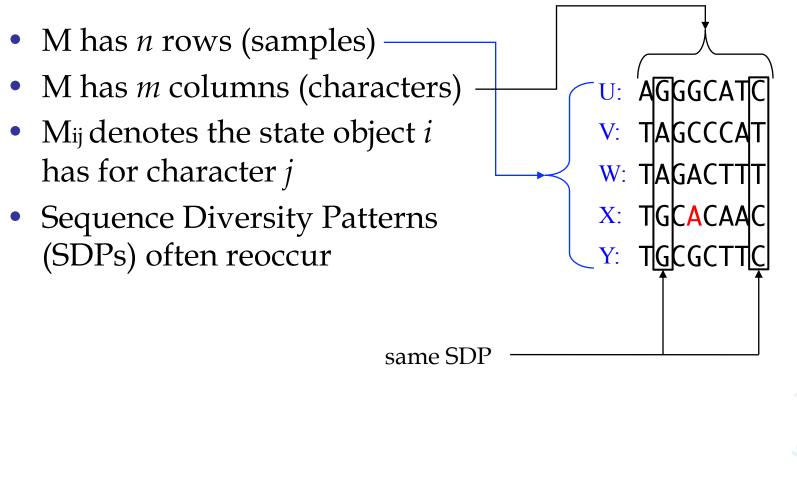


Lecture 22: Perfect Phylogeny

Not in textbook

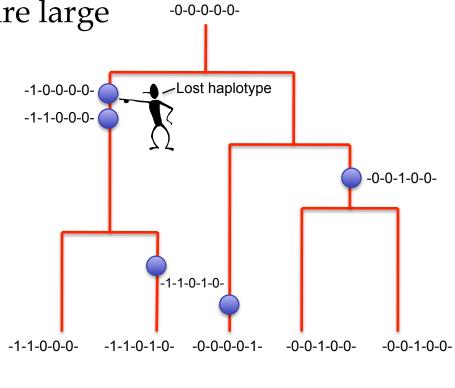
4/13/15

Comp 555

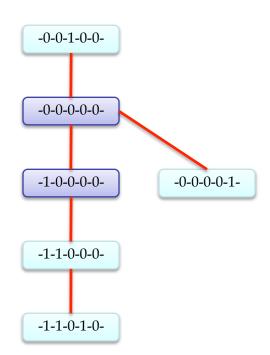

Spring 2015

Outline

- Thus far
 - distance-based evolutionary trees
 - Additive guarantees that the tree would reproduce all pairwise distances, but not all distance matrices are additive
 - Sequences \rightarrow Distances \not Sequences
 - character-based evolutionary trees
 - Trees directly from sequences
 - The most general version is hard (Large parsimony)
- Infinite Sites Model
- Perfect Phylogeny
- Local vs Global Phylogenetic Trees



Character State Matrix M


Infinite Sites Model

- Assumes mutations are rare events
- Assumes DNA sequences are large
- Multiple mutations at the same site are extremely rare
- Infinite Sites Model assumes that multiple mutations never occur at the same sequence position
- Thus, all states are "Binary" or "Biallelic"

A Different Kind of Tree

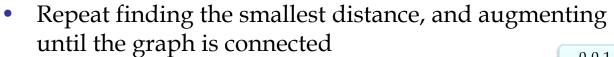
- Unrooted "Perfect Phylogeny" Tree
- Nodes correspond to sample sequences (haplotypes), both current and ancestral
- Edges correspond to actual mutations (SNPs)
- Removal of an edge creates a bipartition (each part is distinguished by a character at some position)
- SDPs can occur multiple times, and their frequency can be used as a edge weight
- Tree leaves correspond to mutations (allele variants) that are unique to a sequence, i.e. a SDP with only one minority allele instance, *private*

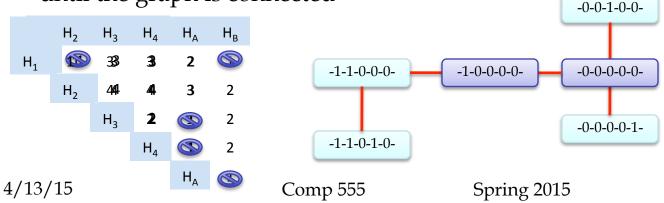
Unrooted Trees

- Unrooted phylogenetic trees are less specific than evolutionary trees
- The edges are undirected, thus the direction from ancestor to descendent are unknown
- All but one leaf, however, and possibly all leafs (if the root is an interior node) must be descendents
- Slightly fewer labeled unrooted trees than labeled rooted tree

$$uT(n) = \frac{(2n-4)!}{2^{n-2}(n-2)!} \quad \text{vs} \quad T(n) = \frac{(2n-3)!}{2^{n-2}(n-2)!}$$

 Moreover, any node can be an "observed" sample in a phylogenetic tree whereas only leaf nodes are observed an evolutionary tree


Unrooted Binary Tree


Three different evolutionary (rooted) trees that are consistent with a common phylogenetic (unrooted) tree

Building a Phylogenetic Tree

- Assume we only have direct access to *current* haplotypes
- Construct a pair-wise distance matrix between haplotypes using Hamming distances
- Add smallest edge between all nodes which do not introduce a loop
- If the smallest distance is greater than 1 add d-1 "hidden" nodes between the pair so that adjacent nodes have a hamming distance of 1
- Augment the distance matrix with the new nodes and claim the introduced edges

	S_1	S_2	S_3	S_4	S_5
H_1	1	1	0	0	0
H ₂	1	1	0	1	0
H_3	0	0	0	0	1
H_4	0	0	1	0	0

Four-Gamete Test

- Our tree construction method will not work for any arbitrary set of character sequences; it only works for those that satisfy the assumptions of the infinite sites model
- Under the assumption of the infinite sites model all SNP pairs exhibit the property no more that 3 out of the possible 4 allele combinations occur
- Direct consequence of only one mutation per site
- Showing that all SNP pair combinations satisfy the four gamete test is a *necessary* and *sufficient* condition for there to exist a perfect phylogeny tree

	S_1	S ₂	S_3	S_4	S_5
H_1	1	1	0	0	0
H_2	1	1	0	1	0
H_3	0	0	0	0	1
H_4	0	0	1	0	0

Comp 555

Spring 2015

Questions

Does there exist SDPs that are compatible with all others?

Private SNPs are compatible with any other SNP

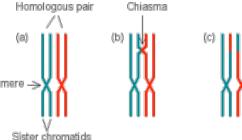
• Given N distinct haplotype sequences resulting from an infinite sites model what is minimum number of SDPs?

N-1 edges are the fewest necessary to connect N haplotypes into a "linear" tree. How many singleton SNPs occur in such a tree? 2

Given N distinct haplotype sequences resulting from an infinite sites model what is maximum number of SDPs?
2N-3 edges, the number of edges in an unrooted tree with N leaves

Exercise

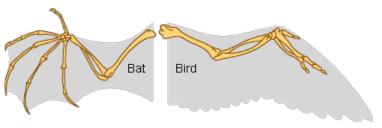
• Consider the following SNP panel

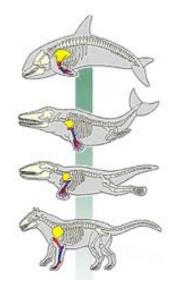

	S_1	S_2	S_3	S_4	S_5	S_5
H_1	0	0	1	0	0	1
H_2	0	0	1	0	0	0
H_3	0	1	0	0	0	0
H_4	1	0	0	0	1	0
H_5	1	0	0	1	0	0

- Satisfies the four gamete test?
- Construct the tree
- Is the SDP 11001^T possible?

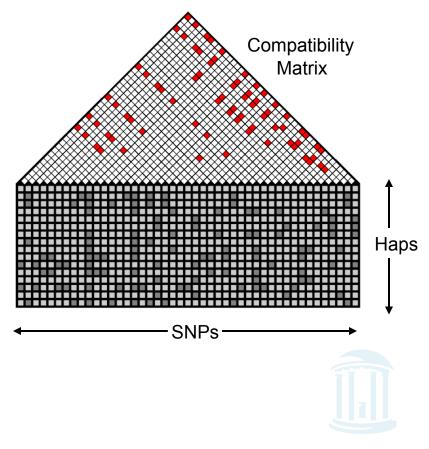
Complications

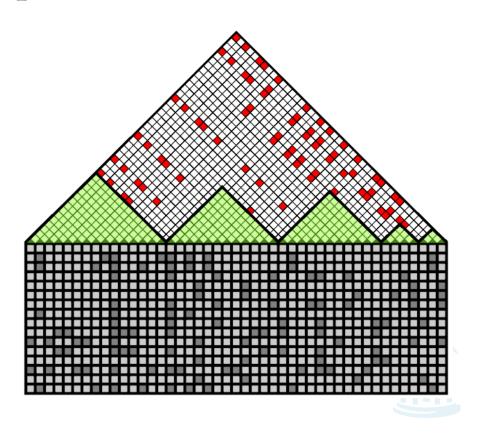
- There are two issues that limit the use of Perfect Phylogeny, both are violations of our infinite-sites model assumptions
 - In addition to mutations, haplotype (a) diversity is generated by recombination, exchange of subsequences between haplotypes



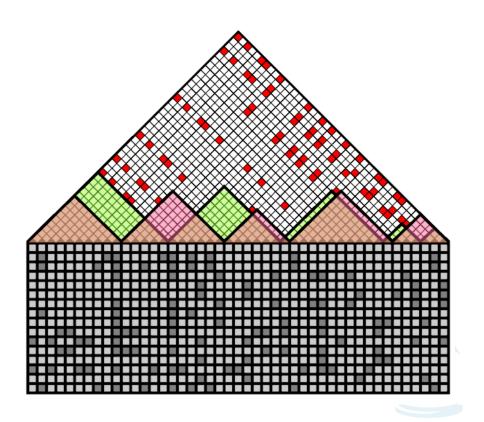

- Mutations reoccur at the same position (Homoplasy)
- Thus, global (over the entire genome) perfect phylogenies are rare, but local perfect phylogenies are common
- How do we locate recombinations and recurrent mutations?

Non-sequence Complications

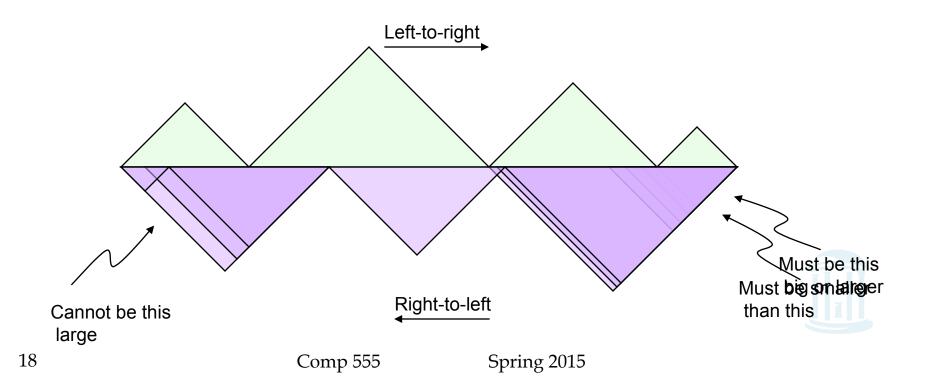

- Evolutionary Convergence:
 - Wings on birds and bats
 - Fins on Seals and Fish
- Evolutionary Reversals:
 - Fish \rightarrow Lizard \rightarrow Snake
 - Fish \rightarrow Mammal \rightarrow Manatee
 - (gain and later loss of legs)
- Such paths also violate the infinite sites model



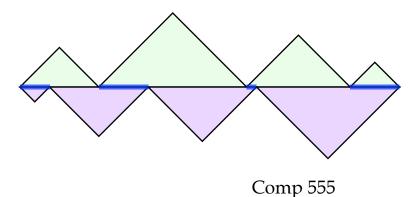
SNP Compatibility

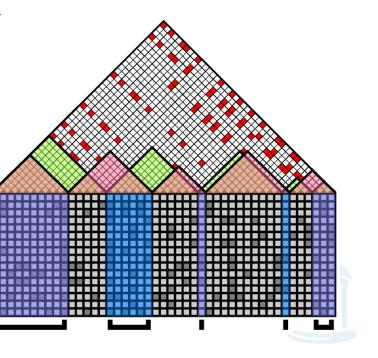

- How do we find local genomic regions where our assumptions are valid?
- Apply 4-gamete test
- Issues
 - Can we efficiently find all compatibility intervals
 - How many intervals? (fewest necessary to cover the entire genome)
 - Unique?
 - Common properties

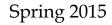
- Left-to-right scan
- Is this solution unique?


- Left-to-right scan
- Is this solution unique? **No**.
- Right-to-Left scan
- Given that the solution is not unique, which do we choose?
- The most parsimonious

Spring 2015

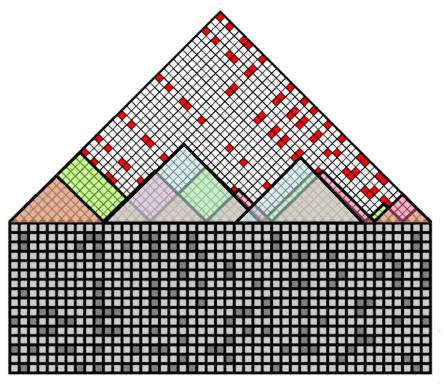

- Questions
 - Of all scans, which has the fewest intervals?
 - Is there a solution with fewer intervals?
- What is a better solution?
 - Clearly the intervals could be larger
 - What is the maximal size of the intervals?

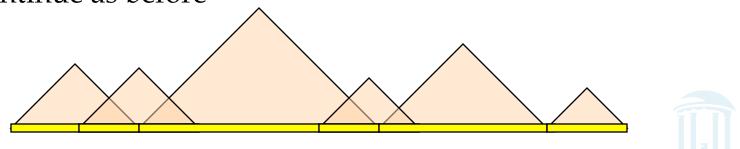

- Theorem
 - Left-to-right and right-to-left scans have the same number of intervals, k
 - *k* is the minimum number of intervals possible



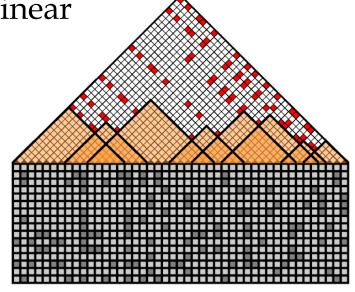
Cores

- The interval overlaps tell us something important
 - Pair the L-R and R-L scan intervals from left to right. The overlap of these pairs are the interval cores.
 - The *i* th *core* essentially is the SNPs that the *i* th interval of the L-R and R-L scan agree should be included in the *i* th interval of any minimal set of intervals
- A refinement of Parsimonious:
 - Use this to find the minimal set of maximally-sized intervals




Uber Scan

- But first, lets backup momentarily
 - The left-to-right scan found a minimal set of nonoverlapping intervals
 - Can we find the set of all intervals of maximal size?
 - These were clearly not found in our left-to-right or right-to-left scans


Uber Scan

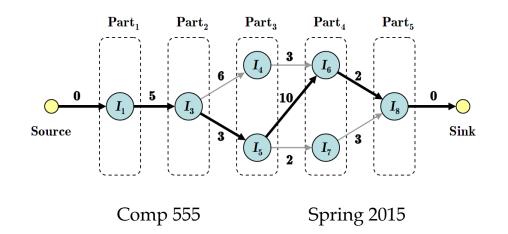
- Simple modification to the left-to-right scan algorithm
 - Instead of restarting when an incompatibility is found, only remove a portion of it
 - Specifically remove everything before (in the scanning direction) and including the closest newly introduced incompatibility
 - Open a new interval starting at the first SNP in the queue
 - Continue as before

Uber Scan

- Properties
 - Will contain more than the minimal number of intervals, k
 - Each interval is maximal in size (bounded on each side by an incompatibility)
 - Maintains a linear runtime

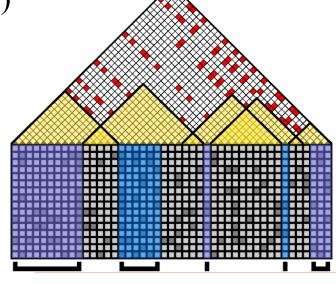
Max-*k* cover

- Minimal set of *k* maximally-sized intervals
 - Must be a subset of the Uber scan, since Uber includes all intervals of maximal size
 - Search all subsets of size k?


 $\binom{|Uber|}{k}$

- No. Combinatorial Explosion
- Instead restructure the problem as a graph problem

Max-*k* cover


- Minimal set of *k* maximally-sized intervals
 - We know any minimal set must include the cores
 - Find all intervals from the Uber scan that overlap each core
 - Construct a *k*-partite graph
 - Vertices are intervals
 - Edges are weighted with the amount of overlap
 - Solve for maximal path (dynamic program)

Max-*k* cover

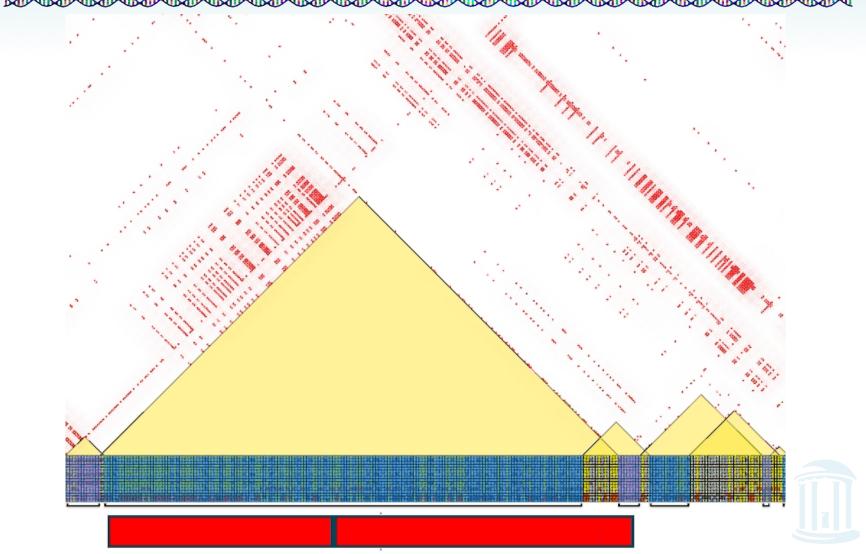
- Properties
 - May not be unique
 - Theoretical runtime O(ku), where u is the number of intervals in Uber scan
 - In practice, we never see more than 3 intervals in any part, thus O(k)

Spring 2015

Comp 555

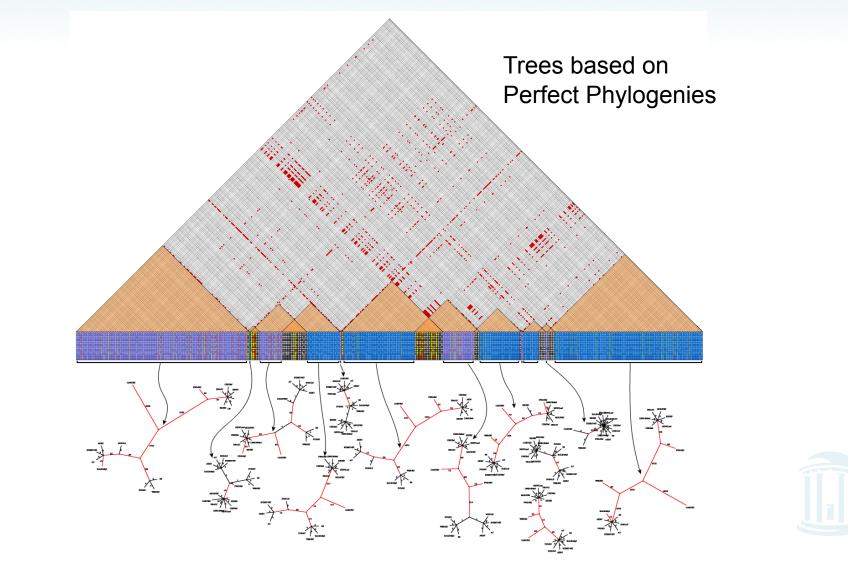
Uses

- Phylogeny trees
 - Represent the data with the fewest possible trees
 - Maximal intervals provide maximal support for each tree
- Recombination
 - *k* gives us a lower bound on the minimum number of recombinations needed to make the dataset
 - Although, not very tight
 - But it scales to large datasets



Critical SNPs

- How stable are these intervals?
 - If we remove any given SNP, will the minimal number of intervals needed, *k*, be reduced?
- Algorithm
 - Only consider the flagging SNPs of the Uber intervals
 - Intervals are bounded by incompatibilities. Unless they are removed, the interval cannot change size


Some Context

֎֎֎֎֎֎֎֎

346866 of 689472 Perlegen SNPs on Chr 1, 60 Billion pairwise relationships, >7.5 GBytes

Chromosome 14 15059098-15230790

Local to Global Trees

- Given a forest of local phylogeny trees, how do we construct a global tree?
- Generally, by combining tree metrics (Sum of distances from *i* to *j*) across all trees and then applying either neighbor joining or UPMGA
- Evolution is more complicated than a simple tree
 - Common introgressions near species splits
 - Gene flows when branches interact

