Lecture 16:
Combinatorial Pattern Matching

Study Chapter 9.1 - 9.5

3/23/15 Comp 555 Spring 2015

Repeat Fmdmg

. Problem 1: What patterns appear more 11ke1y than
expected by chance?
— AT TA CTAGT

* Motivation to find them:
— Phenotypes arise from copy-number variations

— Genomic rearrangements are often associated
with repeats

— Functional units depend on genomic patterns
* Origin Recognition Complex (ORC) story

3/23/15 Comp 555 Spring 2015 2

Repeat Fmdmg

. Problem 2: Where are the frequently occurring near
matches?

- AT TAGCCACCTAGT

e Motivation to find them:

— Phenotypes arise from copy-number variations

— Genomic rearrangements are often associated
with repeats

— Functional units depend on genomic patterns
* Origin Recognition Complex (ORC) story

3/23/15 Comp 555 Spring 2015 3

[-mer Repeats

s Long repeats are dlfflcult to fmd

* Short repeats are easy to find
— Short repeats are integral to long ones

* Strategy for finding long repeats:

— Find exact repeats of short subsequences /-mers
(/1s usually 10 to 13)

— Extend /-mer repeated seeds into longer,
maximal repeats

— Or, consider nearby l-mers frequency and
positions to extend to longer patterns

3/23/15 Comp 555 Spring 2015 4

/-mer Repeats cont'd)

’ There are typlcally many locatlons Where an
/-mer is repeated:

GCTTACAGATTCAGTCTTACAGATGGT

e The 4-mer T TAC starts at locations 3 and 17

3/23/15 Comp 555 Spring 2015 5

Extendmg /-mer Repeats

G CT' 'ACAGATTCAGTCTTACAG ATG GT
e Extend these 4-mer matches:
GCTTACAGATTCAGTCTTACAGATGGT

* Maximal repeat: CTTACAGAT

* Maximal repeats cannot be extended in either
direction

* To find maximal repeats in this way, we need
ALL start locations of all /-mers in the genome

* Hashing lets us find repeats quickly in this
manner

3/23/15 Comp 555 Spring 2015 6

Hashmg What is 1t7

. How hashmg Works

— Generate an integer “key” from an arbitrary
record

— Store record in an data structure indexed by
this integer key

* Hashing is a very efficient way to store and
retrieve data

— e.g., Python directories are hashes

3/23/15 Comp 555 Spring 2015 7

Hashmg Def1mt10ns

’ Hash table array used in hashmg

e Records: data stored in a hash table

* Keys: identify sets of records

* Hash function: uses a key to generate an index to
insert at in hash table

* Collision: when more than one record is mapped
to the same index in the hash table

3/23/15 Comp 555 Spring 2015 8

Hashmg Example

o Where do the
animals eat?

Birdseed
King

=T

MAmMmMAL

express

Records
T

Keys
h(z)

e Records: each
animal

* Keys: where
each animal eats

3/23/15 Comp 555 Spring 2015

Penguin
Octopus
Turtle
Mouse
Snake
Heron
Tiger
Iguana
Ape
Cricket
Sparrow

Hashmg DNA - sequences

— Each /-mer can be translated into a binary
string, key = quaternary(seq)

(A, T, C, G can be represented as 0, 1, 2, 3)

— After assigning a unique integer per /-mer it
is easy to store the starting locations of
occurance of each /~mer in a genome of length
nin O(I n) time

3/23/15 Comp 555 Spring 2015 10

I—Iashmg Max1mal Repeats

. To find repeats in a genome
— For all /-mers in the genome, note its starting
position and the sequence

— Generate a hash table index for each unique
/-mer sequence

— In each index of the hash table, store all
genome start locations of the /~-mer which
generated that index

— Extend /-mer repeats to maximal repeats

* Problem as I gets big the number of possible
patterns becomes larger than the genome’s
length (4! >> n)

3/23/15 Comp 555 Spring 2015 11

Hashmg Colhslons

Generate hash keys fiRar
from a reduced space

{-mer #2

Ex. Key = quaternary(seq) % (IN/I)
{-mer #3

* Leads to possible collisions

3 1003 J2003}503 | 43

* Dealing with collisions:

ru'r

— “Chain” tuples of 15[1512
(I-mer, start location)

pairs in a linked list

Chained Locations of {-mers

{-mer #n

3/23/15 Comp 555 Spring 2015 12

Hashmg Summary

* When finding genomic repeats from [-mers:

— Generate a hash table index for each /~mer
sequence

— In each index, store all genome start locations
of the /-mer which generated that index

— Extend /~mer repeats to maximal repeats

3/23/15 Comp 555 Spring 2015 13

Pattern Matchmg

. What if, mstead of fmdmg repeats in a genome,
we want to find all positions of a particular
sequences in given sequence?

* This leads us to a different problem, the Pattern
Matching Problem

3/23/15 Comp 555 Spring 2015 14

Pattern Matchmg Problem

* Goal: and all occurrences of a pattern in a text

* Input: Pattern p = p,...p,, and text t =t,...t_

* Qutput: All positions 1<i < (m - n + 1) such that the
n-letter substring of £ starting at i matches p

* Motivation: Searching database for a known pattern

3/23/15 Comp 555 Spring 2015 15

Exact Pattern Matching:
A Brute-Force Algorithm

OO PO O OO PO PO O PO O @O DO OO P OO OO

PatternMatching(p,t)

I n & length of pattern p
2m < length of text t
S3foricTto(m-n+1)
4 ift...t,,_;=p

5 output /

3/23/15 Comp 555 Spring 2015 16

Exact Pattern Matchmg An Example

. PatternMatchm I

algorithm for: CGCATC
— Pattern GCAT CLCATC
~ Text CGCATC CLLATC

C TC

CCCATC

3/23/15 Comp 555 Spring 2015 17

Exact Pattern Matchmg Runmng Time

. PatternMatchmg runtime: O(nm)

* Probability-wise, it’s more like O(m)

— Rarely will there be close to n
comparisons in line 4

e Worse case:
Find “AAAAT” in “"AAAAAAAAAAAAAAAT”

* Better solution: suffix trees
— Can solve problem in O(m) time

— Conceptually related to keyword trees

3/23/15 Comp 555 Spring 2015 18

Keyword Trees Example

. Keyword tree:
— Apple

3/23/15 Comp 555 Spring 2015 19

Keyword Trees Example cont'd)

. Keyword tree:

— Apple
— Apropos
QO O
e P
O O
Q
O

3/23/15 Comp 555 Spring 2015 20

Keyword Trees Example cont'd)

. Keyword tree:
— Apple
— Apropos
— Banana

3/23/15 Comp 555 Spring 2015 21

Keyword Trees Example cont'd)

. Keyword tree:

— Apple
— Apropos
— Banana
— Bandana
[P n a
QO Q O O
O O O
O O

3/23/15 Comp 555 Spring 2015 22

Keyword Trees Example cont'd)

. Keyword tree:

— Apple

— Apropos

— Banana

— Bandana

— Orange
P n a g

O 0 00 O

© 0 QO
O O

3/23/15 Comp 555 Spring 2015 23

Keyword Trees Proper’ues

— Stores a set of keywords in
a rooted labeled tree

— Each edge labeled with a
letter from an alphabet

— Any two edges coming out
of the same vertex have
distinct labels

— Every keyword stored can 0o
be spelled on a path from 5 O
root to some leaf

— Searches are performed by OO0 O O
“threading” the target .
pattern through the tree o O

3/23/15 Comp 555 Spring 2015 24

Keyword Trees Threadmg cont'd)

. Thread appeal”
— appeal

3/23/15 Comp 555 Spring 2015 25

Keyword Trees Threadmg cont'd)

. Thread appeal”
— appeal

3/23/15 Comp 555 Spring 2015 26

Keyword Trees Threadmg cont'd)

. Thread appeal”
— appeal

3/23/15 Comp 555 Spring 2015 27

Keyword Trees Threadmg cont'd)

. Thread appeal”
— appeal

3/23/15 Comp 555 Spring 2015 28

Keyword Trees Threadmg cont'd)

. Thread ”apple
— apple

3/23/15 Comp 555 Spring 2015 29

Keyword Trees Threadmg cont'd)

. Thread ”apple
—apple

3/23/15 Comp 555 Spring 2015 30

Keyword Trees Threadmg cont'd)

. Thread ”apple
—apple

3/23/15 Comp 555 Spring 2015 31

Keyword Trees Threadmg cont'd)

. Thread N apple

— le

3/23/15 Comp 555 Spring 2015 32

Keyword Trees Threadmg cont'd)

. Thread ”apple
— apple

Now thread “band”, “or”,

and the nonsense word
£/ aproll

How do you tell “real” words © ¢
from nonsense? (i.e. include ”
“band”, “apples”, and “or”, ,,

but not “appl” and “banan”) O O
3/23/15 Comp 555 Spring 2015 33

Multlple Pattern Matchmg Problem

. Goal: Given a set of patterns and a text, fznd all occurrences of
any of patterns in text

* Input: k patterns pl,...,p*, and textt=+¢,...t
Input: kK p p p 1+t

* QOutput: Positions 1 <1 < m where substring of t starting
at i matches p;for1<j<k

* Motivation: Searching database for known multiple
patterns

3/23/15 Comp 555 Spring 2015 34

Multiple Pattern Matching: Straightforward
| 'vl roach

l l G

* Can solve as k “Pattern Matching Problems”

— Runtime:
O(kmn)
using the PatternMatching algorithm k times
—m - length of the text
—n - average length of the pattern

3/23/15 Comp 555 Spring 2015 35

Multiple Pattern Matching:
_ Keyword Tree Approach

. Or we could use keyword trees:

— Build keyword tree in O(N) time; N is total
length of all patterns

— With naive threading: O(N + nm)
— Aho-Corasick algorithm: O(N + m)

3/23/15 Comp 555 Spring 2015 36

Keyword Trees Threadmg

. To match patterns b= WW%WW Hprivet

In a text using a normmal thatk yoa very mustt” o perieety
keyword tree:
— Build keyword
tree of patterns Y ()g
~ “Thread” the © 0 0 0 O
text through the o le i Lol b
keyword tree Ll G‘C) 1
[N
O

3/23/15 Comp 555 Spring 2015 37

Keyword Trees Threadmg

* Threadmg is
“complete” when we
reach a leaf in the
keyword tree

* When threading is
“complete,” we've
found a pattern in the
text

3/23/15 Comp 555

drive were proud to say that they were perlectly
normal thank you very much”

[elNeiReY o]
000 @0
“l’<> O 0 @ O
OO0 0 @
O O

O

Spring 2015 38

Sufflx Trees Collapsed Keyword Trees

e All sufflxes of a glven
sequence

* Similar to keyword trees,
except vertices of
out-degree 1 are removed
and the “edge” strings on
either side are merged

All suffixes of:

— Each edge is labeled . . ATCATG
with a substring of a text O O O TCATG
— All internal vertices have T ¢ CATG
at least three edges ® O A¥g
— Terminal vertices, . - C
leaves, are labeled by the = ©
index of the pattern. N e

3/23/15 Comp 555 Spring 2015 39

Sufﬁx Tree of a Text

* Construct a keyword tree from all suffixes of a text

* Collapse non-branching paths into an edge
(path compression)

ATCATG

TCATG -
quadratic KeyWO rd SUﬂ:IX
CATG | > Tree | > Tree

ATG

TG How much time does it take?

G Time s linear in the total size of all suffixes,
which is quadratic in the length of the text

3/23/15 Comp 555 Spring 2015 40

Sufflx Trees Advantages

* With careful bookkeepmg a test’s suffix tree can be
constructed in a single pass of the text
* Thus, suffix trees can be built faster than keyword trees of

suffixes and transforming them

ATCATG

TCATG |
quadratic Keyword Suffix
CATG > Tree > Tree
ATG
TG

G linear (Weiner, McCreight & Ukkonen suffix tree algorithms)

3/23/15 Comp 555 Spring 2015 41

Suffix Tree Construction

* Few books mcludmg ours, delve into the detaﬂs of
suffix tree construction algorithms due to its reputation
for being overly complicated.

* Weiner’s and McCreight's original linear algorithms for
constructing a suffix trees had some disadvantages.

* Principle among them was the requirement that the tree
be built in reverse order, meaning that the tree was
grown incrementally by adding characters from the end
of the input.

* This ruled it out for on-line processing

3/23/15 Comp 555 Spring 2015 42

Ukkonen S Clever Bookkeepmg

Esko Ukkonen S Constructlon Works from left to r1ght.

* It's incremental. Each step transforms the Suffix Tree of
the prefix ending at the it" character to the Suffix Tree
ending at the i+1th.

TR e
560

K OK

Example from Mark Nelson O G
Dr. Dobb's Journal, August, 1996

3/23/15 Comp 555 Spring 2015 43

Iree Proper’ues

* Extensions are done by threadmg each new prefix

through the tree and visiting each of the suffixes of the
current tree.

* At each step we start at the longest suffix (BOOK), and
work our way down to
the shortest (empty string)

* Each ends at a node of three types: @D\
BOOK K O
— Aleaf node (1,2,4,5)
— An explicit node (0, 3) @ @ @
— An implicit node (Between characters K OK
of a substring labeling an edge, such as @ @
BO, BOO, and OO).

3/23/15 Comp 555 Spring 2015 44

Observatmns

* There are 5 sufflxes in the tree (mcludmg the empty
string) after adding BOOK

* They are represented by the root and 4 leaves

* Adding the next letter, another ‘K’,
requires visiting each of the suffixes

in the existing tree, in order of @
decreasing length, and adding
letter ‘K’ to its end. BOOKK KK O

* Adding a character to a leaf node Gj @ @
never creates a new explicit node, KK OKK
regardless of the letter @ @

* If the root already has an edge labeled
‘K" we just extend it
3/23/15 Comp 555 Spring 2015 45

Spht and Add Update

* The next step is to add an ‘E’ to our tree

* As before, add ‘E’ to each suffix in order of decreasing
lengths BOOKK, OOKK, OKK, KK, K

e The first suffix that does not terminate at a leaf is called
the “active point” of the suffix tree

_ Add ‘E’ to:
@ Split @ Add @)\ Empty string
K O

BOOKKE KKE O BOOKK

BOOKKE K ©
@ @ {3 ® 3 J e W
Add E’ to: KKE OKKE KE KKE OKKE
BOOKK @ KE E KKE OKKE
ook ® Add‘E,tok@@ ©®0® ©®
KK

3/23/15 Comp 555 Spring 2015 46

Updatmg an ExphClt Node

’ After updatmg sufflx K, we st111 have to update
the next shorter suffix, which is the empty
string.

K O E
@9 @ ©
E KKE OKKE

3/23/15 Comp 555 Spring 2015 47

Generahzmg

* Once a leaf node, always a leaf node

* Additional characters only extends the edge leading to
the leaf (leaves are easy)

* When adding a new leaf, its edge will represent all
characters from the ith suffix’s starting point to the i+15t
text’s end. Because of this once a leaf is created, we can
just forget about it. If the edge is later split, its start may
change but it will extend to the end.

* This means that we only need to keep track of the active
point in each tree, and update from there.

3/23/15 Comp 555 Spring 2015 48

One Last Detall

* The algorithm sketch SO far glosses over one detail. At
each step of an update we need to keep track of the next
smaller suffix from the ith update

* To do this a suffix pointer is kept at each internal node

e For Pseudo code 0
— Mark Nelson, “Fast String Searching /@\
with Suffix Trees” , B 28 f' = 5
Dr. Dobb's Journal August, 1996 ;K T é? \O
* For proofs of linear 4)° C%\ g C%
space/time performance ABE{: _ Aaféc
— E. Ukkonen. “On-line 1
construction of suffix trees. d % d b

Algorithmica, 14(3);249_260’ The suffix tree for ABABABC with suffix
September 1995 pointers shown as dashed lines

3/23/15 Comp 555 Spring 2015 49

Use of Suftix Trees
. Sufﬁx trees hold all sufflxes of a text, T
—ie., ATCGC: ATCGC, TCGC, CGC, GG, C
— Builds in O(m) time for text of length m
* To find any pattern P in a text:
— Build suffix tree for text, O(m), m = | T|
— Thread the pattern through the suffix tree
— Can find pattern in O(n) time! (n = |P|)

* O(|T| + |P]|) time for “Pattern Matching
Problem” (better than Naive O(|P| | T|)

— Build suffix tree and lookup pattern
* Multiple Pattern Matching in O(|T| + k|P|)

3/23/15 Comp 555 Spring 2015 50

Pattern Matchmg with Sufflx Trees

SufflereePatternMatchlnq(p t)

1 Build suffix tree for text t

2 Thread pattern p through suffix tree
3 if threading is complete
4

traverse all paths from the threading’s
endpoint to leaves and output their
positions

5 else

6 output “Pattern does not appear in text”

3/23/15 Comp 555 Spring 2015 51

Sufflx Trees Example

Threading the pattern ATG What !etter occurs most frequently?
What is the shortest pattern that

occurs only once in the string?
@ :

=
—
(]
0
=
—

) & O
CATGG T ACATCG G \ CATACATGG G GG ACATCG
ATGCATACATGG 1
O O () O O 0 TGCATACATGG 2
7 6 31 8 1 GCATACATGG 3
G ACATGG G CATACATGG CATACATGG 4
ATACATGG 5
L) O TACATGG 6
CATACATG G ATGG 9
the suffix tree for ATGCATACATGG ng] %)
1 9 G12
3/23/15 Comp 555 Spring 2015 52

Multlple Pattern Matchmg Summary

* Keyword and suffix trees are useful data structures
supporting various pattern finding problems

* Keyword trees:

— Build keyword tree of patterns,
and thread text through it

* Suffix trees:

— Build suffix tree of text,
and thread patterns through it

3/23/15 Comp 555 Spring 2015 53

Suffix Trees: Theory vs. Practice

* In concept, suffix trees are extremely powerful for
making a variety of queries concerning a sequence
— What is the shortest unique substring?

— How many times does a given string appear in a text?

* Despite the existence of linear-time construction
algorithms, and O(m) search times, suffix trees are still
rarely used for genome scale searching

— Large storage overhead

* Close cousins of the Suffix-Tree (Sutfix Arrays and
Burrows-Wheeler Transforms) are more common

e Next lecture

3/23/15 Comp 555 Spring 2015 54

