Lecture 21:
 Imperfect Tree Construction

Study Chapter 10.9-10.11

Least-Squares Distance Phylogeny Problem

- If the distance matrix D is NOT additive, then we look for a tree T that approximates D the best:

$$
\text { Squared Error: } \sum_{i, j}\left(d_{i j}(T)-D_{i j}\right)^{2}
$$

- Squared Error is a measure of the quality of the fit between distance matrix and the tree: we want to minimize it.
- Least Squares Distance Phylogeny Problem: finding the best approximation tree T for a non-additive matrix D (NP-hard).

UPGMA

- Unweighted Pair Group Method with Arithmetic Mean (UPGMA)
- UPGMA is a hierarchical clustering algorithm:
- assigns the distance between clusters to be the average pairwise distance
- assigns a height to every vertex in the tree, that is midway between the cluster distances

"Balanced" Cluster Merging

UPGMA generates trees like this

UPGMA's Weakness

- The algorithm produces an ultrametric tree : the distance from the root to every leaf is the same
- UPGMA models a constant molecular clock:
- all species represented by the leaves in the tree
- assumed to coexist at $t=0$ and to have accumulated mutations (and thus evolve) at the same rate.
- In reality the assumptions of UPGMA are seldom true, but they are frequently approximately true.

Clustering in UPGMA

Given two disjoint clusters C_{i}, C_{j} of sequences,

$$
d_{i j}=\frac{1}{\left|C_{i}\right|\left|C_{j}\right|} \sum_{\substack{p \in C_{i} \\ q \in C_{j}}} d_{i j}
$$

Note that if $C_{k}=C_{i} \cup C_{j}$, then the distance to another cluster C_{l} is:

$$
d_{k l}=\frac{d_{i l}\left|C_{i}\right|+d_{j l}\left|C_{j}\right|}{\left|C_{i}\right|+\left|C_{j}\right|}
$$

UPGMA Algorithm

Initialization:

Assign each x_{i} to its own cluster C_{i}
Define one leaf per sequence, each at height 0

Iteration:

Find two clusters C_{i} and C_{j} such that $d_{i j}$ is min
Let $C_{k}=C_{i} \cup C_{j}$
Add a vertex connecting C_{i}, C_{j} and place it at height $d_{i j} / 2$
Delete C_{i} and C_{j}

Termination:

When a single cluster remains

UPGMA Algorithm (cont'd)

Alignment Matrix vs. Distance Matrix

Sequence a gene of length m nucleotides in n species to generate an...

$n \times m$ alignment matrix
CANNOT be transformed back into alignment matrix because information was lost on the forward transformation

Transform

 into...$n \times n$ distance matrix

Character-Based Tree Reconstruction

- Better technique:
- Character-based reconstruction algorithms use the $n \times m$ alignment matrix ($n=$ \# species, $m=$ \#characters) directly instead of using distance matrix.
- GOAL: determine what character strings at internal nodes would best explain the character strings for the n observed species

Character-Based Tree Reconstruction

- Characters may be nucleotides of an aligned DNA, where A, G, C, T, - are states of this character
- Other characters may be the \# of eyes or legs or the shape of a beak or a fin.
- By setting the length of an edge in the tree to the Hamming distance, we may define the parsimony score of the tree as the sum of the lengths (weights) of the edges

Parsimony Approach to Evolutionary Tree Reconstruction

- Assumes observed character differences result from the simplest possible, most parsimonious, explanation (i.e. the fewest mutations)
- Seeks the tree that yields lowest possible parsimony score - sum of cost of all changes mutations found in the tree
- Example: What is the most parsimonious ancestor to the following three sequences:

$$
\{\text { ATCG, ATCC, ACGG\} }
$$

Parsimony Scores

- Given ancestors and a tree relating them to the leafs, it is a simple matter to compute a parsimony score

Parsimony score: 5
Parsimony score: 6
Parsimony score: 4

Character-Based Tree Reconstruction

(a) Parsimony Score $=3$

(b) Parsimony Score $=2$

Figure 10.16 If we label a tree's leaves with characters (in this case, eyebrows and mouth, each with two states), and choose labels for each internal vertex, we implicitly create a parsimony score for the tree. By changing the labels in (a) we are able to create a tree with a better parsimony score in (b).

Small Parsimony Problem

- Input: Tree T with each leaf labeled by an m character string.
- Output: Labeling of internal vertices of the tree T with ancestors that minimize the parsimony score.
- We can assume that every leaf is labeled by a single character, because the characters in the string are independent.

Weighted Small Parsimony Problem

- A more general version of Small Parsimony Problem
- Input includes a $k \times k$ scoring matrix describing the cost of transformation of each of k states into another one
- For the Small Parsimony problem, the scoring matrix is simply the Hamming distance

$$
\begin{aligned}
& d_{H}(v, w)=0 \text { if } v=w \\
& d_{H}(v, w)=1 \text { otherwise }
\end{aligned}
$$

Scoring Matrices

Small Parsimony Problem

	A	T	G	C
A	0	1	1	1
T	1	0	1	1
G	1	1	0	1
C	1	1	1	0

	A	T	G	C
A	0	3	4	9
T	3	0	2	4
G	4	2	0	4
C	9	4	4	0

Unweighted vs. Weighted

Small Parsimony Scoring Matrix:

	A	T	G	C
A	0	1	1	1
T	1	0	1	1
G	1	1	0	1
C	1	1	1	0

Small Parsimony Score: 5

Unweighted vs. Weighted

Weighted Parsimony Scoring Matrix:

	A	T	G	C
A	0	3	4	9
T	3	0	2	4
G	4	2	0	4
C	9	4	4	0

Weighted Small Parsimony Problem: Formulation

- Input: Tree T with each leaf labeled by elements of a k-letter alphabet and a $k \times k$ scoring matrix $\left(\delta_{i j}\right)$
- Output: Labeling of internal vertices of the tree T minimizing the weighted parsimony score

Sankoff's Algorithm

- Check the children of a vertex and determine the minimum between them
- An example

δ	A	T	G	C
A	0	3	4	9
T	3	0	2	4
G	4	2	0	4
C	9	4	4	0

- Calculate and keep track of a score for every possible label at each vertex
$-s_{t}(v)=$ minimum parsimony score of the subtree rooted at vertex v if v has character t
- The score at each vertex is based on scores of its children:

$$
\begin{aligned}
-s_{t}(\text { parent }) & =\min _{i}\left\{s_{i}(\text { left child })+\delta_{i, t}\right\}+ \\
& \min _{j}\left\{s_{j}(\text { right child })+\delta_{j, t}\right\}
\end{aligned}
$$

Sankoff Algorithm

- Begin at leaves:
- If leaf has the character in question, score is 0
- Else, score is ∞

Sankoff Algorithm

$$
\begin{aligned}
& \begin{array}{l|cccc}
\delta & \mathrm{A} & \mathrm{~T} & \mathrm{G} & \mathrm{C} \\
\hline \mathrm{~A} & 0 & 3 & 4 & 9 \\
\mathrm{~T} & 3 & 0 & 2 & 4 \\
\mathrm{G} & 4 & 2 & 0 & 4 \\
\mathrm{C} & 9 & 4 & 4 & 0
\end{array} \\
& s_{A}(v)=0 \\
& +\min _{j}\left\{s_{j}(w)+\delta_{j, A}\right\} \\
& \text { Lomp ככ } \\
& \begin{array}{|c|c|c|c|}
\hline \infty & \infty & \infty & 0 \\
\hline \text { A } & \text { T } & \mathbf{B} & \text { C } \\
\hline
\end{array} \\
& \text { rall } 2013
\end{aligned}
$$

Sankoff Algorithm (cont.)

$$
\begin{aligned}
& \begin{array}{l|lllll}
\delta & \mathbf{A} & \mathbf{T} & \mathbf{G} & \mathbf{C} & s_{t}(v)=\min _{i}\left\{s_{i}(u)+\delta_{i, t}\right\}+ \\
\hline \mathbf{A} & 0 & \mathbf{3} & \mathbf{4} & \boldsymbol{9}
\end{array} \\
& \begin{array}{l|llll}
\mathrm{T} & 3 & 0 & 2 & 4 \\
\mathrm{G} & 4 & 2 & 0 & 4 \\
\mathrm{C} & 9 & 4 & 4 & 0
\end{array} \\
& \min _{j}\left\{s_{j}(w)+\delta_{j, t}\right\} \\
& S_{A}(v)=0 \\
& +9=9 \\
& \text { rall } 2015
\end{aligned}
$$

Sankoff Algorithm (cont.)

∞	∞	∞	0
\mathbf{A} rall $\angle \mathrm{O}$	\mathbf{B}	\mathbf{C}	

Sankoff Algorithm (cont.)

Repeat for right subtree

Sankoff Algorithm (cont.)

Repeat for root

Sankoff Algorithm (cont.)

 Smallest score at root is minimum weighted parsimony score

Sankoff Algorithm: Traveling down the

- The scores at the root vertex have been computed by going up the tree
- After the scores at root vertex are computed the Sankoff algorithm moves down the tree and assign each vertex with optimal character.

Sankoff Algorithm (cont.)

9 is derived from $7+2$
So left child is T,

14	8	10	15
A	T	O	C

And right child is T

Sankoff Algorithm (cont.)

And the tree is thus labeled...

Fitch's Algorithm

- Also solves Small Parsimony problem
- Assigns a set of characters to every vertex in the tree.
- If the two children's sets of character overlap, it's the common set (intersection) of them
- If not, it's the combined set (union) of them.

Fitch's Algorithm (cont'd)

An example:

Fitch Algorithm

1) Assign a set of possible letters to every vertex, traversing the tree from leaves to root

- Each node's set is the union of its children's sets (leaves contain their label) if they are disjoint
- E.g. if the node we are looking at has a left child labeled $\{A\}$ and a right child labeled $\{C\}$, the node will be given the set $\{\mathrm{A}, \mathrm{C}\}$
- Each node's set is the intersection of its children's sets (leaves contain their label) if they overlap
- E.g. if the node we are looking at has a left child labeled $\{\mathrm{A}, \mathrm{C}\}$ and a right child labeled $\{\mathrm{A}, \mathrm{T}\}$, the node will be given the set $\{A\}$

Fitch Algorithm (cont.)

2) Assign labels to each vertex, traversing the tree from root to leaves

- Assign root arbitrarily from its set of letters
- For all other vertices, if its parent's label is in its set of letters, assign it its parent's label
- Else, choose an arbitrary letter from its set as its label

Fitch Algorithm (cont.)

Fitch vs. Sankoff

- Both have an $\mathrm{O}(n k)$ runtime
- Are they actually different?
- Let's compare ...

Fitch

As seen previously:

Comparison of Fitch and Sankoff

- As seen earlier, the scoring matrix for the Fitch algorithm is merely:

	A	T	G	C
A	0	1	1	1
T	1	0	1	1
G	1	1	0	1
C	1	1	1	0

- So let's do the same problem using Sankoff algorithm and this scoring matrix

Sankoff

Sankoff vs. Fitch

- The Sankoff algorithm gives the same set of optimal labels as the Fitch algorithm
- For Sankoff algorithm, character t is optimal for vertex v if $s_{t}(v)=\min _{1 \leq i<k} s_{i}(v)$
- Denote the set of optimal letters at vertex v as $S(v)$
- If S (left child) and S (right child) overlap, assign S (parent) is the intersection
- else assign S (parent) the union of S (left child) and S (right child)
- This is also the Fitch recurrence
- The two algorithms are identical

Large Parsimony Problem

- Input: An $n \times m$ matrix M describing n species, each represented by an m-character string
- Output: A tree T with n leaves labeled by the n rows of matrix M, and a labeling of the internal vertices such that the parsimony score is minimized over all possible trees and all possible labelings of internal vertices

Large Parsimony Problem (cont.)

- Possible search space is huge, especially as n increases
- How many rooted binary trees with n leafs?

$$
T(n)=\frac{(2 n-3)!}{2^{n-2}(n-2)!}
$$

- $T(n)$ for $2,3,4,5,6,7,8,9,10, \ldots$

1, 3, 15, 105, 945, 10395, 135135, 2027025, 34459425...

Large Parsimony Problem (cont.)

- e.x. 4 leaf trees

- Problem is NP-complete
- Exhaustive search only possible w/ small $n(<10)$
- Hence, branch and bound or heuristics used

Nearest Neighbor Interchange

A Greedy Algorithm

- A Branch Swapping algorithm
- Only evaluates a subset of all possible trees
- Defines a neighbor of a tree as one reachable by a nearest neighbor interchange
- A rearrangement of the four subtrees defined by one internal edge
- Only three different rearrangements per edge

Nearest Neighbor Interchange (cont.)

Neighbors of all 5-leaf Trees

Neighbors of 5-leaf Trees

Nearest Neighbor Interchange (cont.)

- Start with an arbitrary tree and check its neighbors
- Move to a neighbor if it provides the best improvement in parsimony score
- No way of knowing if the result is the most parsimonious tree
- Could be stuck in local optimum

Next Time

- Are Perfect Phylogeny Trees possible?
- Under what conditions can we construct a tree that explains every mutation in the most parsimonious way?

