
3/23/15 Comp 555 Spring 2015 1

3/23/15 Comp 555 Spring 2015 2

•  Problem 1: What patterns appear more likely than
expected by chance?
– ATGGTCTAGGTCCTAGTGGTC

• Motivation to find them:
– Phenotypes arise from copy-number variations
– Genomic rearrangements are often associated

with repeats
– Functional units depend on genomic patterns

•  Origin Recognition Complex (ORC) story

3/23/15 Comp 555 Spring 2015 3

•  Problem 2: Where are the frequently occurring near
matches?
– ATGGTCTAGGACCTAGTGTTC

• Motivation to find them:
– Phenotypes arise from copy-number variations
– Genomic rearrangements are often associated

with repeats
– Functional units depend on genomic patterns

•  Origin Recognition Complex (ORC) story

3/23/15 Comp 555 Spring 2015 4

•  Long repeats are difficult to find
•  Short repeats are easy to find

–  Short repeats are integral to long ones

•  Strategy for finding long repeats:

–  Find exact repeats of short subsequences l -mers
(l is usually 10 to 13)

– Extend l -mer repeated seeds into longer,
 maximal repeats

– Or, consider nearby l-mers frequency and
positions to extend to longer patterns

3/23/15 Comp 555 Spring 2015 5

•  There are typically many locations where an
l -mer is repeated:

 GCTTACAGATTCAGTCTTACAGATGGT

•  The 4-mer TTAC starts at locations 3 and 17

3/23/15 Comp 555 Spring 2015 6

 GCTTACAGATTCAGTCTTACAGATGGT
•  Extend these 4-mer matches:

 GCTTACAGATTCAGTCTTACAGATGGT
• Maximal repeat: CTTACAGAT
• Maximal repeats cannot be extended in either

direction
•  To find maximal repeats in this way, we need

ALL start locations of all l -mers in the genome
• Hashing lets us find repeats quickly in this

manner

3/23/15 Comp 555 Spring 2015 7

• How hashing works…

– Generate an integer “key” from an arbitrary
record

– Store record in an data structure indexed by
this integer key

• Hashing is a very efficient way to store and
retrieve data
–  e.g., Python directories are hashes

3/23/15 Comp 555 Spring 2015 8

• Hash table: array used in hashing

•  Records: data stored in a hash table

•  Keys: identify sets of records

• Hash function: uses a key to generate an index to
insert at in hash table

•  Collision: when more than one record is mapped
to the same index in the hash table

3/23/15 Comp 555 Spring 2015 9

• Where do the
animals eat?

•  Records: each
animal

•  Keys: where
each animal eats

3/23/15 Comp 555 Spring 2015 10

– Each l -mer can be translated into a binary
string, key = quaternary(seq)
(A, T, C, G can be represented as 0, 1, 2, 3)

– After assigning a unique integer per l -mer it
is easy to store the starting locations of
occurance of each l -mer in a genome of length
n in O(l n) time

3/23/15 Comp 555 Spring 2015 11

•  To find repeats in a genome:
– For all l -mers in the genome, note its starting

position and the sequence
– Generate a hash table index for each unique

l -mer sequence
–  In each index of the hash table, store all

genome start locations of the l -mer which
generated that index

– Extend l -mer repeats to maximal repeats
•  Problem as l gets big the number of possible

patterns becomes larger than the genome’s
length (4l >> n)

3/23/15 Comp 555 Spring 2015 12

• Generate hash keys
from a reduced space

 Ex. Key = quaternary(seq) % (N/l)

•  Leads to possible collisions
• Dealing with collisions:

– “Chain” tuples of
(l-mer, start location)
pairs in a linked list

3/23/15 Comp 555 Spring 2015 13

• When finding genomic repeats from l -mers:
– Generate a hash table index for each l -mer

sequence
–  In each index, store all genome start locations

of the l -mer which generated that index
– Extend l -mer repeats to maximal repeats

3/23/15 Comp 555 Spring 2015 14

• What if, instead of finding repeats in a genome,
we want to find all positions of a particular
sequences in given sequence?

•  This leads us to a different problem, the Pattern
Matching Problem

3/23/15 Comp 555 Spring 2015 15

•  Goal: Find all occurrences of a pattern in a text

•  Input: Pattern p = p1…pn and text t = t1…tm

•  Output: All positions 1< i < (m – n + 1) such that the
n-letter substring of t starting at i matches p

•  Motivation: Searching database for a known pattern

3/23/15 Comp 555 Spring 2015 16

 PatternMatching(p,t)
1 n ! length of pattern p
2 m ! length of text t
3  for i ! 1 to (m – n + 1)
4  if ti…ti+n-1 = p
5  output i

3/23/15 Comp 555 Spring 2015 17

•  PatternMatching
algorithm for:

– Pattern GCAT

– Text CGCATC

GCAT
CGCATC
GCAT

CGCATC

CGCATC
GCAT

CGCATC

CGCATC
GCAT

GCAT

3/23/15 Comp 555 Spring 2015 18

•  PatternMatching runtime: O(nm)

•  Probability-wise, it’s more like O(m)

– Rarely will there be close to n
comparisons in line 4

• Worse case:
Find “AAAAT” in “AAAAAAAAAAAAAAAT”

•  Better solution: suffix trees

– Can solve problem in O(m) time

– Conceptually related to keyword trees

3/23/15 Comp 555 Spring 2015 19

•  Keyword tree:
– Apple

3/23/15 Comp 555 Spring 2015 20

•  Keyword tree:
– Apple
– Apropos

3/23/15 Comp 555 Spring 2015 21

•  Keyword tree:
– Apple
– Apropos
– Banana

3/23/15 Comp 555 Spring 2015 22

•  Keyword tree:
– Apple
– Apropos
– Banana
– Bandana

3/23/15 Comp 555 Spring 2015 23

•  Keyword tree:
– Apple
– Apropos
– Banana
– Bandana
– Orange

3/23/15 Comp 555 Spring 2015 24

–  Stores a set of keywords in
a rooted labeled tree

–  Each edge labeled with a
letter from an alphabet

–  Any two edges coming out
of the same vertex have
distinct labels

–  Every keyword stored can
be spelled on a path from
root to some leaf

–  Searches are performed by
“threading” the target
pattern through the tree

3/23/15 Comp 555 Spring 2015 25

•  Thread “appeal”
– appeal

3/23/15 Comp 555 Spring 2015 26

•  Thread “appeal”
– appeal

3/23/15 Comp 555 Spring 2015 27

•  Thread “appeal”
– appeal

3/23/15 Comp 555 Spring 2015 28

•  Thread “appeal”
– appeal

3/23/15 Comp 555 Spring 2015 29

•  Thread “apple”
– apple

3/23/15 Comp 555 Spring 2015 30

•  Thread “apple”
– apple

3/23/15 Comp 555 Spring 2015 31

•  Thread “apple”
– apple

3/23/15 Comp 555 Spring 2015 32

•  Thread “apple”
– apple

3/23/15 Comp 555 Spring 2015 33

•  Thread “apple”
– apple

Now thread “band”, “or”,
and the nonsense word
“apro”

How do you tell “real” words
from nonsense? (i.e. include
“band”, “apples”, and “or”,
but not “appl” and “banan”)

3/23/15 Comp 555 Spring 2015 34

•  Goal: Given a set of patterns and a text, find all occurrences of
any of patterns in text

•  Input: k patterns p1,…,pk, and text t = t1…tm

•  Output: Positions 1 < i < m where substring of t starting
at i matches pj for 1 < j < k

•  Motivation: Searching database for known multiple
patterns

3/23/15 Comp 555 Spring 2015 35

•  Can solve as k “Pattern Matching Problems”
– Runtime:
 O(kmn)
 using the PatternMatching algorithm k times
– m - length of the text
– n - average length of the pattern

3/23/15 Comp 555 Spring 2015 36

• Or, we could use keyword trees:
– Build keyword tree in O(N) time; N is total

length of all patterns
– With naive threading: O(N + nm)
– Aho-Corasick algorithm: O(N + m)

3/23/15 Comp 555 Spring 2015 37

•  To match patterns
in a text using a
keyword tree:
– Build keyword

tree of patterns
– “Thread” the

text through the
keyword tree

3/23/15 Comp 555 Spring 2015 38

•  Threading is
“complete” when we
reach a leaf in the
keyword tree

• When threading is
“complete,” we’ve
found a pattern in the
text

3/23/15 Comp 555 Spring 2015 39

•  All suffixes of a given
sequence

•  Similar to keyword trees,
except vertices of
out-degree 1 are removed
and the “edge” strings on
either side are merged
–  Each edge is labeled

with a substring of a text
–  All internal vertices have

at least three edges
–  Terminal vertices,

leaves, are labeled by the
index of the pattern.

All suffixes of:
 ATCATG 
 TCATG 
 CATG 
 ATG 
 TG 

 G

3/23/15 Comp 555 Spring 2015 40

•  Construct a keyword tree from all suffixes of a text
•  Collapse non-branching paths into an edge

(path compression)

 ATCATG 
 TCATG 
 CATG 
 ATG 
 TG 
 G

Keyword
 Tree

Suffix
 Tree

How much time does it take?

quadratic

Time is linear in the total size of all suffixes,
which is quadratic in the length of the text

3/23/15 Comp 555 Spring 2015 41

•  With careful bookkeeping a test’s suffix tree can be
constructed in a single pass of the text

•  Thus, suffix trees can be built faster than keyword trees of
suffixes and transforming them

 ATCATG 
 TCATG 
 CATG 
 ATG 
 TG 
 G

quadratic Keyword
 Tree

Suffix
 Tree

linear (Weiner, McCreight & Ukkonen suffix tree algorithms)

•  Few books, including ours, delve into the details of
 suffix tree construction algorithms due to its reputation
 for being overly complicated.

•  Weiner’s and McCreight's original linear algorithms for
 constructing a suffix trees had some disadvantages.

•  Principle among them was the requirement that the tree
 be built in reverse order, meaning that the tree was
 grown incrementally by adding characters from the end
 of the input.

•  This ruled it out for on-line processing

3/23/15 Comp 555 Spring 2015 42

•  Esko Ukkonen’s construction works from left to right.
•  It’s incremental. Each step transforms the Suffix Tree of

 the prefix ending at the ith character to the Suffix Tree
 ending at the i+1th.

3/23/15 Comp 555 Spring 2015 43

Example from Mark Nelson
Dr. Dobb's Journal, August, 1996

B BO BOO OO BOOK O K

K OK

O

•  Extensions are done by threading each new prefix
 through the tree and visiting each of the suffixes of the
 current tree.

•  At each step we start at the longest suffix (BOOK), and
 work our way down to
the shortest (empty string)

•  Each ends at a node of three types:
–  A leaf node (1,2,4,5)
–  An explicit node (0, 3)
–  An implicit node (Between characters

of a substring labeling an edge, such as
BO, BOO, and OO).

3/23/15 Comp 555 Spring 2015 44

0

1 3 2

4 5

BOOK O K

K OK

•  There are 5 suffixes in the tree (including the empty
 string) after adding BOOK

•  They are represented by the root and 4 leaves
•  Adding the next letter, another ‘K’,

requires visiting each of the suffixes
in the existing tree, in order of
decreasing length, and adding
letter ‘K’ to its end.

•  Adding a character to a leaf node
never creates a new explicit node,
regardless of the letter

•  If the root already has an edge labeled
‘K’ we just extend it

3/23/15 Comp 555 Spring 2015 45

0

1 3 2

4 5

O BOOKK KK

KK OKK

•  The next step is to add an ‘E’ to our tree
•  As before, add ‘E’ to each suffix in order of decreasing

 lengths BOOKK, OOKK, OKK, KK, K
•  The first suffix that does not terminate at a leaf is called

 the “active point” of the suffix tree

3/23/15 Comp 555 Spring 2015 46

0

1 3 2

4 5

O BOOKKE KKE

KKE OKKE Add ‘E’ to:
BOOKK

OOKK
OKK

KK

BOOKKE

0

1 3 2

4 5

O K

KKE OKKE

6

KE

Split

Add ‘E’ to:
K

0

1 3 2

4 5

O BOOKKE K

KKE OKKE

6

KE

7

E

Add
Add ‘E’ to:

Empty string

• After updating suffix K, we still have to update
 the next shorter suffix, which is the empty
 string.

3/23/15 Comp 555 Spring 2015 47

0

1 3 2

4 5

O BOOKKE K

KKE OKKE

6

KE

7

E

8
E

•  Once a leaf node, always a leaf node
•  Additional characters only extends the edge leading to

 the leaf (leaves are easy)
•  When adding a new leaf, its edge will represent all

 characters from the ith suffix’s starting point to the i+1st
 text’s end. Because of this once a leaf is created, we can
 just forget about it. If the edge is later split, its start may
 change but it will extend to the end.

•  This means that we only need to keep track of the active
 point in each tree, and update from there.

3/23/15 Comp 555 Spring 2015 48

•  The algorithm sketch so far glosses over one detail. At
 each step of an update we need to keep track of the next
 smaller suffix from the ith update

•  To do this a suffix pointer is kept at each internal node
•  For Pseudo code

–  Mark Nelson, “Fast String Searching
with Suffix Trees”
Dr. Dobb's Journal August, 1996

•  For proofs of linear
space/time performance
–  E. Ukkonen. “On-line

construction of suffix trees.
Algorithmica, 14(3):249-260,
September 1995.

3/23/15 Comp 555 Spring 2015 49

The suffix tree for ABABABC with suffix
 pointers shown as dashed lines

3/23/15 Comp 555 Spring 2015 50

•  Suffix trees hold all suffixes of a text, T
–  i.e., ATCGC: ATCGC, TCGC, CGC, GC, C
– Builds in O(m) time for text of length m

•  To find any pattern P in a text:
– Build suffix tree for text, O(m), m = |T|
– Thread the pattern through the suffix tree
– Can find pattern in O(n) time! (n = |P|)

• O(|T| + |P|) time for “Pattern Matching
Problem” (better than Naïve O(|P||T|)
– Build suffix tree and lookup pattern

• Multiple Pattern Matching in O(|T| + k|P|)

3/23/15 Comp 555 Spring 2015 51

SuffixTreePatternMatching(p,t)
1  Build suffix tree for text t
2  Thread pattern p through suffix tree
3   if threading is complete
4  traverse all paths from the threading’s 

 endpoint to leaves and output their  
 positions

5   else
6  output “Pattern does not appear in text”

3/23/15 Comp 555 Spring 2015 52

the suffix tree for ATGCATACATGG

Threading the pattern ATG

ATGCATACATGG 1
TGCATACATGG 2

GCATACATGG 3
CATACATGG 4

ATACATGG 5
TACATGG 6

ACATGG 7
CATGG 8

ATGG 9
TGG 10

GG 11
G 12

12

What is the shortest pattern that
 occurs only once in the string?

What letter occurs most frequently?

3/23/15 Comp 555 Spring 2015 53

•  Keyword and suffix trees are useful data structures
supporting various pattern finding problems

•  Keyword trees:
– Build keyword tree of patterns,

and thread text through it
•  Suffix trees:

– Build suffix tree of text,
and thread patterns through it

3/23/15 Comp 555 Spring 2015 54

•  In concept, suffix trees are extremely powerful for
making a variety of queries concerning a sequence
–  What is the shortest unique substring?
–  How many times does a given string appear in a text?

•  Despite the existence of linear-time construction
algorithms, and O(m) search times, suffix trees are still
rarely used for genome scale searching
–  Large storage overhead

•  Close cousins of the Suffix-Tree (Suffix Arrays and
Burrows-Wheeler Transforms) are more common

• Next lecture

