

Lecture 19: Clustering

Study Chapter 10.1 – 10.3

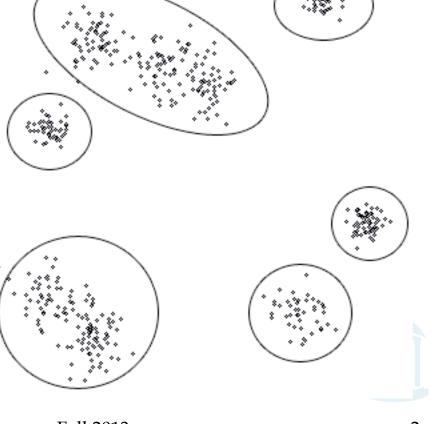
Problem Set 3 is due today

Applications of Clustering

 Viewing and analyzing vast amounts of biological data as a whole set can be perplexing

• It is often easier to interpret data if they are partitioned into *similar* subgroups.

 Such similar groups are "clusters"



Inferring Gene Functionality

- Researchers often want to know the functions of newly sequenced genes
- Comparing the new gene sequences to known DNA sequences often does not give away the function of gene
- For 40% of sequenced genes, functionality cannot be ascertained using only comparisons to sequences of other known genes
- Microarrays allow biologists to infer gene function even when sequence similarity alone is insufficient to infer function.

Microarrays and Expression Analysis

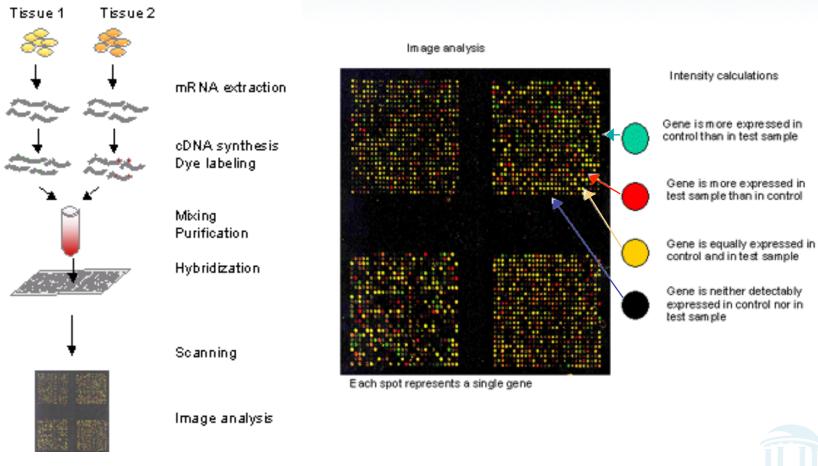
- Microarrays compare the activity (expression level) of the genes
 - Under varying conditions (e.g., with and w/o disease)
 - At different time points
 - In different tissues
- Expression level is estimated by measuring the amount of mRNA for that particular gene
 - A gene is active if it is being transcribed
 - More mRNA usually indicates more gene activity

Microarray Experiments

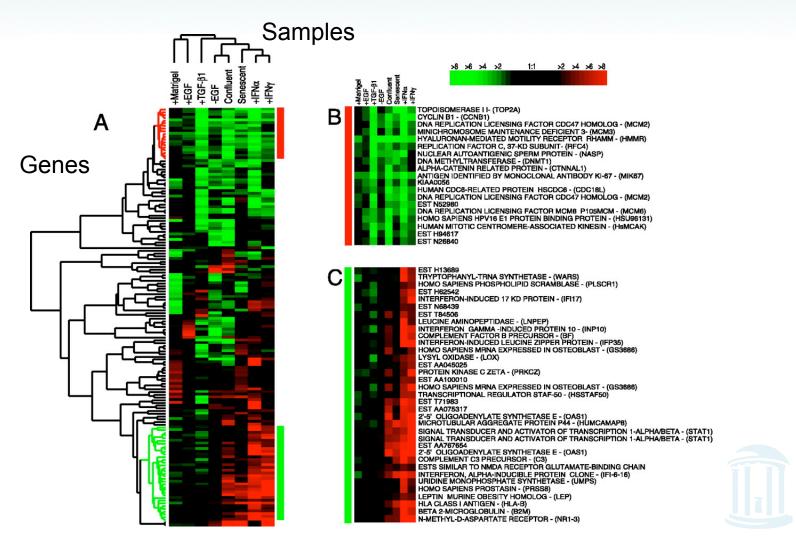
- Produce cDNA from mRNA (DNA is more stable)
- Attach phosphor to cDNA to see when a particular gene is expressed
- Different color phosphors are available to compare many samples at once
- Hybridize cDNA over the microarray
- Scan the microarray with a phosphorilluminating laser
- Illumination reveals transcribed genes
- Scan microarray multiple times for the different color phosphor's

Microarray

PROPRED TO THE PROPRE



Clustering Dimension



Clustering Microarray Data

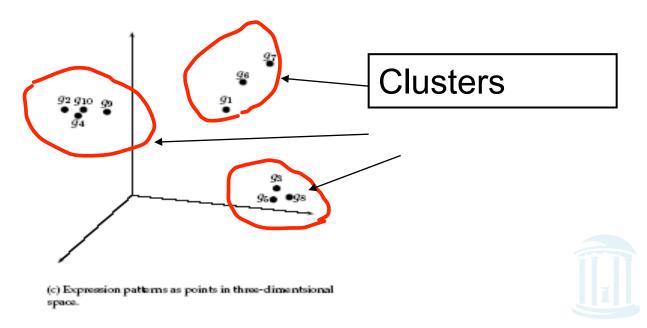
- Easier to interpret if partitioned into "gene" or "sample" clusters
- Conceptually we could treat each gene in N arrays as a point in N-dimensional space
- Make a distance matrix for the distance between every two gene points in the N-dimensional space
- Genes with a small distance share the same expression characteristics and might be functionally related or similar.
- Clustering reveal groups of functionally related genes

Clustering of Microarray Data (cont'd)

Time	1 hr	2 hr	3 hr		g_1	g_2	g_3	94	g_5	g_6	97	g_8	g_9	g_{10}
g_1	10.0	8.0	10.0	g_1	0.0	8.1	9.2	7.7	9.3	2.3	5.1	10.2	6.1	7.0
g_2	10.0	0.0	9.0	g_2	8.1	0.0	12.0	0.9	12.0	9.5	10.1	12.8	2.0	1.0
g_3	4.0	8.5	3.0	g_3	9.2	12.0	0.0	11.2	0.7	11.1	8.1	1.1	10.5	11.5
g_4	9.5	0.5	8.5	94	7.7	0.9	11.2	0.0	11.2	9.2	9.5	12.0	1.6	1.1
g_5	4.5	8.5	2.5	g_5	9.3	12.0	0.7	11.2	0.0	11.2	8.5	1.0	10.6	11.6
g_6	10.5	9.0	12.0	96	2.3	9.5	11.1	9.2	11.2	0.0	5.6	12.1	7.7	8.5
97	5.0	8.5	11.0	97	5.1	10.1	8.1	9.5	8.5	5.6	0.0	9.1	8.3	9.3
g_8	2.7	8.7	2.0	98	10.2	12.8	1.1	12.0	1.0	12.1	9.1	0.0	11.4	12.4
g_9	9.7	2.0	9.0	99	6.1	$^{2.0}$	10.5	1.6	10.6	7.7	8.3	11.4	0.0	1.1
g10	10.2	1.0	9.2	910	7.0	1.0	11.5	1.1	11.6	8.5	9.3	12.4	1.1	0.0

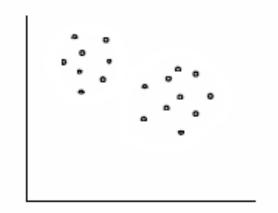
(a) Intensity matrix, I

(b) Distance matrix, d



Homogeneity and Separation Principles

- - Homogeneity: Elements within a cluster are close to each other
 - Separation: Elements in different clusters tend to be further apart from each other
 - ...clustering is not an easy task!



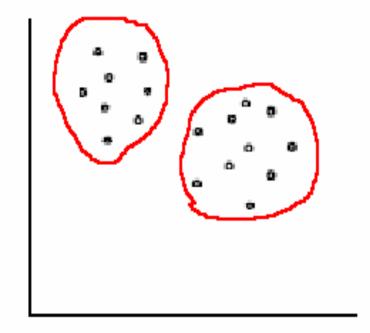
Bad Clustering

This clustering violates both Homogeneity and Separation principles



Good Clustering

This clustering satisfies both Homogeneity and Separation principles

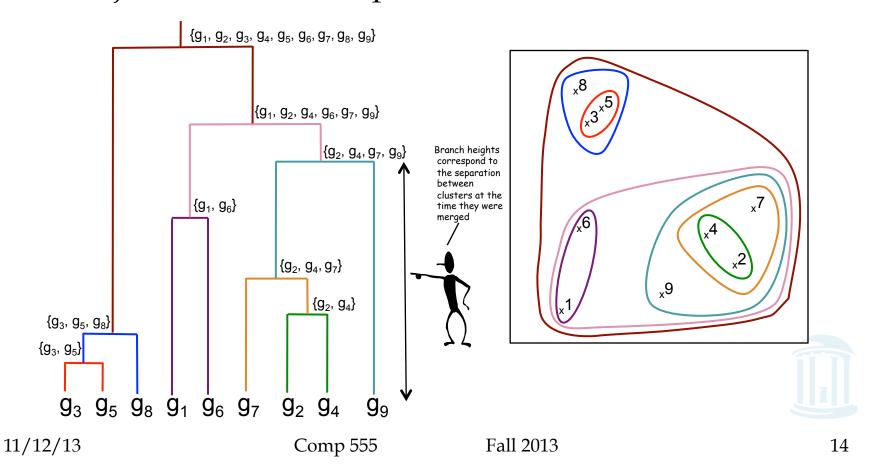


Clustering Techniques and Terms

- **Hierarchical:** Organize elements into a tree, leaves represent genes and the length of the paths between leaves represents the distances between genes. Similar genes lie within the same subtrees.
 - Agglomerative: Start with every element in its own cluster, and iteratively join clusters together
 - Divisive: Start with one cluster and iteratively divide it into smaller clusters
- Optimization based: Determine point sets that attempt to minimize distances within clusters (homogeneity) or maximize distances between clusters (separation)
 - K-means, K-mediods, Vector Quantization (VQ)
- Dendrogram: A tree representation of clustering, where one dimension is metric and others are some meaningful ordering of the points being clustered

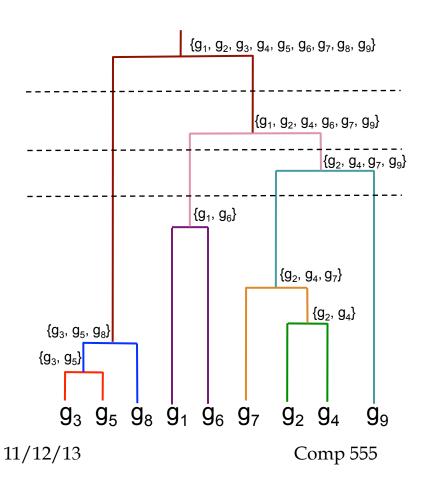
Hierarchical Clustering: Example

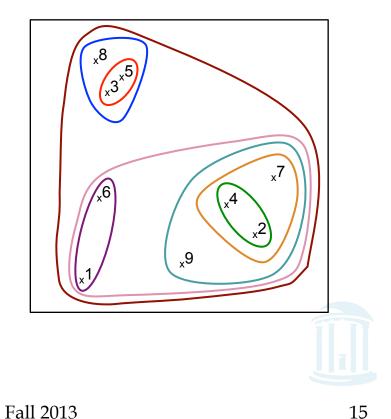
Agglomerative: Start with each point as a cluster, Join closest two clusters, Form a new cluster using the joined clusters, Repeat.



Hierarchical Clustering: Example

Assigning Clusters: Establish a threshold of joining distance. Remove all clusters above it.

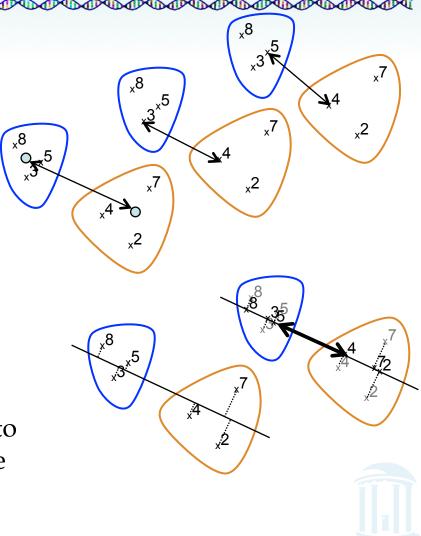




Agglomerative Issues

Which clusters to join?

- Distance based
 - Cluster means
 - Closest pair
 - Closest to mediod (most centrally located point in cluster)
- Variance based
 - Minimize residuals of a model fit
 - Closest after projection onto axis with greatest variance



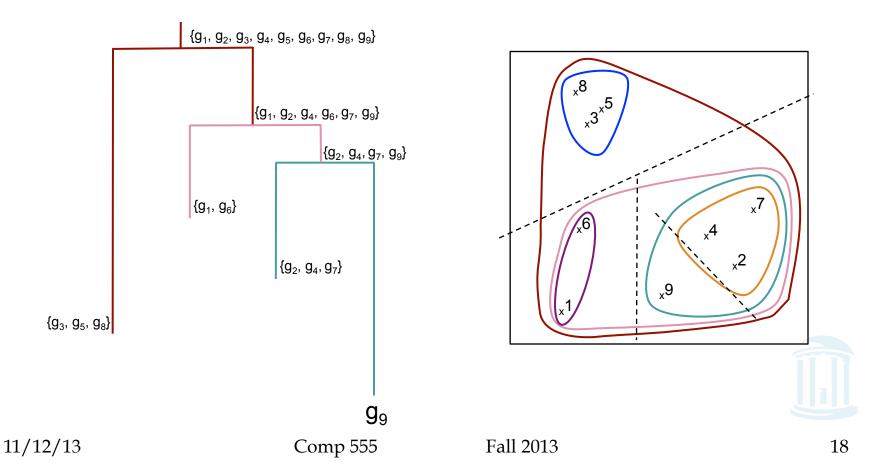
Hierarchical Clustering Algorithm

```
<u>Hierarchical Clustering</u> (d , n)
      Form n clusters each with one element
3.
      Construct a graph T by assigning one vertex to each cluster
       while there is more than one cluster
4.
        Find the two "closest" clusters C_1 and C_2
5.
        Merge C_1 and C_2 into new cluster C with |C_1| + |C_2| elements
6.
        Compute distance from C to all other clusters
7.
        Add a new vertex C to T and connect to vertices C_1 and C_2
8.
        Remove rows and columns of d corresponding to C_1 and C_2
9.
        Add a row and column to d corresponding to the new cluster C
10.
11.
      return T
```

The algorithm takes an $n \times n$ distance matrix d of pairwise distances between points as an input.

Hierarchical Clustering: Example

Divisive: Start with a single cluster composed of all points, Choose largest cluster, Split or partition it based on any metric.

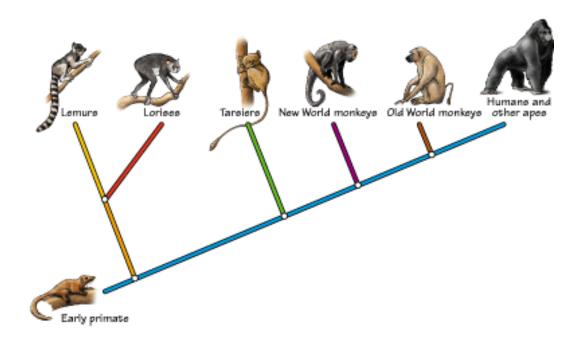


Divisive Issues

- Advantage: Terminates when objective is met
 - A target number of clusters
 - Minimize size/variance of largest cluster
 - Achieves a desired separation metric between clusters
- Division Criteria
 - Minimize distance between the separating hyperplane and the closest point to each cluster
 - Minimize residual variance

Hierarchical Clustering (cont'd)

 Hierarchical Clustering is often used to construct trees for explaining evolutionary history (Phylogeny Trees)



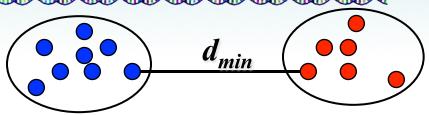
Hierarchical Clustering Algorithm

Hierarchical Clustering (d, n) Form *n* clusters each with one element 2. Construct a graph *T* by assigning one vertex to each cluster 3. while there is more than one cluster 5. Find the two closest clusters C_1 and C_2 Merge C_1 and C_2 into new cluster C with $|C_1| + |C_2|$ elements 6. Compute distance from C to all other clusters 7. Add a new vertex C to T and connect to vertices C_1 and C_2 8. Remove rows and columns of **d** corresponding to C_1 and C_2 9. Add a row and column to *d* corresponding to the new cluster *C* 10. 11. return *T*

Different definitions of "distances between clusters" may lead to different clusterings

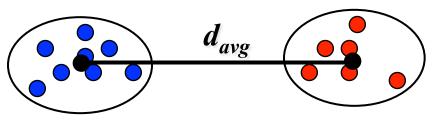
Hierarchical Clustering: Recomputing Distances

• $d_{min}(C, C^*) = \min d(x,y)$ for all elements x in C and y in C^*



 Distance between two clusters is the smallest distance between any pair of their elements

• $d_{avg}(C, C^*) = (1 / |C^*| |C|) \sum d(x,y)$ for all elements x in C and y in C^*



 Distance between two clusters is the average distance between all pairs of their elements

Optimization-based Approaches

- Need a function to optimize—"Squared-Error Distortion"
- Given a data point v and a set of points X, define the **distance** from v to X

as the (Euclidean) distance from v to the *closest* point from X.

Given a set of n data points $V = \{v_1...v_n\}$ and a set of k points X, define the **Squared Error Distortion**

$$d(V,X) = \sum d(v_i, X)^2 / n \qquad 1 \le i \le n$$

K-Means Clustering Problem: Formulation

- **Input**: A set, *V*, consisting of *n* points and a parameter *k*
- Output: A set X consisting of k points (*cluster centers*) that minimizes the squared error distortion d(V,X) over all possible choices of X

1-Mean Clustering Problem: an Easy Case

• **Input**: A set, *V*, consisting of *n* points

• Output: A single point x (cluster center) that minimizes the squared error distortion d(V,x) over all possible choices of x

x is just the centroid (mean) of all points

1-Mean Clustering problem is easy. However, it becomes very difficult (NP-complete) for more than one center.

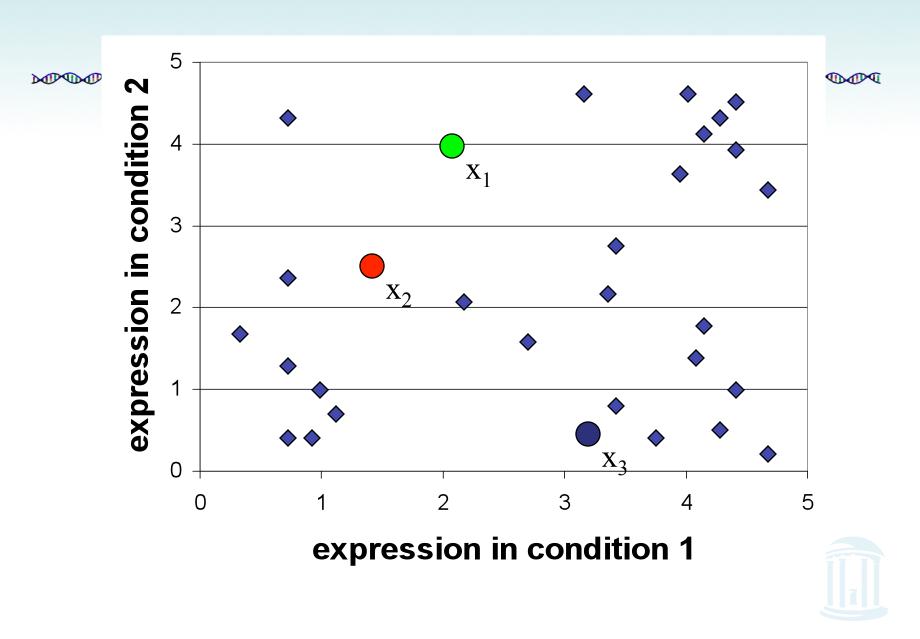
An efficient *heuristic* method for K-Means clustering is the Lloyd algorithm

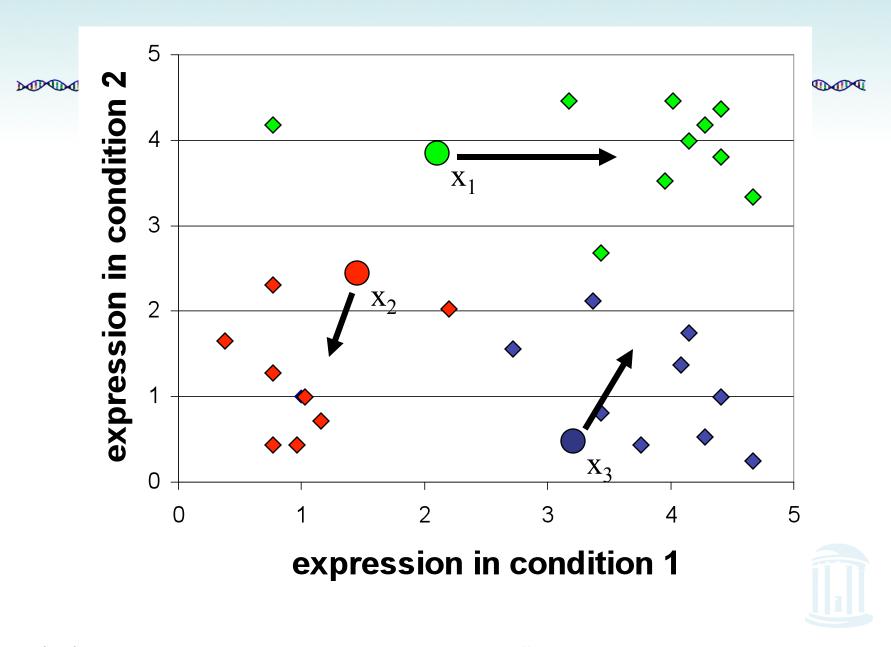
K-Means Clustering: Lloyd Algorithm

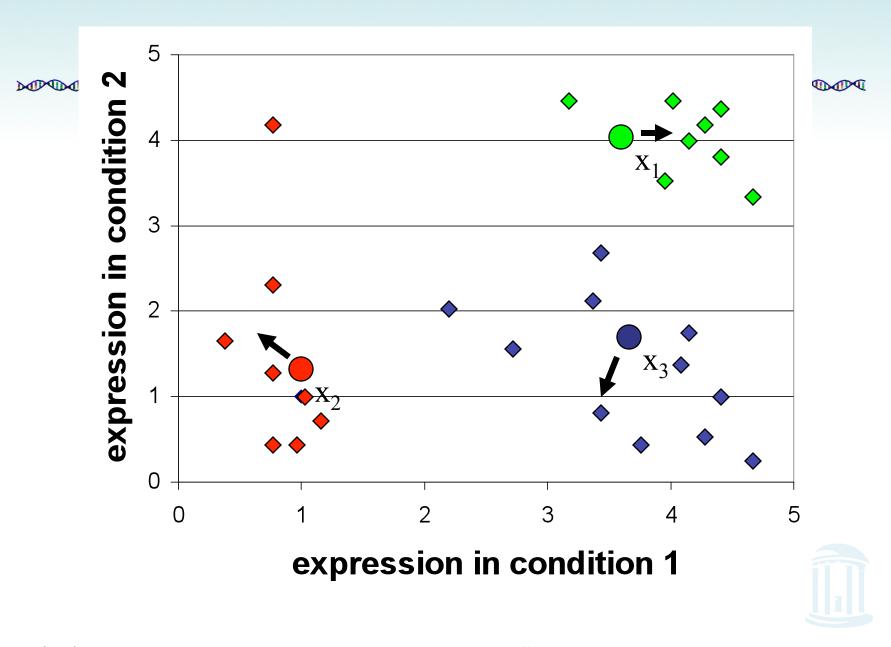
- Lloyd Algorithm
- 2. Arbitrarily assign the *k* cluster centers
- 3. while the cluster centers keep changing
- 4. Assign each data point to the cluster C_i corresponding to the closest cluster representative (center) $(1 \le i \le k)$
- 5. After the assignment of all data points, compute new cluster representatives according to the center of gravity of each cluster, that is, the new cluster representative is

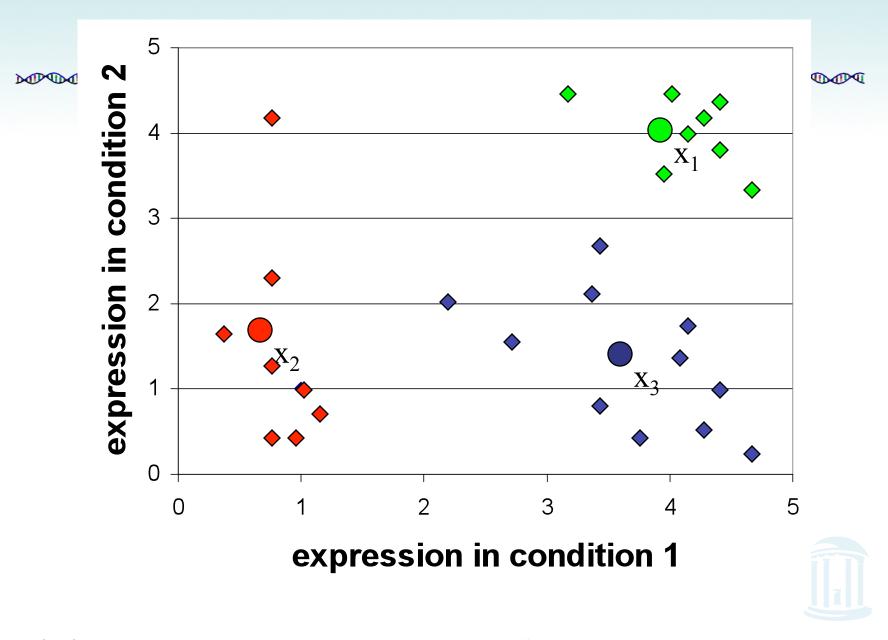
 $\sum v / |C|$ for all v in C for every cluster C

*This may lead to merely a locally optimal clustering.









Conservative K-Means Algorithm

- Lloyd algorithm is fast but in each iteration it moves many data points, not necessarily converging.
- A more conservative method would be to move one point at a time only if it improves the overall clustering cost
 - The smaller the clustering cost of a partition of data points is the better that clustering is
 - Different methods (e.g., the squared error distortion) can be used to measure this clustering cost

K-Means "Greedy" Algorithm

```
<u>ProgressiveGreedyK-Means(k)</u>
     Select an arbitrary partition P into k clusters
3_
    while forever
      bestChange ← 0
4.
       for every cluster C
5.
         for every element i not in C
6.
          if moving i to cluster C reduces its clustering cost
7.
8.
             if (cost(P) - cost(P_{i \rightarrow C}) > bestChange
              bestChange \leftarrow cost(P) - cost(P_{i \rightarrow C})
9.
10.
              i^* \leftarrow I
              C^* \leftarrow C
11.
12. if bestChange > 0
13.
         Change partition P by moving i* to C*
14. else
15.
         return P
```


Are there better algorithms?

)

• Yes!

