
11/20/13 Comp 555 Fall 2013 1

11/20/13 Comp 555 Fall 2013 2

•  If the distance matrix D is NOT additive, then we look for a tree T
that approximates D the best:

 Squared Error : ∑i,j (dij(T) – Dij)2

•  Squared Error is a measure of the quality of the fit between
distance matrix and the tree: we want to minimize it.

•  Least Squares Distance Phylogeny Problem: finding the best
approximation tree T for a non-additive matrix D (NP-hard).

11/20/13 Comp 555 Fall 2013 3

• Unweighted Pair Group Method with
Arithmetic Mean (UPGMA)

• UPGMA is a hierarchical clustering algorithm:
– assigns the distance between clusters to be the

average pairwise distance
– assigns a height to every vertex in the tree,

that is midway between the cluster distances

11/20/13 Comp 555 Fall 2013 4

C1 C2

d12

C12

C1 C2 C3

C123

½ d3(12) ½ d12

1 4 3 2

UPGMA generates
trees like this

2

3

4
1

But never
trees like this

11/20/13 Comp 555 Fall 2013 5

•  The algorithm produces an ultrametric tree : the
distance from the root to every leaf is the same

• UPGMA models a constant molecular clock:
–  all species represented by the leaves in the tree
–  assumed to coexist at t=0 and to have accumulated

mutations (and thus evolve) at the same rate.

•  In reality the assumptions of UPGMA are
seldom true, but they are frequently
approximately true.

11/20/13 Comp 555 Fall 2013 6

Given two disjoint clusters Ci, Cj of sequences,

Note that if Ck = Ci ∪ Cj, then the distance to
another cluster Cl is:

€

dij =
1

Ci C j

dij
p∈Ci
q∈Cj

∑

€

dkl =
dil C i + d jl C j

C i + C j

11/20/13 Comp 555 Fall 2013 7

Initialization:
 Assign each xi to its own cluster Ci
 Define one leaf per sequence, each at height 0

Iteration:
 Find two clusters Ci and Cj such that dij is min
 Let Ck = Ci ∪ Cj
 Add a vertex connecting Ci, Cj and place it at height dij /2

 Delete Ci and Cj
Termination:

 When a single cluster remains

11/20/13 Comp 555 Fall 2013 8

1 4

3 2 5

1 4 2 3 5

11/20/13 Comp 555 Fall 2013 9

 Sequence a gene of length m nucleotides in n
species to generate an…
 n x m alignment matrix

n x n distance
matrix

CANNOT be
transformed back
into alignment
matrix because
information was
lost on the
forward
transformation

Transform
into… X

11/20/13 Comp 555 Fall 2013 10

•  Better technique:
– Character-based reconstruction algorithms

use the n x m alignment matrix
 (n = # species, m = #characters)
 directly instead of using distance matrix.
–  GOAL: determine what character strings at internal

nodes would best explain the character strings for the
n observed species

11/20/13 Comp 555 Fall 2013 11

•  Characters may be nucleotides of an aligned
DNA, where A, G, C, T, - are states of this
character

• Other characters may be the # of eyes or legs or
the shape of a beak or a fin.

•  By setting the length of an edge in the tree to the
Hamming distance, we may define the
parsimony score of the tree as the sum of the
lengths (weights) of the edges

11/20/13 Comp 555 Fall 2013 12

• Assumes observed character differences result
from the simplest possible, most parsimonious,
explanation (i.e. the fewest mutations)

•  Seeks the tree that yields lowest possible
parsimony score - sum of cost of all changes
mutations found in the tree

•  Example: What is the most parsimonious
ancestor to the following three sequences:

 {ATCG, ATCC, ACGG}

11/20/13 Comp 555 Fall 2013 13

Parsimony score: 5

2 2

ACTC

1 0

ATCC ACGG

ATCG ATCC

Parsimony score: 6

1 1

ATGC

2 2

ATGT ATCC

ATCG ACGG

0 1

ATGG

2 1

ATGG ATCG

ATCC ACGG

Parsimony score: 4

•  Given ancestors and a tree relating them to the leafs, it is
a simple matter to compute a parsimony score

11/20/13 Comp 555 Fall 2013 14

11/20/13 Comp 555 Fall 2013 15

•  Input: Tree T with each leaf labeled by an m-
character string.

• Output: Labeling of internal vertices of the tree T
with ancestors that minimize the parsimony
score.

• We can assume that every leaf is labeled by a
single character, because the characters in the
string are independent.

11/20/13 Comp 555 Fall 2013 16

• A more general version of Small Parsimony
Problem

•  Input includes a k×k scoring matrix describing the
cost of transformation of each of k states into
another one

•  For the Small Parsimony problem, the scoring
matrix is simply the Hamming distance

 dH(v, w) = 0 if v=w
 dH(v, w) = 1 otherwise

11/20/13 Comp 555 Fall 2013 17

A T G C
A 0 1 1 1
T 1 0 1 1
G 1 1 0 1
C 1 1 1 0

A T G C
A 0 3 4 9
T 3 0 2 4
G 4 2 0 4
C 9 4 4 0

Small Parsimony Problem Weighted Parsimony Problem

11/20/13 Comp 555 Fall 2013 18

Small Parsimony Scoring Matrix:

A T G C
A 0 1 1 1
T 1 0 1 1
G 1 1 0 1
C 1 1 1 0

Small Parsimony Score: 5

11/20/13 Comp 555 Fall 2013 19

Weighted Parsimony Scoring Matrix:

A T G C
A 0 3 4 9
T 3 0 2 4
G 4 2 0 4
C 9 4 4 0

Weighted Parsimony Score: 22

11/20/13 Comp 555 Fall 2013 20

•  Input: Tree T with each leaf labeled by elements
of a k-letter alphabet and a k x k scoring matrix
(δij)

• Output: Labeling of internal vertices of the tree T
minimizing the weighted parsimony score

11/20/13 Comp 555 Fall 2013 21

•  Check the children of a
vertex and determine the
minimum between them

•  An example

11/20/13 Comp 555 Fall 2013 22

•  Calculate and keep track of a score for every
possible label at each vertex
–  st(v) = minimum parsimony score of the subtree

rooted at vertex v if v has character t

•  The score at each vertex is based on scores of its
children:
–  st(parent) = mini {si(left child) + δi, t} +
 minj {sj(right child) + δj, t}

11/20/13 Comp 555 Fall 2013 23

•  Begin at leaves:
–  If leaf has the character in question, score is 0
–  Else, score is ∞

11/20/13 Comp 555 Fall 2013 24

st(v) = mini {si(u) + δi, t} +
minj{sj(w) + δj, t}

sA(v) = mini{si(u) + δi, A}
+ minj{sj(w) + δj, A}

si(u) δi, A sum

A 0 0 0

T ∞ 3 ∞

G ∞ 4 ∞

C ∞ 9 ∞

si(u) δi, A sum

A 0 0 0

T ∞ 3 ∞

G ∞ 4 ∞

C ∞ 9 ∞

sA(v) = 0

si(u) δi, A sum

A

T

G

C

11/20/13 Comp 555 Fall 2013 25

st(v) = mini {si(u) + δi, t} +
minj{sj(w) + δj, t}

sA(v) = mini{si(u) + δi, A}
+ minj{sj(w) + δj, A}

sj(w) δj, A sum

A

T

G

C

sj(w) δj, A sum

A ∞ 0 ∞

T ∞ 3 ∞

G ∞ 4 ∞

C 0 9 9

sj(w) δj, A sum

A ∞ 0 ∞

T ∞ 3 ∞

G ∞ 4 ∞

C 0 9 9

+ 9 = 9
sA(v) = 0

11/20/13 Comp 555 Fall 2013 26

st(v) = mini {si(u) + δi, t} +
minj{sj(w) + δj, t}

Repeat for T, G, and C

11/20/13 Comp 555 Fall 2013 27

Repeat for right subtree

11/20/13 Comp 555 Fall 2013 28

Repeat for root

11/20/13 Comp 555 Fall 2013 29

Smallest score at root is minimum weighted
parsimony score In this case, 9 –

so label with T

11/20/13 Comp 555 Fall 2013 30

•  The scores at the root vertex have been
computed by going up the tree

• After the scores at root vertex are computed the
Sankoff algorithm moves down the tree and
assign each vertex with optimal character.

11/20/13 Comp 555 Fall 2013 31

9 is derived from 7 + 2

So left child is T,

And right child is T

11/20/13 Comp 555 Fall 2013 32

And the tree is thus labeled…

11/20/13 Comp 555 Fall 2013 33

• Also solves Small Parsimony problem
• Assigns a set of characters to every vertex

in the tree.
•  If the two children’s sets of character overlap,

it’s the common set (intersection) of them
•  If not, it’s the combined set (union) of them.

11/20/13 Comp 555 Fall 2013 34

a

a

a

a

a

a

c

c

 {t,a}

c

t

t

t

 {t,a}

 a

 {a,c}

 {a,c}
a

a

a

a a t c

An example:

11/20/13 Comp 555 Fall 2013 35

1) Assign a set of possible letters to every vertex,
traversing the tree from leaves to root

•  Each node’s set is the union of its children’s sets
(leaves contain their label) if they are disjoint
–  E.g. if the node we are looking at has a left child

labeled {A} and a right child labeled {C}, the node
will be given the set {A, C}

•  Each node’s set is the intersection of its
children’s sets (leaves contain their label) if they
overlap
–  E.g. if the node we are looking at has a left child

labeled {A, C} and a right child labeled {A, T}, the
node will be given the set {A}

11/20/13 Comp 555 Fall 2013 36

2) Assign labels to each vertex, traversing the tree
from root to leaves

• Assign root arbitrarily from its set of letters
•  For all other vertices, if its parent’s label is in its

set of letters, assign it its parent’s label
•  Else, choose an arbitrary letter from its set as its

label

11/20/13 Comp 555 Fall 2013 37

11/20/13 Comp 555 Fall 2013 38

•  Both have an O(nk) runtime

• Are they actually different?

•  Let’s compare …

11/20/13 Comp 555 Fall 2013 39

As seen previously:

11/20/13 Comp 555 Fall 2013 40

•  As seen earlier, the scoring matrix for the Fitch algorithm
is merely:

•  So let’s do the same problem using Sankoff algorithm
and this scoring matrix

A T G C

A 0 1 1 1

T 1 0 1 1

G 1 1 0 1

C 1 1 1 0

11/20/13 Comp 555 Fall 2013 41

11/20/13 Comp 555 Fall 2013 42

•  The Sankoff algorithm gives the same set of optimal
labels as the Fitch algorithm

•  For Sankoff algorithm, character t is optimal for vertex v
if st(v) = min1<i<ksi(v)
–  Denote the set of optimal letters at vertex v as S(v)

•  If S(left child) and S(right child) overlap,
assign S(parent) is the intersection

•  else assign S(parent) the union of S(left child) and S(right child)
•  This is also the Fitch recurrence

•  The two algorithms are identical

11/20/13 Comp 555 Fall 2013 43

•  Input: An n x m matrix M describing n species,
each represented by an m-character string

• Output: A tree T with n leaves labeled by the n
rows of matrix M, and a labeling of the internal
vertices such that the parsimony score is
minimized over all possible trees and all
possible labelings of internal vertices

No tree is provided.
So we have to infer
 both the tree and
 the ancestor
 characters

11/20/13 Comp 555 Fall 2013 44

•  Possible search space is huge, especially as n
increases

• How many rooted binary trees with n leafs?

•  T(n) for 2, 3, 4, 5, 6, 7, 8, 9, 10, …
 1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425…

€

T (n) =
(2n − 3)!
2n−2 (n − 2)!

11/20/13 Comp 555 Fall 2013 45

•  e.x. 4 leaf trees

•  Problem is NP-complete
–  Exhaustive search only possible w/ small n(< 10)

• Hence, branch and bound or heuristics used

€

1
2
4
2
⎛
⎝
⎜
⎞
⎠
⎟ = 3

€

4 × 3 = 12

11/20/13 Comp 555 Fall 2013 46

• A Branch Swapping algorithm
• Only evaluates a subset of all possible trees
• Defines a neighbor of a tree as one reachable by a

nearest neighbor interchange
–  A rearrangement of the four subtrees defined by one

internal edge
–  Only three different rearrangements per edge

11/20/13 Comp 555 Fall 2013 47

11/20/13 Comp 555 Fall 2013 48

A
B D

C E

A
B C

D E

A
B C

E D

B
A D

C E

B
A C

D E

B
A C

E D

C
B D

A E

C
B A

D E

C
B A

E D

D
B A

C E

D
B C

A E

D
B C

E A

E
B D

C A

E
B C

D A

E
B C

A D

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

11/20/13 Comp 555 Fall 2013 49

1 2 3

4

5

6

11/20/13 Comp 555 Fall 2013 50

•  Start with an arbitrary tree and check its
neighbors

• Move to a neighbor if it provides the best
improvement in parsimony score

• No way of knowing if the result is the most
parsimonious tree

•  Could be stuck in local optimum

• Are Perfect Phylogeny Trees possible?
• Under what conditions can we construct a tree

 that explains every mutation in the most
 parsimonious way?

11/20/13 Comp 555 Fall 2013 51

