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•  Problem 1: What patterns appear more likely than 
expected by chance? 
– ATGGTCTAGGTCCTAGTGGTC 

• Motivation to find them: 
– Phenotypes arise from copy-number variations 
– Genomic rearrangements are often associated 

with repeats 
– Functional units depend on genomic patterns 

•  Origin Recognition Complex (ORC) story 
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•  Problem 2: Where are the frequently occurring near 
matches?  
– ATGGTCTAGGACCTAGTGTTC 

• Motivation to find them: 
– Phenotypes arise from copy-number variations 
– Genomic rearrangements are often associated 

with repeats 
– Functional units depend on genomic patterns 

•  Origin Recognition Complex (ORC) story 
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•  Long repeats are difficult to find 
•  Short repeats are easy to find 

–  Short repeats are integral to long ones 

•  Strategy for finding long repeats: 

–  Find exact repeats of short subsequences l -mers  
(l  is usually 10 to 13)  

– Extend l -mer repeated seeds into longer, 
 maximal repeats 

– Or, consider nearby l-mers frequency and 
positions to extend to longer patterns 
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•  There are typically many locations where an  
l -mer is repeated: 

  GCTTACAGATTCAGTCTTACAGATGGT 

•  The 4-mer TTAC starts at locations 3 and 17 
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  GCTTACAGATTCAGTCTTACAGATGGT 
•  Extend these 4-mer matches: 

  GCTTACAGATTCAGTCTTACAGATGGT 
• Maximal repeat: CTTACAGAT 
• Maximal repeats cannot be extended in either 

direction 
•  To find maximal repeats in this way, we need 

ALL start locations of all l -mers in the genome 
• Hashing lets us find repeats quickly in this 

manner 
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• How hashing works… 

– Generate an integer “key” from an arbitrary 
record 

– Store record in an data structure indexed by 
this integer key 

• Hashing is a very efficient way to store and 
retrieve data 
–  e.g., Python directories are hashes 
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• Hash table: array used in hashing 

•  Records: data stored in a hash table 

•  Keys: identify sets of records 

• Hash function: uses a key to generate an index to 
insert at in hash table 

•  Collision: when more than one record is mapped 
to the same index in the hash table 
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• Where do the 
animals eat? 

•  Records: each 
animal 

•  Keys: where 
each animal eats 
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– Each l -mer can be translated into a binary 
string, key = quaternary(seq) 
(A, T, C, G can be represented as 0, 1, 2, 3) 

– After assigning a unique integer per l -mer it 
is easy to store the starting locations of 
occurance of each l -mer in a genome of length 
n in O(l n) time 
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•  To find repeats in a genome: 
– For all l -mers in the genome, note its starting 

position and the sequence 
– Generate a hash table index for each unique  

l -mer sequence 
–  In each index of the hash table, store all 

genome start locations of the l -mer which 
generated that index 

– Extend l -mer repeats to maximal repeats 
•  Problem as l gets big the number of possible 

patterns becomes larger than the genome’s 
length (4l >> n) 
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• Generate hash keys  
from a reduced space 

   Ex. Key = quaternary(seq) % (N/l) 

•  Leads to possible collisions 
• Dealing with collisions: 

– “Chain” tuples of  
(l-mer, start location) 
pairs in a linked list 
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• When finding genomic repeats from l -mers: 
– Generate a hash table index for each l -mer 

sequence 
–  In each index, store all genome start locations 

of the l -mer which generated that index 
– Extend l -mer repeats to maximal repeats 
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• What if, instead of finding repeats in a genome, 
we want to find all positions of a particular 
sequences in given sequence? 

•  This leads us to a different problem, the Pattern 
Matching Problem 
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•  Goal: Find all occurrences of a pattern in a text 

•  Input: Pattern p = p1…pn and text t = t1…tm 

•  Output: All positions 1< i < (m – n + 1) such that the 
n-letter substring of t starting at i matches p 

•  Motivation: Searching database for a known pattern 
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  PatternMatching(p,t) 
1 n ! length of pattern p 
2 m ! length of text t 
3  for i ! 1 to (m – n + 1) 
4     if ti…ti+n-1 = p 
5        output i 
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•  PatternMatching 
algorithm for: 

– Pattern GCAT 

– Text CGCATC 

GCAT 
CGCATC 
GCAT 

CGCATC 

CGCATC 
GCAT 

CGCATC 

CGCATC 
GCAT 

GCAT 
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•  PatternMatching runtime: O(nm) 

•  Probability-wise, it’s more like O(m) 

– Rarely will there be close to n  
comparisons in line 4 

• Worse case:  
Find “AAAAT” in “AAAAAAAAAAAAAAAT” 

•  Better solution: suffix trees 

– Can solve problem in O(m) time 

– Conceptually related to keyword trees 
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•  Keyword tree: 
– Apple 
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•  Keyword tree: 
– Apple 
– Apropos 
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•  Keyword tree: 
– Apple 
– Apropos 
– Banana 
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•  Keyword tree: 
– Apple 
– Apropos 
– Banana 
– Bandana 
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•  Keyword tree: 
– Apple 
– Apropos 
– Banana 
– Bandana 
– Orange 
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–  Stores a set of keywords in 
a rooted labeled tree 

–  Each edge labeled with a 
letter from an alphabet 

–  Any two edges coming out 
of the same vertex have 
distinct labels 

–  Every keyword stored can 
be spelled on a path from 
root to some leaf 

–  Searches are performed by 
“threading” the target 
pattern through the tree  
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•  Thread “appeal” 
– appeal 
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•  Thread “appeal” 
– appeal 
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•  Thread “appeal” 
– appeal 
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•  Thread “appeal” 
– appeal 
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•  Thread “apple” 
– apple 
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•  Thread “apple” 
– apple 
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•  Thread “apple” 
– apple 
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•  Thread “apple” 
– apple 
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•  Thread “apple” 
– apple 

Now thread “band”, “or”,  
and the nonsense word  
“apro” 

How do you tell “real” words 
from nonsense? (i.e. include 
“band”, “apples”, and “or”,  
but not “appl” and “banan”) 
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•  Goal: Given a set of patterns and a text, find all occurrences of 
any of patterns in text 

•  Input: k patterns p1,…,pk, and text t = t1…tm 

•  Output: Positions 1 < i < m where substring of t starting 
at i matches pj for 1 < j < k 

•  Motivation: Searching database for known multiple 
patterns 
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•  Can solve as k “Pattern Matching Problems” 
– Runtime:  
                    O(kmn)  
   using the PatternMatching algorithm k times 
– m - length of the text 
– n  - average length of the pattern 
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• Or, we could use keyword trees: 
– Build keyword tree in O(N) time; N is total 

length of all patterns 
– With naive threading: O(N + nm) 
– Aho-Corasick algorithm: O(N + m) 
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•  To match patterns 
in a text using a 
keyword tree: 
– Build keyword 

tree of patterns 
– “Thread” the 

text through the 
keyword tree 
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•  Threading is 
“complete” when we 
reach a leaf in the 
keyword tree 

• When threading is 
“complete,” we’ve 
found a pattern in the 
text 
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•  All suffixes of a given 
sequence 

•  Similar to keyword trees, 
except vertices of  
out-degree 1 are removed 
and the “edge” strings on 
either side are merged 
–  Each edge is labeled 

with a substring of a text 
–  All internal vertices have 

at least three edges 
–  Terminal vertices, 

leaves, are labeled by the 
index of the pattern. 

All suffixes of:  
    ATCATG 
     TCATG 
      CATG 
        ATG 
          TG 

      G 
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•  Construct a keyword tree from all suffixes of a text 
•  Collapse non-branching paths into an edge  

(path compression) 

  ATCATG 
    TCATG 
      CATG 
        ATG 
          TG 
        G 

Keyword 
   Tree 

Suffix 
 Tree 

How much time does it take? 

quadratic 

Time is linear in the total size of all suffixes, 
which is quadratic in the length of the text 
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•  With careful bookkeeping a test’s suffix tree can be 
constructed in a single pass of the text  

•  Thus, suffix trees can be built faster than keyword trees of 
suffixes and transforming them 

  ATCATG 
    TCATG 
      CATG 
        ATG 
          TG 
        G 

quadratic Keyword 
   Tree 

Suffix 
 Tree 

linear (Weiner, McCreight & Ukkonen suffix tree algorithms) 



•  Few books, including ours, delve into the details of
 suffix tree construction algorithms due to its reputation
 for being overly complicated. 

•  Weiner’s and McCreight's original linear algorithms for
 constructing a suffix trees had some disadvantages.  

•  Principle among them was the requirement that the tree
 be built in reverse order, meaning that the tree was
 grown incrementally by adding characters from the end
 of the input. 

•  This ruled it out for on-line processing 
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•  Esko Ukkonen’s construction works from left to right. 
•  It’s incremental. Each step transforms the Suffix Tree of

 the prefix ending at the ith character to the Suffix Tree
 ending at the i+1th. 
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Example from Mark Nelson 
Dr. Dobb's Journal, August, 1996 

B BO BOO OO BOOK O K 

K OK 

O 



•  Extensions are done by threading each new prefix
 through the tree and visiting each of the suffixes of the
 current tree.  

•  At each step we start at the longest suffix (BOOK), and
 work our way down to  
the shortest (empty string) 

•  Each ends at a node of three types: 
–  A leaf node (1,2,4,5) 
–  An explicit node (0, 3) 
–  An implicit node (Between characters 

of a substring labeling an edge, such as  
BO, BOO, and OO).  
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0 

1 3 2 

4 5 

BOOK O K 

K OK 



•  There are 5 suffixes in the tree (including the empty
 string) after adding BOOK 

•  They are represented by the root and 4 leaves 
•  Adding the next letter, another ‘K’, 

requires visiting each of the suffixes  
in the existing tree, in order of  
decreasing length, and adding  
letter ‘K’ to its end. 

•  Adding a character to a leaf node 
never creates a new explicit node, 
regardless of the letter 

•  If the root already has an edge labeled 
‘K’ we just extend it 
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0 

1 3 2 

4 5 

O BOOKK KK 

KK OKK 



•  The next step is to add an ‘E’ to our tree 
•  As before, add ‘E’ to each suffix in order of decreasing

 lengths BOOKK, OOKK, OKK, KK, K 
•  The first suffix that does not terminate at a leaf is  called

 the “active point” of the suffix tree 
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0 

1 3 2 

4 5 

O BOOKKE KKE 

KKE OKKE Add ‘E’ to: 
BOOKK 

OOKK 
OKK 

KK 

BOOKKE 

0 

1 3 2 

4 5 

O K 

KKE OKKE 

6 

KE 

Split 

Add ‘E’ to: 
K 

0 

1 3 2 

4 5 

O BOOKKE K 

KKE OKKE 

6 

KE 

7 

E 

Add 
Add ‘E’ to: 

Empty string 



• After updating suffix K, we still have to update
 the next shorter suffix, which is the empty
 string. 
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0 

1 3 2 

4 5 

O BOOKKE K 

KKE OKKE 

6 

KE 

7 

E 

8 
E 



•  Once a leaf node, always a leaf node 
•  Additional characters only extends the edge leading to

 the leaf (leaves are easy) 
•  When adding a new leaf, its edge will represent all

 characters from the ith suffix’s starting point to the i+1st 
 text’s end. Because of this once a leaf is created, we can
 just forget about it. If the edge is later split, its start may
 change but it will extend to the end. 

•  This means that we only need to keep track of the active
 point in each tree, and update from there.   
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•  The algorithm sketch so far glosses over one detail. At
 each step of an update we need to keep track of the next
 smaller suffix from the ith update 

•  To do this a suffix pointer is kept at each internal node 
•  For Pseudo code 

–  Mark Nelson, “Fast String Searching  
with Suffix Trees”  
Dr. Dobb's Journal August, 1996 

•  For proofs of linear  
space/time performance 
–   E. Ukkonen. “On-line  

construction of suffix trees.  
Algorithmica, 14(3):249-260,  
September 1995. 
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The suffix tree for ABABABC with suffix
 pointers shown as dashed lines 
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•  Suffix trees hold all suffixes of a text, T 
–  i.e., ATCGC: ATCGC, TCGC, CGC, GC, C 
– Builds in O(m) time for text of length m 

•  To find any pattern P in a text: 
– Build suffix tree for text, O(m), m = |T| 
– Thread the pattern through the suffix tree 
– Can find pattern in O(n) time! (n = |P|) 

• O(|T| + |P|) time for “Pattern Matching 
Problem” (better than Naïve O(|P||T|) 
– Build suffix tree and lookup pattern 

• Multiple Pattern Matching in O(|T| + k|P|)  
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SuffixTreePatternMatching(p,t) 
1  Build suffix tree for text t 
2  Thread pattern p through suffix tree 
3   if threading is complete 
4     traverse all paths from the threading’s 

   endpoint to leaves and output their  
   positions 

5   else 
6     output “Pattern does not appear in text” 
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the suffix tree for ATGCATACATGG 

Threading the pattern ATG 

ATGCATACATGG  1 
TGCATACATGG  2 

GCATACATGG  3 
CATACATGG  4 

ATACATGG  5 
TACATGG  6 

ACATGG  7 
CATGG  8 

ATGG  9 
TGG 10 

GG 11 
G 12 

12 

What is the shortest pattern that
 occurs only once in the string? 

What letter occurs most frequently? 
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•  Keyword and suffix trees are useful data structures 
supporting various pattern finding problems 

•  Keyword trees: 
– Build keyword tree of patterns,  

and thread text through it 
•  Suffix trees: 

– Build suffix tree of text,  
and thread patterns through it 
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•  In concept, suffix trees are extremely powerful for 
making a variety of queries concerning a sequence 
–  What is the shortest unique substring? 
–  How many times does a given string appear in a text? 

•  Despite the existence of linear-time construction 
algorithms, and O(m) search times, suffix trees are still 
rarely used for genome scale searching 
–  Large storage overhead 

•  Close cousins of the Suffix-Tree (Suffix Arrays and 
Burrows-Wheeler Transforms) are more common 

• Next lecture 


