
11/5/13 Comp 555 Fall 2013 1

11/5/13 Comp 555 Fall 2013 2

•  Example of repeats:
– ATGGTCTAGGTCCTAGTGGTC

• Motivation to find them:
– Phenotypes arise from copy-number

variations
– Genomic rearrangements are often associated

with repeats
– Trace evolutionary secrets
– Many tumors are characterized by an

explosion of repeats

11/5/13 Comp 555 Fall 2013 3

• Near matches are more difficult:
– ATGGTCTAGGACCTAGTGTTC

• Motivation to find them:
– Phenotypes arise from copy-number

variations
– Genomic rearrangements are often associated

with repeats
– Trace evolutionary secrets
– Many tumors are characterized by an

explosion of repeats

11/5/13 Comp 555 Fall 2013 4

•  Long repeats are difficult to find
•  Short repeats are easy to find

•  Strategy for finding long repeats:

–  Find exact repeats of short l -mers
(l is usually 10 to 13)

– Extend l -mer repeated seeds into longer,
 maximal repeats

11/5/13 Comp 555 Fall 2013 5

•  There are typically many locations where an
l -mer is repeated:

 GCTTACAGATTCAGTCTTACAGATGGT

•  The 4-mer TTAC starts at locations 3 and 17

11/5/13 Comp 555 Fall 2013 6

 GCTTACAGATTCAGTCTTACAGATGGT
•  Extend these 4-mer matches:

 GCTTACAGATTCAGTCTTACAGATGGT
• Maximal repeat: CTTACAGAT
• Maximal repeats cannot be extended in either

direction
•  To find maximal repeats in this way, we need

ALL start locations of all l -mers in the genome
• Hashing lets us find repeats quickly in this

manner

11/5/13 Comp 555 Fall 2013 7

• How hashing works…

– Generate an integer “key” from an arbitrary
record

– Store record in an data structure indexed by
this integer key

• Hashing is a very efficient way to store and
retrieve data
–  e.g., Python directories are hashes

11/5/13 Comp 555 Fall 2013 8

• Hash table: array used in hashing

•  Records: data stored in a hash table

•  Keys: identify sets of records

• Hash function: uses a key to generate an index to
insert at in hash table

•  Collision: when more than one record is mapped
to the same index in the hash table

11/5/13 Comp 555 Fall 2013 9

• Where do the
animals eat?

•  Records: each
animal

•  Keys: where
each animal eats

11/5/13 Comp 555 Fall 2013 10

– Each l -mer can be translated into a binary
string, key = quaternary(seq)
(A, T, C, G can be represented as 0, 1, 2, 3)

– After assigning a unique integer per l -mer it
is easy to store the starting locations of
occurance of each l -mer in a genome of length
n in O(l n) time

11/5/13 Comp 555 Fall 2013 11

•  To find repeats in a genome:
– For all l -mers in the genome, note its starting

position and the sequence
– Generate a hash table index for each unique

l -mer sequence
–  In each index of the hash table, store all

genome start locations of the l -mer which
generated that index

– Extend l -mer repeats to maximal repeats
•  Problem as l gets big the number of possible

patterns becomes larger than the genome’s
length (4l >> n)

11/5/13 Comp 555 Fall 2013 12

• Generate hash keys
from a reduced space

 Ex. Key = quaternary(seq) % (N/l)

•  Leads to possible collisions
• Dealing with collisions:

– “Chain” tuples of
(l-mer, start location)
pairs in a linked list

11/5/13 Comp 555 Fall 2013 13

• When finding genomic repeats from l -mers:
– Generate a hash table index for each l -mer

sequence
–  In each index, store all genome start locations

of the l -mer which generated that index
– Extend l -mer repeats to maximal repeats

11/5/13 Comp 555 Fall 2013 14

• What if, instead of finding repeats in a genome,
we want to find all positions of a particular
sequences in given sequence?

•  This leads us to a different problem, the Pattern
Matching Problem

11/5/13 Comp 555 Fall 2013 15

•  Goal: Find all occurrences of a pattern in a text

•  Input: Pattern p = p1…pn and text t = t1…tm

•  Output: All positions 1< i < (m – n + 1) such that the
n-letter substring of t starting at i matches p

•  Motivation: Searching database for a known pattern

11/5/13 Comp 555 Fall 2013 16

 PatternMatching(p,t)
1 n  length of pattern p
2 m  length of text t
3  for i  1 to (m – n + 1)
4  if ti…ti+n-1 = p
5  output i

11/5/13 Comp 555 Fall 2013 17

•  PatternMatching
algorithm for:

– Pattern GCAT

– Text CGCATC

GCAT
CGCATC
GCAT

CGCATC

CGCATC
GCAT

CGCATC

CGCATC
GCAT

GCAT

11/5/13 Comp 555 Fall 2013 18

•  PatternMatching runtime: O(nm)

•  Probability-wise, it’s more like O(m)

– Rarely will there be close to n
comparisons in line 4

• Worse case:
Find “AAAAT” in “AAAAAAAAAAAAAAAT”

•  Better solution: suffix trees

– Can solve problem in O(m) time

– Conceptually related to keyword trees

11/5/13 Comp 555 Fall 2013 19

•  Keyword tree:
– Apple

11/5/13 Comp 555 Fall 2013 20

•  Keyword tree:
– Apple
– Apropos

11/5/13 Comp 555 Fall 2013 21

•  Keyword tree:
– Apple
– Apropos
– Banana

11/5/13 Comp 555 Fall 2013 22

•  Keyword tree:
– Apple
– Apropos
– Banana
– Bandana

11/5/13 Comp 555 Fall 2013 23

•  Keyword tree:
– Apple
– Apropos
– Banana
– Bandana
– Orange

11/5/13 Comp 555 Fall 2013 24

–  Stores a set of keywords in
a rooted labeled tree

–  Each edge labeled with a
letter from an alphabet

–  Any two edges coming out
of the same vertex have
distinct labels

–  Every keyword stored can
be spelled on a path from
root to some leaf

–  Searches are performed by
“threading” the target
pattern through the tree

11/5/13 Comp 555 Fall 2013 25

•  Thread “appeal”
– appeal

11/5/13 Comp 555 Fall 2013 26

•  Thread “appeal”
– appeal

11/5/13 Comp 555 Fall 2013 27

•  Thread “appeal”
– appeal

11/5/13 Comp 555 Fall 2013 28

•  Thread “appeal”
– appeal

11/5/13 Comp 555 Fall 2013 29

•  Thread “apple”
– apple

11/5/13 Comp 555 Fall 2013 30

•  Thread “apple”
– apple

11/5/13 Comp 555 Fall 2013 31

•  Thread “apple”
– apple

11/5/13 Comp 555 Fall 2013 32

•  Thread “apple”
– apple

11/5/13 Comp 555 Fall 2013 33

•  Thread “apple”
– apple

Now thread “band”, “or”,
and the nonsense word
“apro”

How do you tell “real” words
from nonsense?
(Homework problem)

11/5/13 Comp 555 Fall 2013 34

•  Goal: Given a set of patterns and a text, find all occurrences of
any of patterns in text

•  Input: k patterns p1,…,pk, and text t = t1…tm

•  Output: Positions 1 < i < m where substring of t starting
at i matches pj for 1 < j < k

•  Motivation: Searching database for known multiple
patterns

11/5/13 Comp 555 Fall 2013 35

•  Can solve as k “Pattern Matching Problems”
– Runtime:
 O(kmn)
 using the PatternMatching algorithm k times
– m - length of the text
– n - average length of the pattern

11/5/13 Comp 555 Fall 2013 36

• Or, we could use keyword trees:
– Build keyword tree in O(N) time; N is total

length of all patterns
– With naive threading: O(N + nm)
– Aho-Corasick algorithm: O(N + m)

11/5/13 Comp 555 Fall 2013 37

•  To match patterns
in a text using a
keyword tree:
– Build keyword

tree of patterns
– “Thread” the

text through the
keyword tree

11/5/13 Comp 555 Fall 2013 38

•  Threading is
“complete” when we
reach a leaf in the
keyword tree

• When threading is
“complete,” we’ve
found a pattern in the
text

11/5/13 Comp 555 Fall 2013 39

•  All suffixes of a given
sequence

•  Similar to keyword trees,
except vertices of degree 2
are removed and the strings
on either side are merged
–  Each edge is labeled

with a substring of a text
–  All internal vertices have

at least three edges
–  Terminal vertices,

leaves, are labeled by the
index of the pattern.

All suffixes of:
 ATCATG 
 TCATG 
 CATG 
 ATG 
 TG 

 G

11/5/13 Comp 555 Fall 2013 40

•  Construct a keyword tree from all suffixes of a text
•  Collapse non-branching paths into an edge

(path compression)

 ATCATG 
 TCATG 
 CATG 
 ATG 
 TG 
 G

Keyword
 Tree

Suffix
 Tree

How much time does it take?

quadratic

Time is linear in the total size of all suffixes,
which is quadratic in the length of the text

11/5/13 Comp 555 Fall 2013 41

•  With careful bookkeeping a test’s suffix tree can be
constructed in a single pass of the text

•  Thus, suffix trees can be built faster than keyword trees of
suffixes and transforming them

 ATCATG 
 TCATG 
 CATG 
 ATG 
 TG 
 G

quadratic Keyword
 Tree

Suffix
 Tree

linear (Weiner, McCreight & Ukkonen suffix tree algorithms)

•  Few books, including ours, delve into the details of
 suffix tree construction algorithms due to its reputation
 for being overly complicated.

•  Weiner’s and McCreight's original linear algorithms for
 constructing a suffix trees had some disadvantages.

•  Principle among them was the requirement that the tree
 be built in reverse order, meaning that the tree was
 grown incrementally by adding characters from the end
 of the input.

•  This ruled it out for on-line processing

11/5/13 Comp 555 Fall 2013 42

•  Esko Ukkonen’s construction works from left to right.
•  It’s incremental. Each step transforms the Suffix Tree of

 the prefix ending at the ith character to the Suffix Tree
 ending at the i+1th.

11/5/13 Comp 555 Fall 2013 43

Example from Mark Nelson
Dr. Dobb's Journal, August, 1996

B BO BOO OO BOOK O K

K OK

O

•  Extensions are done by threading each new prefix
 through the tree and visiting each of the suffixes of the
 current tree.

•  At each step we start at the longest suffix (BOOK), and
 work our way down to
the shortest (empty string)

•  Each ends at a node of three types:
–  A leaf node (1,2,4,5)
–  An explicit node (0, 3)
–  An implicit node (Between characters

of a substring labeling an edge, such as
BO, BOO, and OO).

11/5/13 Comp 555 Fall 2013 44

0

1 3 2

4 5

BOOK O K

K OK

•  There are 5 suffixes in the tree (including the empty
 string) after adding BOOK

•  They are represented by the root and 4 leaves
•  Adding the next letter, another ‘K’,

requires visiting each of the suffixes
in the existing tree, in order of
decreasing length, and adding
letter ‘K’ to its end.

•  Adding a character to a leaf node
never creates a new explicit node,
regardless of the letter

•  If the root already has an edge labeled
‘K’ we just extend it

11/5/13 Comp 555 Fall 2013 45

0

1 3 2

4 5

O BOOKK KK

KK OKK

•  The next step is to add an ‘E’ to our tree
•  As before, add ‘E’ to each suffix in order of decreasing

 lengths BOOKK, OOKK, OKK, KK, K
•  The first suffix that does not terminate at a leaf is called

 the “active point” of the suffix tree

11/5/13 Comp 555 Fall 2013 46

0

1 3 2

4 5

O BOOKKE KKE

KKE OKKE Add ‘E’ to:
BOOKK

OOKK
OKK

KK

BOOKKE

0

1 3 2

4 5

O K

KKE OKKE

6

KE

Split

Add ‘E’ to:
K

0

1 3 2

4 5

O BOOKKE K

KKE OKKE

6

KE

7

E

Add
Add ‘E’ to:

Empty string

• After updating suffix K, we still have to update
 the next shorter suffix, which is the empty
 string.

11/5/13 Comp 555 Fall 2013 47

0

1 3 2

4 5

O BOOKKE K

KKE OKKE

6

KE

7

E

8
E

•  Once a leaf node, always a leaf node
•  Additional characters only extends the edge leading to

 the leaf (leaves are easy)
•  When adding a new leaf, its edge will represent all

 characters from the ith suffix’s starting point to the i+1st
 text’s end. Because of this once a leaf is created, we can
 just forget about it. If the edge is later split, its start may
 change but it will extend to the end.

•  This means that we only need to keep track of the active
 point in each tree, and update from there.

11/5/13 Comp 555 Fall 2013 48

•  The algorithm sketch so far glosses over one detail. At
 each step of an update we need to keep track of the next
 smaller suffix from the ith update

•  To do this a suffix pointer is kept at each internal node
•  For Pseudo code

–  Mark Nelson, “Fast String Searching
with Suffix Trees”
Dr. Dobb's Journal August, 1996

•  For proofs of linear
space/time performance
–  E. Ukkonen. “On-line

construction of suffix trees.
Algorithmica, 14(3):249-260,
September 1995.

11/5/13 Comp 555 Fall 2013 49

The suffix tree for ABABABC with suffix
 pointers shown as dashed lines

11/5/13 Comp 555 Fall 2013 50

•  Suffix trees hold all suffixes of a text, T
–  i.e., ATCGC: ATCGC, TCGC, CGC, GC, C
– Builds in O(m) time for text of length m

•  To find any pattern P in a text:
– Build suffix tree for text, O(m), m = |T|
– Thread the pattern through the suffix tree
– Can find pattern in O(n) time! (n = |P|)

• O(|T| + |P|) time for “Pattern Matching
Problem” (better than Naïve O(|P||T|)
– Build suffix tree and lookup pattern

• Multiple Pattern Matching in O(|T| + k|P|)

11/5/13 Comp 555 Fall 2013 51

SuffixTreePatternMatching(p,t)
1  Build suffix tree for text t
2  Thread pattern p through suffix tree
3   if threading is complete
4  traverse all paths from the threading’s 

 endpoint to leaves and output their  
 positions

5   else
6  output “Pattern does not appear in text”

11/5/13 Comp 555 Fall 2013 52

the suffix tree for ATGCATACATGG

Threading the pattern ATG

ATGCATACATGG 1
TGCATACATGG 2

GCATACATGG 3
CATACATGG 4

ATACATGG 5
TACATGG 6

ACATGG 7
CATGG 8

ATGG 9
TGG 10

GG 11
G 12

12

What is the shortest pattern that
 occurs only once in the string?

What letter occurs most frequently?

11/5/13 Comp 555 Fall 2013 53

•  Keyword and suffix trees are useful data structures
supporting various pattern finding problems

•  Keyword trees:
– Build keyword tree of patterns,

and thread text through it
•  Suffix trees:

– Build suffix tree of text,
and thread patterns through it

11/5/13 Comp 555 Fall 2013 54

•  In concept, suffix trees are extremely powerful for
making a variety of queries concerning a sequence
–  What is the shortest unique substring?
–  How many times does a given string appear in a text?

•  Despite the existence of linear-time construction
algorithms, and O(m) search times, suffix trees are still
rarely used for genome scale searching
–  Large storage overhead

•  Close cousins of the Suffix-Tree (Suffix Arrays and
Burrows-Wheeler Transforms) are more common

• Next lecture

