Lecture 16:
 Combinatorial Pattern Matching

Study Chapter 9.1-9.5

Repeat Finding

- Example of repeats:
- ATGGTCTAGGTCCTAGTGGTC
- Motivation to find them:
- Phenotypes arise from copy-number variations
- Genomic rearrangements are often associated with repeats
- Trace evolutionary secrets
- Many tumors are characterized by an explosion of repeats

Repeat Finding

- Near matches are more difficult:
- ATGGTCTAGGACCTAGTGTTC
- Motivation to find them:
- Phenotypes arise from copy-number variations
- Genomic rearrangements are often associated with repeats
- Trace evolutionary secrets
- Many tumors are characterized by an explosion of repeats

/-mer Repeats

- Long repeats are difficult to find
- Short repeats are easy to find
- Strategy for finding long repeats:
- Find exact repeats of short ℓ-mers (\subset is usually 10 to 13)
- Extend ℓ-mer repeated seeds into longer, maximal repeats

f-mer Repeats (cont'd)

- There are typically many locations where an ρ-mer is repeated:

GCTTACAGATTCAGTCTTACAGATGGT

- The 4-mer TTAC starts at locations 3 and 17

Extending l-mer Repeats

GCTTACAGATTCAGTCTTACAGATGGT

- Extend these 4-mer matches:

GCTTACAGATTCAGTCTTACAGATGGT

- Maximal repeat: CTTACAGAT
- Maximal repeats cannot be extended in either direction
- To find maximal repeats in this way, we need ALL start locations of all κ-mers in the genome
- Hashing lets us find repeats quickly in this manner

Hashing: What is it?

- How hashing works...
- Generate an integer "key" from an arbitrary record
- Store record in an data structure indexed by this integer key
- Hashing is a very efficient way to store and retrieve data
- e.g., Python directories are hashes

Hashing: Definitions

- Hash table: array used in hashing
- Records: data stored in a hash table
- Keys: identify sets of records
- Hash function: uses a key to generate an index to insert at in hash table
- Collision: when more than one record is mapped to the same index in the hash table

Hashing: Example

- Where do the animals eat?
- Records: each animal
- Keys: where each animal eats

Hashing DNA sequences

- Each ℓ-mer can be translated into a binary string, key = quaternary(seq) (A, T, C, G can be represented as $\mathbf{0 , 1 , 2 , 3}$)
- After assigning a unique integer per κ-mer it is easy to store the starting locations of occurance of each κ-mer in a genome of length n in $\mathrm{O}(l n)$ time

Hashing: Maximal Repeats

- To find repeats in a genome:
- For all κ-mers in the genome, note its starting position and the sequence
- Generate a hash table index for each unique ρ-mer sequence
- In each index of the hash table, store all genome start locations of the κ-mer which generated that index
- Extend κ-mer repeats to maximal repeats
- Problem as l gets big the number of possible patterns becomes larger than the genome's length ($4^{l} \gg \mathrm{n}$)

Hashing: Collisions

- Generate hash keys
from a reduced space

Ex. Key = quaternary (seq) \% (N/l)

- Leads to possible collisions
- Dealing with collisions:
- "Chain" tuples of (l-mer, start location) pairs in a linked list

Hashing: Summary

- When finding genomic repeats from κ-mers:
- Generate a hash table index for each $\mathcal{\ell}$-mer sequence
- In each index, store all genome start locations of the ℓ-mer which generated that index
- Extend Ω-mer repeats to maximal repeats

Pattern Matching

- What if, instead of finding repeats in a genome, we want to find all positions of a particular sequences in given sequence?
- This leads us to a different problem, the Pattern Matching Problem

Pattern Matching Problem

- Goal: Find all occurrences of a pattern in a text
- Input: Pattern $\boldsymbol{p}=p_{1} \ldots p_{n}$ and text $t=t_{1} \ldots t_{m}$
- Output: All positions $1 \leq i \leq(m-n+1)$ such that the n-letter substring of t starting at i matches p
- Motivation: Searching database for a known pattern

Exact Pattern Matching: A Brute-Force

 AlgorithmPatternMatching(p,t)
$1 n \leftarrow$ length of pattern p
$2 m \leftarrow$ length of text t
3 for $i \leftarrow 1$ to $(m-n+1)$
4 if $t_{i} \ldots t_{i+n-1}=\mathrm{p}$
5 output i

Exact Pattern Matching: An Example

- PatternMatching algorithm for:
- Pattern GCAT
- Text CGCATC

CGCATC

CGCATC CGCATC CGCATC

CGCATC

Exact Pattern Matching: Running Time

- PatternMatching runtime: $\mathrm{O}(\mathrm{nm})$
- Probability-wise, it's more like $\mathrm{O}(m)$
- Rarely will there be close to n
comparisons in line 4
- Worse case: Find "AAAAT" in "AAAAAAAAAAAAAAAT"
- Better solution: suffix trees
- Can solve problem in $\mathrm{O}(m)$ time
- Conceptually related to keyword trees

Keyword Trees: Example

- Keyword tree:
- Apple

Keyword Trees: Example (cont'd)

- Keyword tree:
- Apple
- Apropos

Keyword Trees: Example (cont'd)

- Keyword tree:
- Apple
- Apropos
- Banana

Keyword Trees: Example (cont'd)

- Keyword tree:
- Apple
- Apropos
- Banana
- Bandana

Keyword Trees: Example (cont'd)

- Keyword tree:
- Apple
- Apropos
- Banana
- Bandana
- Orange

Keyword Trees: Properties

- Stores a set of keywords in a rooted labeled tree
- Each edge labeled with a letter from an alphabet
- Any two edges coming out of the same vertex have distinct labels
- Every keyword stored can be spelled on a path from root to some leaf
- Searches are performed by "threading" the target pattern through the tree

Keyword Trees: Threading (cont'd)

- Thread "appeal"
- appeal

Keyword Trees: Threading (cont'd)

- Thread "appeal"
- appeal

Keyword Trees: Threading (cont'd)

- Thread "appeal"
- appeal

Keyword Trees: Threading (cont'd)

- Thread "appeal"
- appeal

Keyword Trees: Threading (cont'd)

- Thread "apple"
- apple

Keyword Trees: Threading (cont'd)

- Thread "apple"
- apple

Keyword Trees: Threading (cont'd)

- Thread "apple"
- apple

Keyword Trees: Threading (cont'd)

- Thread "apple"
- apple

Keyword Trees: Threading (cont'd)

- Thread "apple"
- apple

Now thread "band", "or", and the nonsense word "apro"

How do you tell "real" words from nonsense?
(Homework problem)

Multiple Pattern Matching Problem

- Goal: Given a set of patterns and a text, find all occurrences of any of patterns in text
- Input: k patterns $\mathbf{p}^{1}, \ldots, \mathbf{p}^{k}$, and text $\mathbf{t}=t_{1} \ldots t_{m}$
- Output: Positions $1 \leq i \leq m$ where substring of \mathbf{t} starting at i matches \mathbf{p}_{j} for $1 \leq j \leq k$
- Motivation: Searching database for known multiple patterns

Multiple Pattern Matching: Straightforward Approach

- Can solve as k "Pattern Matching Problems"
- Runtime:

O(kmn)

using the PatternMatching algorithm k times
$-m$ - length of the text

- n - average length of the pattern

Multiple Pattern Matching:
 Keyword Tree Approach

- Or, we could use keyword trees:
- Build keyword tree in $\mathrm{O}(N)$ time; N is total length of all patterns
- With naive threading: $\mathrm{O}(N+n m)$
- Aho-Corasick algorithm: $\mathrm{O}(N+m)$

Keyword Trees: Threading

- To match patterns in a text using a keyword tree:
- Build keyword tree of patterns
_ "Thread" the text through the keyword tree

drive were proud to say that they were perfectly normal thank you very much"

Keyword Trees: Threading

- Threading is "complete" when we reach a leaf in the keyword tree
- When threading is "complete," we've found a pattern in the text
$\mathrm{t}=$ "nut and nors duresien os nunuber $4 \times$ rivet
drive were proud to say that they were perfectly normal thank you very much"

Suffix Trees=Collapsed Keyword Trees

- All suffixes of a given sequence
- Similar to keyword trees, except vertices of degree 2 are removed and the strings on either side are merged
- Each edge is labeled with a substring of a text
- All internal vertices have at least three edges
- Terminal vertices, leaves, are labeled by th ϵ index of the pattern.

(a) Keyword tree

Suffix Tree of a Text

- Construct a keyword tree from all suffixes of a text
- Collapse non-branching paths into an edge (path compression)
ATCATG
TCATG CATG ATG TG

How much time does it take?
G Time is linear in the total size of all suffixes, which is quadratic in the length of the text

Suffix Trees: Advantages

- With careful bookkeeping a test's suffix tree can be constructed in a single pass of the text
- Thus, suffix trees can be built faster than keyword trees of suffixes and transforming them
ATCATG
TCATG CATG ATG TG

G linear (Weiner, McCreight \& Ukkonen suffix tree algorithms)

Suffix Tree Construction

- Few books, including ours, delve into the details of suffix tree construction algorithms due to its reputation for being overly complicated.
- Weiner's and McCreight's original linear algorithms for constructing a suffix trees had some disadvantages.
- Principle among them was the requirement that the tree be built in reverse order, meaning that the tree was grown incrementally by adding characters from the end of the input.
- This ruled it out for on-line processing

Ukkonen's Clever Bookkeeping

- Esko Ukkonen's construction works from left to right.
- It's incremental. Each step transforms the Suffix Tree of the prefix ending at the $\mathrm{i}^{\text {th }}$ character to the Suffix Tree ending at the $\mathrm{i}+1^{\text {th }}$.

Dr. Dobb's Journal, August, 1996

Tree Properties

- Extensions are done by threading each new prefix through the tree and visiting each of the suffixes of the current tree.
- At each step we start at the longest suffix (BOOK), and work our way down to the shortest (empty string)
- Each ends at a node of three types:
- A leaf node $(1,2,4,5)$
- An explicit node $(0,3)$
- An implicit node (Between characters of a substring labeling an edge, such as $\mathrm{BO}, \mathrm{BOO}$, and OO).

Observations

- There are 5 suffixes in the tree (including the empty string) after adding BOOK
- They are represented by the root and 4 leaves
- Adding the next letter, another ' K^{\prime}, requires visiting each of the suffixes in the existing tree, in order of decreasing length, and adding letter ' K ' to its end.
- Adding a character to a leaf node never creates a new explicit node, regardless of the letter
- If the root already has an edge labeled 'K' we just extend it

Split and Add Update

- The next step is to add an ' E ' to our tree
- As before, add ' E ' to each suffix in order of decreasing lengths BOOKK, OOKK, OKK, KK, K
- The first suffix that does not terminate at a leaf is called the "active point" of the suffix tree

Updating an Explicit Node

- After updating suffix K, we still have to update the next shorter suffix, which is the empty string.

Generalizing

- Once a leaf node, always a leaf node
- Additional characters only extends the edge leading to the leaf (leaves are easy)
- When adding a new leaf, its edge will represent all characters from the $\mathrm{i}^{\text {th }}$ suffix's starting point to the $\mathrm{i}+1^{\text {st }}$ text's end. Because of this once a leaf is created, we can just forget about it. If the edge is later split, its start may change but it will extend to the end.
- This means that we only need to keep track of the active point in each tree, and update from there.

One Last Detail

- The algorithm sketch so far glosses over one detail. At each step of an update we need to keep track of the next smaller suffix from the $i^{\text {th }}$ update
- To do this a suffix pointer is kept at each internal node
- For Pseudo code
- Mark Nelson, "Fast String Searching with Suffix Trees"
Dr. Dobb's Journal August, 1996
- For proofs of linear space/time performance
- E. Ukkonen. "On-line construction of suffix trees. Algorithmica, 14(3):249-260, September 1995.

The suffix tree for ABABABC with suffix pointers shown as dashed lines

Use of Suffix Trees

- Suffix trees hold all suffixes of a text, T
- i.e., ATCGC: ATCGC, TCGC, CGC, GC, C
- Builds in $\mathrm{O}(m)$ time for text of length m
- To find any pattern P in a text:
- Build suffix tree for text, $\mathrm{O}(m), m=|T|$
- Thread the pattern through the suffix tree
- Can find pattern in $\mathrm{O}(n)$ time! $(n=|P|)$
- $\mathrm{O}(|\boldsymbol{T}|+|\boldsymbol{P}|)$ time for "Pattern Matching Problem" (better than Naïve $\mathrm{O}(|\boldsymbol{P}||\boldsymbol{T}|)$
- Build suffix tree and lookup pattern
- Multiple Pattern Matching in $\mathrm{O}(|\boldsymbol{T}|+k|\boldsymbol{P}|)$

Pattern Matching with Suffix Trees

SuffixTreePatternMatching(p,t)

1 Build suffix tree for text t
2 Thread pattern p through suffix tree
3 if threading is complete
4 traverse all paths from the threading's endpoint to leaves and output their positions
5 else
6 output "Pattern does not appear in text"

Suffix Trees: Example

Threading the pattern ATG
What letter occurs most frequently? What is the shortest pattern that

Multiple Pattern Matching: Summary

- Keyword and suffix trees are useful data structures supporting various pattern finding problems
- Keyword trees:
- Build keyword tree of patterns, and thread text through it
- Suffix trees:
- Build suffix tree of text, and thread patterns through it

Suffix Trees: Theory vs. Practice

- In concept, suffix trees are extremely powerful for making a variety of queries concerning a sequence
- What is the shortest unique substring?
- How many times does a given string appear in a text?
- Despite the existence of linear-time construction algorithms, and $O(m)$ search times, suffix trees are still rarely used for genome scale searching
- Large storage overhead
- Close cousins of the Suffix-Tree (Suffix Arrays and Burrows-Wheeler Transforms) are more common
- Next lecture

