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Dmucleotlde Frequency

. Cons1der all Z-mers in a sequence
{AA,AC,AG,AT,CA,CC,CG,CT,GA,GC,GG,GT,TA,TC, TG, TT}

* Given 4 nucleotides:
each with probability of occurrence is ~ Ya.
Thus, one would expect that the probability of
occurrence of any given dinucleotide is ~ 1/16.

* However, the frequencies of dinucleotides in
DNA sequences vary widely.

* In particular, CG is typically underepresented
(frequency of CG is typically <1/16)
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Example

. From a 291829 base sequence

AA | 0120214646984 | GA | 0.056108392614
AC | 0.055409350713 | GC | 0.037792809463
AG | 0.068848773935 | GG | 0.043357731266
AT | 0.083425853585 | GT | 0.046828954041
CA | 0.074369148950 | TA | 0.077206436668
CC | 0.044927148868 | TC | 0.056207766218
CG | 0.008179475581 | TG | 0.063698479926
CT | 0.066857875186 | TT | 0.096567155996

* Expected value 0.0625
* CGis 7 times smaller than expected
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Why so few CGs?

. CG is the least frquent dmucleotle because C in
CG is easily methylated. And, methylated Cs are
easily mutated into Ts.

* However, methylation is suppressed around
genes and transcription factor regions

* So, CG appears at relatively higher frequency in
these important areas

* These localized areas of higher CG frequency are
called CG-islands

* Finding the CG islands within a genome is among
the most reliable gene finding approaches
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CG Island Analogy

* The CG islands problem can be modeled by a toy
problem named “The Fair Bet Casino”

* The outcome of the game is determined by coin
flips with two possible outcomes: Heads or Tails

e However, there are two different coins

— A Fair coin: Heads and Tails
with same probability 2.

— The Biased coin:
Heads with prob. %4,
Tails with prob. Va.
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The ”Falr Bet Casmo (cont’d)

* Thus, we define the probabilities:
— P(H | Fair) = P(T | Fair) = 12
— P(H | Bias) = %4, P(T | Bias) = ¥4
— The crooked dealer doesn’t want l\

to get caught switching between
coins, so he does so infrequently s

— Changes between Fair and Biased
coins with probability 10%

11/21/13 Comp 555 Fall 2013 6



The Fa1r Bet Casmo Problem

* Input: A sequence x = x;x,X;...x, of coin tosses
made by some combination of the two possible
coins (F or B).

* Output: A sequence n = n; 7, 7;... ,, with each
; being either F or B indicating that x; is the
result of tossing the Fair or Biased coin
respectively.
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Problem

Fair Bet Casino \ But, all coin exchange
Problem combinations are not
equally likely. What coin
combination has the
highest probability of
generating the observed

Any observed

outcome of coin >
tosses could have

b,e <h ger.lerated by series of tosses?
either coin, or any ﬂ
combination. )

Decoding Problem
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P(x \ fair coin) vs. P(x | biased coin)

* Suppose first, that the dealer never exchanges
colns.

e Some definitions:

— P(x | Fair): prob. of the dealer generating the
outcome x using the Fair coin.

— P(x | Biased): prob. of the dealer generating
outcome x using the Biased coin .

11/21/13 Comp 555 Fall 2013 9



P(x | fair coin) vs. P(x

biased coin)

P(x | Fair) = P(x;...x, | Fair) =
Moy, p (x;| Fair) = (1/2)"

P(x | Biased) = P(x;...x, | Biased coin) =
p (x;| Biased) = (3/4)%(1/4)"* = 3k/4n

1=1n

— Where k is the number of Heads in x.
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(x | falr com) VS. P(

blased Com)

* When is a sequence equally likely to have come
from the Fair or Biased coin?

P(x | Fair) = P(x | Biased)
1/2m = 3k/4"
2n= 3k
n=klog,3
* when k=n/log,3 (k~0.63n)

* So when the number of heads is greater than 63%
the dealer most likely used the biased coin
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Log-odds Rat1o

* We can define the log—odds ratzo as follows.

log,(P(x | Fair) / P(x | Biased)) =
=¥k_, log,(p(x; | Fair) / p(x;| Biased))
=n -klog,3

* The log-odds ratio is a means for deciding which of two
alternative hypotheses is most likely

* “Zero-crossing” measure; if the log-odds ratio > 0 then
the numerator is more likely, if it is < 0 then the
denominator is more likely, they are equally likely if the
log-odds ratio = 0
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Computmg Log—odds Ratio in Shdmg Windows

XjXoX3X,X5XsXAXg ... X

Consider a sliding window of the outcome sequence.
Find the log-odds for this short window.

Log-odds value

Biased coin most likely

Disadvantages:

- the length of CG-1sland (appropriate window size) 1s not
known in advance

- different window sizes may classify the same position
differently
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Key Elements of this Problem

. There is an unknown hzdden state for each
observation (Was the coin the Fair or Biased?)

* Outcomes are modeled probabilistically:
— P(H | Fair) = P(T | Fair) = 12
— P(H | Bias) = %4, P(T | Bias) = V4

* Transitions between states are modeled
probabilistically:
— P(m, = Biased | m,; = Biased) = az; = 0.9
— P(m, = Biased | &, ; = Fair) = a,; =0.1

1

1

n; = Fair | m_, = Fair) = ay;=0.9

1

(
P(sx, = Fair | m,, = Biased) = az; = 0.1
P(

11/21/13 Comp 555 Fall 2013 14



Hldden Markov Model (I—IMM)

* A generalization of this class of problem

e Can be viewed as an abstract machine with k hidden states
that emits symbols from an alphabet X.

* Fach state has its own probability distribution, and the
machine switches between states according to this
probability distribution.

e While in a certain state, the machine makes 2 decisions:
— What state should I move to next?
— What symbol - from the alphabet X - should I emit?
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Why “Hidden"?

. Observers can see the em1tted symbols of an
HMM but have no ability to know which state the
HMM is currently in.

Thus, the goal is to infer the most likely hidden
states of an HMM based on the given sequence of

emitted symbols. ,

HHHTHTHHTTTTHTHTHTHHHTHTHTHT "
BBBFFFFFFFFFFFFFFFFBBBFFFFFF?
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I—IMM Parameters

>: set of emission characters.

Ex.: £ ={0, 1} for coin tossing
(O for Tails and 1 Heads)

2 =11, 2,3, 4,5, 6} for dice tossing

Q: set of hidden states, emitting symbols from X.
Q = {F,B} for coin tossing
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HMM Parameters (cont d)

A= (akl) a | Q | x | Q | matr1x of probablhty of
changing from state k to state I. Transition matrix

arr =09 ap=0.1
agr=0.1 az; =09

E=(e/(b)):a |Q| x || matrix of probability of
emitting symbol b while being in state k.
Emission matrix

e(0) =1 exl) =1
ex(0) = ep(1) =%
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HMM for Falr Bet Casmo

The Fair Bet Casino in HMM terms:
= {0, 1} (O for Tails and 1 Heads)
Q = {F,B} - F for Fair & B for Biased coin.

e Transition Probabilities A, Emission Probabilities E

E

Tails(0)

Heads(1)

Fair

%.

%.

A Fair Biased
Fair 0.9 0.1
Biased 0.1 0.9
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HMM for Fa1r Bet Casmo (cont d)

9/10 9/10
1/10
<
FE B
(H (T {H (T

HMM model for the Fair Bet Casino Problem
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H1dden Paths

* Apathr=mr,... r,in the HMM is defined as a sequence of
hidden states.

* Consider pathz=FFFBBBBBFFF and
sequence x = 01011101001

(

X = o 1 0 1 1 1 0 1 0 O
n = F FFB BB BB F F
P(x;|n.) Vo Vo Vo2 34 34 3 Va 34 V2

P(ni-l 9 ni)\\ ) 1/2 9/10 9/10 1/10 9/10 9/10 9/10 9/10 1/10 9/10 9/10

Probability that x; was emitted from state 7
Transition probability from state n,_; to state n,
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P( ) Calculat1on

. P(x | T): Probablhty that sequence X was
generated by the path =

P(x | z) = P(my— m;) .-EIIP(xil ;) - P(r;— 1)

=0y Hen(X) Az,

11/21/13 Comp 555 Fall 2013 22



Decodmg Problem

. Goal Fmd an 0pt1ma1 hldden path of state
transitions given a set of observations.

* Input: Sequence of observations x = x;...x,
generated by an HMM M(Z, Q, A, E)

* Output: A path that maximizes P(x | #) over all
possible paths 7.
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Building Manhattan for Decoding Problem

* Andrew V1terb1 devloped a ”Manhattan—hke
grid” (Dynamic programming) model to solve
the Decoding Problem.

* Every choice of = = x;... &, corresponds to a path
in the graph.

* The only valid direction in the graph is eastward.

* This graph has | Q|%(n-1) edges.
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Edit Graph for Decoding Problem

(1 @D D
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Decoding Problem vs. Alignment Problem

O

Valid directions in the Valid directions in the
alignment problem. decoding problem.

11/21/13 Comp 555 Fall 2013 26



* Each vertex represents a possible state at a given
position in the output sequence

* The observed sequence conditions the likelihood of each
state

* Dynamic programming reduces search space to:
| Q| +transition_edgesx(n-1) = 2+4x5 from naive 2°

1 1 2 3 4 5 6
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Decodmg Problem

* The Decoding Problem is reduced to finding a
longest path in the directed acyclic graph (DAG)

* Notes: the length of the path in this problem is
defined as the product of its edges” weights, not
their sum. (But, using the log of the weights
makes it a sum again!)
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Decodmg Problem cont'd)

* Every path in the graph has the probability P(x | z).

* The Viterbi algorithm finds the path that
maximizes P(x | r) among all possible paths.

* The Viterbi algorithm runs in O(n| Q |?) time.
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Decodmg Problem We1ghts of edges

(k i) 1, i+1)
The weight w is given by:

22?

11/21/13 Comp 555 Fall 2013 30



Decodmg Problem We1ghts of edges

(k i) 1, i+1)
The weight w is given by:
The Total probability

n
P(x [ 7) = Z.E)e rir1 (Xiv1) - @ 7 w4
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Decodmg Problem We1ghts of edges

(k, i) (1, i+1)
The weight w is given by
Each edge is a factor in the product

i-thterm =¢ Ti+1 (xi+1) . A T Wiy
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Decodmg Problem We1ghts of edges

i-th term = e ; (x;). 4 7, 7., = e/(x;4q). ayy for m =k, m, =1
@/v&\@
(k, i) (,i+1)
The weight w=e/(x,,,). a,

Solve for the path of highest probability

Observation: a prefix is also an optimal path
Where have we seen this before?
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Dynanuc Program S Recursmn

11/21/13

= max gq {55, ~weight of edge between (ki) and (1,i+1)}

maxX ¢ USii " g mep (Xigg) |

e (X;47) ~Max; €Q i At
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Decodmg Problem (contd)

e Initialization:

o astart,k = l/l Q |
— 8¢9 = 0 for k # begin.

* Let z” be the optimal path. Then,

P(x|7") = max; €Q Skn - Weond)
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subsequence
* How likely is the best path? o.006

e What is it? FFFFFF

0 5 1 7 1 7 00.25 1 1.7
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Viterbi Algorlthm

. Rather than add1t1on V1terb1 uses multlphcatlon

* Covert edge weights to logs, and then it is back
to addition, which has another advantage

* The value of the product can become extremely
small, which leads to underflow.

* Logs avoid underflow.

S i+1= loge)(x;, ) + max €Q 5t log(ay)}
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Forward Backward Problem

a sequence of coin 0
tosses generated by an HMM. 1

find the most probable coin that the dealer
was using at a particular time.
P(x,j'[i = k) Probabilities of all paths in state k at i

P(r, =k{r) =
P(X) Probability of sequence over all paths
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Illustratmg the dlfference

X = THHH D x = THHH  p
FFFF (0.0228) FFFF (0.0228)
BFFF (0.0013) FFBF (0.0004)
FBFF (0.0004) FFFB (0.0038)
BBFF (0.0019) FFBB (0.0057)
FFBF (0.0004) BFFF (0.0013)
BFBF (0.0000) BFBF (0.0000)
FBBF (0.0006) BFFB (0.0002)
BBBF (0.0028) BFBB (0.0003)

FFFB (0.0038) P(m,=FIx) = 0.0345/0.0877 = 0.3936
BFFB (0.0002) FBFF (0.0004)
FBFB (0.0001) FBBF (0.0006)
BBFB (0.0003) FBFB (0.0001)
FFBB (0.0057) FBBB (0.0085)
BFBB (0.0003) BBFF (0.0019)
FBBB (0.0085) BBBF (0.0028)
BBBB (0.0384) BBFB (0.0003)
P(x) = 0.0877 BBBB (0.0384)

High probability

\\goufpu‘r 00625y P(m,=Blx) = 0.0532/0.0877 = 0.6064
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Forward Algorlthm

. Defmed sz (forward probabzlzty) as the
probability of emitting the prefix x,...x; and
reaching the state = = k.

* The recurrence for the forward algorithm is:

Jei=e®) . 2 fri- A

Probability of PTF‘ODGP;I_H){ Off
ina x. at i ransitioning to
\‘ emitting x, at | \‘ from state at i-1
to state at i
 Same as Viterbi

except with
summation instead of Max
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Backward Algorlthm

. However forward probabzlzty is not the only
factor affecting P(w; = k|x).

* The sequence of transitions and emissions that
the HMM undergoes between z; and #,_; also

affect P(w; = k|x).
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Backward Algorithm (contd)

. Backward probabzlzty b,; = the probabﬂlty of bemg
in state z; = k and emitting the suffix x,,,...x

n.

* The backward algorithm’s recurrence:

bk,i =2 e X)) bl,i+1 C Ay

1€9Q

This is the same as computing the

@ Pprobability of a specific path
(slide 22) or suffix in this case
except the initial probability is
not 3.
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Backward Forward Algorlthm

. The probablhty that the dealer used a biased
coin at any moment i is as follows:

P(x, = kix) =

P(x, &, = k)

(D) . by(i)

P(x)

P(x)
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I—IMM Parameter Estlmatlon

So far we have assumed that the tran51t10n and
emission probabilities are known.

* However, in most HMM applications, the
probabilities are not known. It’s very hard to
estimate the probabilities.

e Parameter estimation is much harder than state
estimation
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HMM Parameter Estimation (cont’d)

. Let O be a Vector containing all of the unknown
transition and emission probabilities.

Given training sequences x/,...,.x™, let P(x | ©)
be the max. prob. of x given the assignment of
param.’s O.

* Then our goal is to find

maxg I1 P(x,|0)
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A Parameter Est1mat10n Approach

. If hldden states were known, we could use our trammg data
to estimate parameters

kl b) =
a, = e, (D) EEk(G)

E A kq
o),

* In all likelihood we Wouldn’t be given the hidden state
sequence, 7T, but only the observed output stream, x

E (b)

* An alternative is to make an intelligent guess of 7, use the
equations above to estimate parameters, then run Viterbi to
estimate the hidden state, then reestimate the parameters and
repeat until the state assignments or parameter values
converge.

* Such iterative approaches are called Expectation
Maximization (EM) methods of parameter estimation
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Proftile Ahgnment usmg HMMs

. Dlstant spec1es of functlonally related sequences
may have weak pairwise similarities with
known species, and thus fail individual pairwise
significance tests.

* However, they may have weak similarities with
many known species.

* The goal is to consider sequences at once.
(Multiple alignment)

* Related sequences are often better represented
by a consensus profile that any multiple
alignment.

11/20/13 Comp 555 Fall 2013 47



Profﬂe Representatlons

Aligned DNA sequences can be represented by a
4 - n profile matrix reflecting the frequencies
of nucleotides in every aligned position.

72 14 0 0 .72 .72 0 0
14 .72 0 0 ( 14 .86
14 14 86 .44 0 .14 0 0

0 0 .14 56 .28 0 .86 .14

- l\./
= Do

Q QP&

Protein families can be represented by a 20 - n
profile representing frequencies of amino acids.

11/20/13 Comp 555 Fall 2013 48



HMM Ahgnment

. One method of performmg sequence
comparisons to a profile is to use a HMM

* Emission probabilities, ¢,(a), from the profile

* Transition probabilities from our match
-mismatch matrix 0 ;

* Or we can explicitly represent the insertion and
deletion states
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States of Proflle HMM

* Match states M;...M,, (plus begin/end states)
* Insertion states I,/;...1

* Deletion states D,...D,,

* Assumption:

eri(a) = p(a)
where p(a) is the frequency of the occurrence of the
symbol a in all the sequences.
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Tran51t10n Probab1l1t1es in Proflle HMM

* log(ay)tlog(ap,) = gap initiation penalty

* log(a;) = gap extension penalty
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Profﬂe HMM Ahgnment

. Defme ’(JM (1 ) as the logarlthmlc hkehhood score
of the best path for matching x;..x; to profile
HMM ending with x; emitted by the state M.

o vlj(i) and Z)Dj(i) are defined similarly.
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Protile HMM Ahgnment Dynamic Programmmg

UMj_l(i-l) + lOg(an_LM]‘)
oMi(i) = log (ew;(x)/p(x;)) + max = 0'4(i-1) + log(ay;.4,m;)
UD]'_I (l-l) + log(aD]_llM])

vM]-(i—l) + log(am;, [)
vlj(i) = log (er(x;)/p(x;) + max va(i—I) + log(a;, 1)
vP(i-1) + log(ap, I))

11/20/13 Comp 555 Fall 2013 54



Paths in Edlt Graph and Profﬂe HMM

A path through an edit graph and the corresponding
path through a profile HMM
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