleotides in DNA sequences vary widely.
- In particular, *CG* is typically underepresented (frequency of *CG* is typically < 1/16)

Example

• From a 291829 base sequence

0.120214646984	GA	0.056108392614
0.055409350713	GC	0.037792809463
0.068848773935	GG	0.043357731266
0.083425853585	GT	0.046828954041
0.074369148950	ТА	0.077206436668
0.044927148868	TC	0.056207766218
0.008179475581	TG	0.063698479926
0.066857875186	TT	0.096567155996
	0.120214646984 0.055409350713 0.068848773935 0.083425853585 0.074369148950 0.044927148868 0.008179475581 0.066857875186	0.120214646984GA0.055409350713GC0.068848773935GG0.083425853585GT0.074369148950TA0.044927148868TC0.008179475581TG0.066857875186TT

- Expected value 0.0625
- CG is 7 times smaller than expected

Why so few CGs?

- *CG* is the least frequent dinucleotide because *C* in *CG* is easily *methylated*. And, methylated Cs are easily mutated into Ts.
- However, methylation is suppressed around genes and transcription factor regions
- So, CG appears at *relatively* higher frequency in these important areas
- These localized areas of higher CG frequency are called *CG-islands*
- Finding the CG islands within a genome is among the most reliable gene finding approaches

CG Island Analogy

- The *CG* islands problem can be modeled by a toy problem named *"The Fair Bet Casino"*
- The outcome of the game is determined by coin flips with two possible outcomes: Heads or Tails
- However, there are two different coins
 - A Fair coin: Heads and Tails with same probability ¹/₂.
 - The Biased coin: Heads with prob. ³/₄, Tails with prob. ¹/₄.

The "Fair Bet Casino" (cont'd)

- Thus, we define the probabilities:
 - $-P(H | Fair) = P(T | Fair) = \frac{1}{2}$
 - $-P(H | Bias) = \frac{3}{4}, P(T | Bias) = \frac{1}{4}$
 - The crooked dealer doesn't want to get caught switching between coins, so he does so infrequently

 Changes between Fair and Biased coins with probability 10%

The Fair Bet Casino Problem

- **Input:** A sequence $x = x_1 x_2 x_3 \dots x_n$ of coin tosses made by some combination of the two possible coins (*F* or *B*).
- **Output:** A sequence $\pi = \pi_1 \pi_2 \pi_3 \dots \pi_n$, with each π_i being either *F* or *B* indicating that x_i is the result of tossing the Fair or Biased coin respectively.

Problem...

Fair Bet Casino Problem

Any observed outcome of coin tosses *could* have been generated by *either* coin, or any combination.

But, all coin exchange combinations are not equally likely. What coin combination has the highest probability of generating the observed series of tosses? **Decoding Problem**

P(x | fair coin) vs. P(x | biased coin)

- Suppose first, that the dealer never exchanges coins.
- Some definitions:
 - P(x | Fair): prob. of the dealer generating the outcome *x* using the *Fair* coin.
 - P(x | Biased): prob. of the dealer generating outcome *x* using the *Biased* coin .

P(x | fair coin) vs. P(x | biased coin)

- $P(x | Fair) = P(x_1...x_n | Fair) =$ $\prod_{i=1,n} p(x_i | Fair) = (1/2)^n$
- $P(x | Biased) = P(x_1...x_n | Biased coin) =$ $\prod_{i=1,n} p(x_i | Biased) = (3/4)^k (1/4)^{n-k} = 3^k/4^n$
 - Where k is the number of *H*eads in x.

P(x | fair coin) vs. P(x | biased coin)

• When is a sequence equally likely to have come from the Fair or Biased coin?

• when $k = n/\log_2 3$ $(k \sim 0.63 n)$ P(x | Fair) = P(x | Biased) $1/2^n = 3^k/4^n$ $2^n = 3^k$ $n = k \log_2 3$

 So when the number of heads is greater than 63% the dealer most likely used the biased coin

Log-odds Ratio

• We can define the *log-odds ratio* as follows:

$$log_2(P(x | Fair) / P(x | Biased)) =$$

= $\Sigma_{i=1}^k log_2(p(x_i | Fair) / p(x_i | Biased))$
= $n - k log_2 3$

- The log-odds ratio is a means for deciding which of two alternative hypotheses is most likely
- "Zero-crossing" measure; if the log-odds ratio > 0 then the numerator is more likely, if it is < 0 then the denominator is more likely, they are equally likely if the log-odds ratio = 0

Computing Log-odds Ratio in Sliding Windows

 $x_1 x_2 \overline{x_3 x_4 x_5 x_6 x_7} x_8 \dots x_n$

Consider a *sliding window* of the outcome sequence. Find the log-odds for this short window.

Disadvantages:

- the length of CG-island (appropriate window size) is not known in advance
- different window sizes may classify the same position differently

Key Elements of this Problem

- There is an unknown, *hidden*, state for each observation (Was the coin the Fair or Biased?)
- Outcomes are modeled probabilistically:

$$-P(H | Fair) = P(T | Fair) = \frac{1}{2}$$

 $-P(H | Bias) = \frac{3}{4}, P(T | Bias) = \frac{1}{4}$

Transitions between states are modeled probabilistically:

$$-P(\pi_{i} = \text{Biased} \mid \pi_{i-1} = \text{Biased}) = a_{BB} = 0.9$$

-P(\pi_{i} = \text{Biased} \mid \pi_{i-1} = \text{Fair}) = a_{FB} = 0.1
-P(\pi_{i} = \text{Fair} \mid \pi_{i-1} = \text{Biased}) = a_{BF} = 0.1
-P(\pi_{i} = \text{Fair} \mid \pi_{i-1} = \text{Fair}) = a_{FF} = 0.9

Hidden Markov Model (HMM)

- A generalization of this class of problem
- Can be viewed as an abstract machine with *k hidden* states that emits symbols from an alphabet Σ.
- Each state has its own probability distribution, and the machine switches between states according to this probability distribution.
- While in a certain state, the machine makes 2 decisions:
 - What state should I move to next?
 - What symbol from the alphabet Σ should I emit?

Why "Hidden"?

- Observers can see the emitted symbols of an HMM but have *no ability to know which state the HMM is currently in*.
- Thus, the goal is to infer the *most likely hidden states of an HMM* based on the given sequence of emitted symbols.

HMM Parameters

Σ : set of emission characters.

Ex.: $\Sigma = \{0, 1\}$ for coin tossing (0 for Tails and 1 Heads) $\Sigma = \{1, 2, 3, 4, 5, 6\}$ for dice tossing

Q: set of hidden states, emitting symbols from Σ. Q = {F,B} for coin tossing

HMM Parameters (cont'd)

A = (a_{kl}) : a $|Q| \times |Q|$ matrix of probability of changing from state *k* to state *l*. *Transition matrix* $a_{FF} = 0.9$ $a_{FB} = 0.1$

$$a_{BF} = 0.1$$
 $a_{BB} = 0.9$

E = $(e_k(b))$: a $|Q| \ge |\Sigma|$ matrix of probability of emitting symbol *b* while being in state *k*. *Emission matrix*

$$e_F(0) = \frac{1}{2}$$
 $e_F(1) = \frac{1}{2}$
 $e_B(0) = \frac{1}{4}$ $e_B(1) = \frac{3}{4}$

Fall 2013

HMM for Fair Bet Casino

• The *Fair Bet Casino* in *HMM* terms:

 $\Sigma = \{0, 1\}$ (0 for Tails and 1 Heads)

 $Q = {F,B} - F$ for Fair & B for Biased coin.

• Transition Probabilities *A*, Emission Probabilities *E*

Α	Fair	Biased	E	Tails(0)	Heads(1)
Fair	0.9	0.1	Fair	1/2	1/2
Biased	0.1	0.9	Biased	1/4	3/4

HMM for Fair Bet Casino (cont'd)

HMM model for the Fair Bet Casino Problem

11/21/13

Fall 2013

Hidden Paths

- A *path* $\pi = \pi_1 \dots \pi_n$ in the HMM is defined as a sequence of hidden states.
- Consider path π = FFFBBBBBFFF and sequence x = 01011101001

Fall 2013

$P(x \mid \pi)$ Calculation

• $P(x \mid \pi)$: Probability that sequence *x* was generated by the path π :

$$P(x \mid \pi) = P(\pi_0 \rightarrow \pi_1) \cdot \prod_{i=1}^n P(x_i \mid \pi_i) \cdot P(\pi_i \rightarrow \pi_{i+1})$$
$$= a_{\pi_0, \pi_1} \cdot \prod e_{\pi_i} (x_i) \cdot a_{\pi_i, \pi_{i+1}}$$

Decoding Problem

- **Goal:** Find an optimal hidden path of state transitions given a set of observations.
- **Input:** Sequence of observations $x = x_1...x_n$ generated by an HMM $M(\Sigma, Q, A, E)$
- **Output:** A path that maximizes $P(x \mid \pi)$ over all possible paths π .

Building Manhattan for Decoding Problem

- Andrew Viterbi devloped a "Manhattan-like grid" (Dynamic programming) model to solve the *Decoding Problem*.
- Every choice of $\pi = \pi_1 \dots \pi_n$ corresponds to a path in the graph.
- The only valid direction in the graph is *eastward*.
- This graph has $|Q|^2(n-1)$ edges.

Edit Graph for Decoding Problem

Decoding Problem vs. Alignment Problem

Valid directions in the *alignment problem*.

Valid directions in the *decoding problem*.

Viterbi Decoding of Fair-Bet Casino

- Each vertex represents a possible state at a given position in the output sequence
- The observed sequence conditions the likelihood of each state
- Dynamic programming reduces search space to:
 |Q|+transition_edges×(n-1) = 2+4×5 from naïve 2⁶

11/21/13

Decoding Problem

• The *Decoding Problem* is reduced to finding a longest path in the *directed acyclic graph* (DAG)

• <u>Notes</u>: the length of the path in this problem is defined as the *product* of its edges' weights, not their *sum*. (But, using the log of the weights makes it a sum again!)

Decoding Problem (cont'd)

• Every path in the graph has the probability $P(x | \pi)$.

• The Viterbi algorithm finds the path that maximizes $P(x \mid \pi)$ among all possible paths.

• The Viterbi algorithm runs in $O(n |Q|^2)$ time.

Fall 2013

The weight *w* is given by: ???

The weight *w* is given by: The Total probability

$$\mathbf{P}(x \mid \pi) = \prod_{i=0}^{n} e_{\pi_{i+1}} (x_{i+1}) \cdot a_{\pi_{i}, \pi_{i+1}}$$

The weight *w* is given by *Each edge is a factor in the product*

i-th term =
$$e_{\pi_{i+1}}(x_{i+1}) \cdot a_{\pi_{i},\pi_{i+1}}$$

11/21/13

Comp 555

Fall 2013

i-th term = $e_{\pi_i}(x_i)$. $a_{\pi_i, \pi_{i+1}} = e_l(x_{i+1})$. a_{kl} for $\pi_i = k, \pi_{i+1} = l$

The weight $w=e_l(x_{i+1})$. a_k Solve for the path of highest probability Observation: a prefix is also an optimal path Where have we seen this before?

Fall 2013

Dynamic Program's Recursion

$$S_{l,i+1} = \max_{k \in Q} \{s_{k,i} \cdot \text{weight of edge between } (k,i) \text{ and } (l,i+1)\}$$
$$= \max_{k \in Q} \{s_{k,i} \cdot a_{kl} \cdot e_l (x_{i+1}) \}$$
$$= e_l (x_{i+1}) \cdot \max_{k \in Q} \{s_{k,i} \cdot a_{kl}\}$$

Decoding Problem (cont'd)

• Initialization:

$$-a_{start,k} = 1/|Q|$$

- $s_{k,0} = 0$ for $k \neq begin$.

• Let π^* be the optimal path. Then,

$$P(x \mid \pi^*) = \max_{k \in Q} \{s_{k,n} \cdot a_{k,end}\}$$

Viterbi for Fair Bet Casino

- Solves all subproblems implied by emitted subsequence
- How likely is the best path? 0.006
- What is it? FFFFF

Viterbi Algorithm

- Rather than addition Viterbi uses multiplication
- Covert edge weights to logs, and then it is back to addition, which has another advantage
- The value of the product can become extremely small, which leads to underflow.
- Logs avoid underflow.

$$s_{k,i+1} = \log e_l(x_{i+1}) + \max_{k \in Q} \{s_{k,i} + \log(a_{kl})\}$$

Forward-Backward Problem

}}

Goal: find the most probable coin that the dealer was using at a particular time.

$$P(\pi_i = k | x) = \frac{P(x, \pi_i = k)}{P(x)}$$

Probabilities of all paths in state k at i

Probability of sequence over all paths

11/21/13

Fall 2013

Illustrating the difference

Forward Algorithm

- Defined $f_{k,i}$ (forward probability) as the probability of emitting the prefix $x_1...x_i$ and reaching the state $\pi = k$.
- The recurrence for the forward algorithm is:

Backward Algorithm

• However, *forward probability* is not the only factor affecting $P(\pi_i = k | x)$.

• The sequence of transitions and emissions that the HMM undergoes between π_i and π_{i+1} also affect $P(\pi_i = k | x)$.

Backward Algorithm (cont'd)

- *Backward probability* $b_{k,i} \equiv$ the probability of being in state $\pi_i = k$ and emitting the *suffix* $x_{i+1}...x_n$.
- The *backward algorithm*'s recurrence:

$$b_{k,i} = \sum_{l \in Q} e_l(x_{i+l}) \cdot b_{l,i+l} \cdot a_{kl}$$

This is the same as computing the probability of a specific path (slide 22) or suffix in this case except the initial probability is not $\frac{1}{2}$.

Backward-Forward Algorithm

• The probability that the dealer used a biased coin at any moment *i* is as follows:

$$P(\pi_i = k | x) = \frac{P(x, \pi_i = k)}{P(x)} = \frac{f_k(i) \cdot b_k(i)}{P(x)}$$

HMM Parameter Estimation

- So far, we have assumed that the transition and emission probabilities are known.
- However, in most HMM applications, the probabilities are not known. It's very hard to estimate the probabilities.
- Parameter estimation is much harder than state estimation

HMM Parameter Estimation (cont'd)

- Let Θ be a vector containing all of the unknown transition and emission probabilities.
- Given training sequences x¹,...,x^m, let P(x | Θ)
 be the max. prob. of x given the assignment of param.'s Θ.
- Then our goal is to find

$$max_{\Theta} \prod P(x_i | \Theta)$$

A Parameter Estimation Approach

• If hidden states were known, we could use our training data to estimate parameters

$$a_{kl} = \frac{A_{kl}}{\sum_{q \in Q} A_{kq}} \qquad e_k(b) = \frac{E_k(b)}{\sum_{\sigma \in \Sigma} E_k(\sigma)}$$

- In all likelihood we wouldn't be given the hidden state sequence, π , but only the observed output stream, x
- An alternative is to *make an intelligent guess of* π, use the equations above to estimate parameters, then run Viterbi to estimate the hidden state, then reestimate the parameters and repeat until the state assignments or parameter values converge.
- Such iterative approaches are called Expectation Maximization (EM) methods of parameter estimation

Profile Alignment using HMMs

- Distant species of functionally related sequences may have weak pairwise similarities with known species, and thus fail individual pairwise significance tests.
- However, they may have weak similarities with *many* known species.
- The goal is to consider sequences at once. (Multiple alignment)
- Related sequences are often better represented by a *consensus profile* that any multiple alignment.

Profile Representations

Aligned DNA sequences can be represented by a $4 \cdot n$ profile matrix reflecting the frequencies of nucleotides in every aligned position.

\mathbf{A}	.72	.14	0	0	.72	.72	0	0
Т	.14	.72	0	0	0	.14	.14	.86
G	.14	.14	.86	.44	0	.14	0	0
\mathbf{C}	0	0	.14	.56	.28	0	.86	.14

Protein families can be represented by a $20 \cdot n$ profile representing frequencies of amino acids.

HMM Alignment

- One method of performing sequence comparisons to a profile is to use a HMM
- Emission probabilities, $e_i(a)$, from the profile
- Transition probabilities from our match -mismatch matrix δ_{ii} .
- Or we can explicitly represent the insertion and deletion states

Profile HMM

A profile HMM

11/20/13

Fall 2013

States of Profile HMM

- Match states $M_1...M_n$ (plus *begin/end* states)
- Insertion states $I_0I_1...I_n$
- Deletion states $D_1...D_n$
- Assumption:

 $e_{I_j}(a) = p(a)$

where *p*(*a*) is the frequency of the occurrence of the symbol *a* in all the sequences.

Transition Probabilities in Profile HMM

- $log(a_{MI})+log(a_{IM}) = gap$ initiation penalty
- $log(a_{II})$ = gap extension penalty

Profile HMM Alignment

- Define v^M_j(i) as the logarithmic likelihood score of the best path for matching x₁..x_i to profile HMM ending with x_i emitted by the state M_i.
- $v_{i}^{I}(i)$ and $v_{j}^{D}(i)$ are defined similarly.

Profile HMM Alignment: Dynamic Programming

$$v^{M}_{j}(i) = \log (e_{M_{j}}(x_{i})/p(x_{i})) + max - \begin{cases} v^{M}_{j-1}(i-1) + \log(a_{M_{j-1},M_{j}}) \\ v^{I}_{j-1}(i-1) + \log(a_{I_{j-1},M_{j}}) \\ v^{D}_{j-1}(i-1) + \log(a_{D_{j-1},M_{j}}) \end{cases}$$

$$v_{j}^{I}(i) = \log (e_{I_{j}}(x_{i})/p(x_{i})) + max \quad \begin{cases} v_{j}^{M}(i-1) + \log(a_{M_{j}}, I_{j}) \\ v_{j}^{I}(i-1) + \log(a_{I_{j}}, I_{j}) \\ v_{j}^{D}(i-1) + \log(a_{D_{j}}, I_{j}) \end{cases}$$

11/20/13

Fall 2013

Paths in Edit Graph and Profile HMM

<u>}}</u>

A path through an edit graph and the corresponding path through a profile HMM

Fall 2013