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•  Example of repeats: 
– ATGGTCTAGGTCCTAGTGGTC 

• Motivation to find them: 
– Phenotypes arise from copy-number 

variations 
– Genomic rearrangements are often associated 

with repeats 
– Trace evolutionary secrets 
– Many tumors are characterized by an 

explosion of repeats 
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• Near matches are more difficult:  
– ATGGTCTAGGACCTAGTGTTC 

• Motivation to find them: 
– Phenotypes arise from copy-number 

variations 
– Genomic rearrangements are often associated 

with repeats 
– Trace evolutionary secrets 
– Many tumors are characterized by an 

explosion of repeats 
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•  Long repeats are difficult to find 
•  Short repeats are easy to find 

•  Strategy for finding long repeats: 

–  Find exact repeats of short l -mers  
(l  is usually 10 to 13)  

– Extend l -mer repeated seeds into longer, 
 maximal repeats 
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•  There are typically many locations where an  
l -mer is repeated: 

  GCTTACAGATTCAGTCTTACAGATGGT 

•  The 4-mer TTAC starts at locations 3 and 17 
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  GCTTACAGATTCAGTCTTACAGATGGT 
•  Extend these 4-mer matches: 

  GCTTACAGATTCAGTCTTACAGATGGT 
• Maximal repeat: CTTACAGAT 
• Maximal repeats cannot be extended in either 

direction 
•  To find maximal repeats in this way, we need 

ALL start locations of all l -mers in the genome 
• Hashing lets us find repeats quickly in this 

manner 
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• How hashing works… 

– Generate an integer “key” from an arbitrary 
record 

– Store record in an data structure indexed by 
this integer key 

• Hashing is a very efficient way to store and 
retrieve data 
–  e.g., Python directories are hashes 
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• Hash table: array used in hashing 

•  Records: data stored in a hash table 

•  Keys: identify sets of records 

• Hash function: uses a key to generate an index to 
insert at in hash table 

•  Collision: when more than one record is mapped 
to the same index in the hash table 
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• Where do the 
animals eat? 

•  Records: each 
animal 

•  Keys: where 
each animal eats 
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– Each l -mer can be translated into a binary 
string, key = quaternary(seq) 
(A, T, C, G can be represented as 0, 1, 2, 3) 

– After assigning a unique integer per l -mer it 
is easy to store the starting locations of 
occurance of each l -mer in a genome of length 
n in O(l n) time 
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•  To find repeats in a genome: 
– For all l -mers in the genome, note its starting 

position and the sequence 
– Generate a hash table index for each unique  

l -mer sequence 
–  In each index of the hash table, store all 

genome start locations of the l -mer which 
generated that index 

– Extend l -mer repeats to maximal repeats 
•  Problem as l gets big the number of possible 

patterns becomes larger than the genome’s 
length (4l >> n) 
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• Generate hash keys  
from a reduced space 

   Ex. Key = quaternary(seq) % (N/l) 

•  Leads to possible collisions 
• Dealing with collisions: 

– “Chain” tuples of  
(l-mer, start location) 
pairs in a linked list 
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• When finding genomic repeats from l -mers: 
– Generate a hash table index for each l -mer 

sequence 
–  In each index, store all genome start locations 

of the l -mer which generated that index 
– Extend l -mer repeats to maximal repeats 
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• What if, instead of finding repeats in a genome, 
we want to find all positions of a particular 
sequences in given sequence? 

•  This leads us to a different problem, the Pattern 
Matching Problem 
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•  Goal: Find all occurrences of a pattern in a text 

•  Input: Pattern p = p1…pn and text t = t1…tm 

•  Output: All positions 1< i < (m – n + 1) such that the 
n-letter substring of t starting at i matches p 

•  Motivation: Searching database for a known pattern 
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  PatternMatching(p,t) 
1 n  length of pattern p 
2 m  length of text t 
3  for i  1 to (m – n + 1) 
4     if ti…ti+n-1 = p 
5        output i 
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•  PatternMatching 
algorithm for: 

– Pattern GCAT 

– Text CGCATC 

GCAT 
CGCATC 
GCAT 

CGCATC 

CGCATC 
GCAT 

CGCATC 

CGCATC 
GCAT 

GCAT 
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•  PatternMatching runtime: O(nm) 

•  Probability-wise, it’s more like O(m) 

– Rarely will there be close to n  
comparisons in line 4 

• Worse case:  
Find “AAAAT” in “AAAAAAAAAAAAAAAT” 

•  Better solution: suffix trees 

– Can solve problem in O(m) time 

– Conceptually related to keyword trees 
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•  Keyword tree: 
– Apple 
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•  Keyword tree: 
– Apple 
– Apropos 
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•  Keyword tree: 
– Apple 
– Apropos 
– Banana 
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•  Keyword tree: 
– Apple 
– Apropos 
– Banana 
– Bandana 
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•  Keyword tree: 
– Apple 
– Apropos 
– Banana 
– Bandana 
– Orange 
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–  Stores a set of keywords in 
a rooted labeled tree 

–  Each edge labeled with a 
letter from an alphabet 

–  Any two edges coming out 
of the same vertex have 
distinct labels 

–  Every keyword stored can 
be spelled on a path from 
root to some leaf 

–  Searches are performed by 
“threading” the target 
pattern through the tree  
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•  Thread “appeal” 
– appeal 
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•  Thread “appeal” 
– appeal 
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•  Thread “appeal” 
– appeal 
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•  Thread “appeal” 
– appeal 
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•  Thread “apple” 
– apple 



11/5/13 Comp 555   Fall 2013 30 

•  Thread “apple” 
– apple 
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•  Thread “apple” 
– apple 
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•  Thread “apple” 
– apple 
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•  Thread “apple” 
– apple 

Now thread “band”, “or”,  
and the nonsense word  
“apro” 

How do you tell “real” words 
from nonsense? 
(Homework problem) 



11/5/13 Comp 555   Fall 2013 34 

•  Goal: Given a set of patterns and a text, find all occurrences of 
any of patterns in text 

•  Input: k patterns p1,…,pk, and text t = t1…tm 

•  Output: Positions 1 < i < m where substring of t starting 
at i matches pj for 1 < j < k 

•  Motivation: Searching database for known multiple 
patterns 
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•  Can solve as k “Pattern Matching Problems” 
– Runtime:  
                    O(kmn)  
   using the PatternMatching algorithm k times 
– m - length of the text 
– n  - average length of the pattern 
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• Or, we could use keyword trees: 
– Build keyword tree in O(N) time; N is total 

length of all patterns 
– With naive threading: O(N + nm) 
– Aho-Corasick algorithm: O(N + m) 
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•  To match patterns 
in a text using a 
keyword tree: 
– Build keyword 

tree of patterns 
– “Thread” the 

text through the 
keyword tree 
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•  Threading is 
“complete” when we 
reach a leaf in the 
keyword tree 

• When threading is 
“complete,” we’ve 
found a pattern in the 
text 
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•  All suffixes of a given 
sequence 

•  Similar to keyword trees, 
except vertices of degree 2 
are removed and the strings 
on either side are merged 
–  Each edge is labeled 

with a substring of a text 
–  All internal vertices have 

at least three edges 
–  Terminal vertices, 

leaves, are labeled by the 
index of the pattern. 

All suffixes of:  
    ATCATG 
     TCATG 
      CATG 
        ATG 
          TG 

      G 
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•  Construct a keyword tree from all suffixes of a text 
•  Collapse non-branching paths into an edge  

(path compression) 

  ATCATG 
    TCATG 
      CATG 
        ATG 
          TG 
        G 

Keyword 
   Tree 

Suffix 
 Tree 

How much time does it take? 

quadratic 

Time is linear in the total size of all suffixes, 
which is quadratic in the length of the text 



11/5/13 Comp 555   Fall 2013 41 

•  With careful bookkeeping a test’s suffix tree can be 
constructed in a single pass of the text  

•  Thus, suffix trees can be built faster than keyword trees of 
suffixes and transforming them 

  ATCATG 
    TCATG 
      CATG 
        ATG 
          TG 
        G 

quadratic Keyword 
   Tree 

Suffix 
 Tree 

linear (Weiner, McCreight & Ukkonen suffix tree algorithms) 



•  Few books, including ours, delve into the details of
 suffix tree construction algorithms due to its reputation
 for being overly complicated. 

•  Weiner’s and McCreight's original linear algorithms for
 constructing a suffix trees had some disadvantages.  

•  Principle among them was the requirement that the tree
 be built in reverse order, meaning that the tree was
 grown incrementally by adding characters from the end
 of the input. 

•  This ruled it out for on-line processing 
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•  Esko Ukkonen’s construction works from left to right. 
•  It’s incremental. Each step transforms the Suffix Tree of

 the prefix ending at the ith character to the Suffix Tree
 ending at the i+1th. 
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Example from Mark Nelson 
Dr. Dobb's Journal, August, 1996 

B BO BOO OO BOOK O K 

K OK 

O 



•  Extensions are done by threading each new prefix
 through the tree and visiting each of the suffixes of the
 current tree.  

•  At each step we start at the longest suffix (BOOK), and
 work our way down to  
the shortest (empty string) 

•  Each ends at a node of three types: 
–  A leaf node (1,2,4,5) 
–  An explicit node (0, 3) 
–  An implicit node (Between characters 

of a substring labeling an edge, such as  
BO, BOO, and OO).  
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0 

1 3 2 

4 5 

BOOK O K 

K OK 



•  There are 5 suffixes in the tree (including the empty
 string) after adding BOOK 

•  They are represented by the root and 4 leaves 
•  Adding the next letter, another ‘K’, 

requires visiting each of the suffixes  
in the existing tree, in order of  
decreasing length, and adding  
letter ‘K’ to its end. 

•  Adding a character to a leaf node 
never creates a new explicit node, 
regardless of the letter 

•  If the root already has an edge labeled 
‘K’ we just extend it 
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0 

1 3 2 

4 5 

O BOOKK KK 

KK OKK 



•  The next step is to add an ‘E’ to our tree 
•  As before, add ‘E’ to each suffix in order of decreasing

 lengths BOOKK, OOKK, OKK, KK, K 
•  The first suffix that does not terminate at a leaf is  called

 the “active point” of the suffix tree 
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0 

1 3 2 

4 5 

O BOOKKE KKE 

KKE OKKE Add ‘E’ to: 
BOOKK 

OOKK 
OKK 

KK 

BOOKKE 

0 

1 3 2 

4 5 

O K 

KKE OKKE 

6 

KE 

Split 

Add ‘E’ to: 
K 

0 

1 3 2 

4 5 

O BOOKKE K 

KKE OKKE 

6 

KE 

7 

E 

Add 
Add ‘E’ to: 

Empty string 



• After updating suffix K, we still have to update
 the next shorter suffix, which is the empty
 string. 
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0 

1 3 2 

4 5 

O BOOKKE K 

KKE OKKE 

6 

KE 

7 

E 

8 
E 



•  Once a leaf node, always a leaf node 
•  Additional characters only extends the edge leading to

 the leaf (leaves are easy) 
•  When adding a new leaf, its edge will represent all

 characters from the ith suffix’s starting point to the i+1st 
 text’s end. Because of this once a leaf is created, we can
 just forget about it. If the edge is later split, its start may
 change but it will extend to the end. 

•  This means that we only need to keep track of the active
 point in each tree, and update from there.   
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•  The algorithm sketch so far glosses over one detail. At
 each step of an update we need to keep track of the next
 smaller suffix from the ith update 

•  To do this a suffix pointer is kept at each internal node 
•  For Pseudo code 

–  Mark Nelson, “Fast String Searching  
with Suffix Trees”  
Dr. Dobb's Journal August, 1996 

•  For proofs of linear  
space/time performance 
–   E. Ukkonen. “On-line  

construction of suffix trees.  
Algorithmica, 14(3):249-260,  
September 1995. 

11/5/13 Comp 555   Fall 2013 49 

The suffix tree for ABABABC with suffix
 pointers shown as dashed lines 
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•  Suffix trees hold all suffixes of a text, T 
–  i.e., ATCGC: ATCGC, TCGC, CGC, GC, C 
– Builds in O(m) time for text of length m 

•  To find any pattern P in a text: 
– Build suffix tree for text, O(m), m = |T| 
– Thread the pattern through the suffix tree 
– Can find pattern in O(n) time! (n = |P|) 

• O(|T| + |P|) time for “Pattern Matching 
Problem” (better than Naïve O(|P||T|) 
– Build suffix tree and lookup pattern 

• Multiple Pattern Matching in O(|T| + k|P|)  
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SuffixTreePatternMatching(p,t) 
1  Build suffix tree for text t 
2  Thread pattern p through suffix tree 
3   if threading is complete 
4     traverse all paths from the threading’s 

   endpoint to leaves and output their  
   positions 

5   else 
6     output “Pattern does not appear in text” 
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the suffix tree for ATGCATACATGG 

Threading the pattern ATG 

ATGCATACATGG  1 
TGCATACATGG  2 

GCATACATGG  3 
CATACATGG  4 

ATACATGG  5 
TACATGG  6 

ACATGG  7 
CATGG  8 

ATGG  9 
TGG 10 

GG 11 
G 12 

12 

What is the shortest pattern that
 occurs only once in the string? 

What letter occurs most frequently? 
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•  Keyword and suffix trees are useful data structures 
supporting various pattern finding problems 

•  Keyword trees: 
– Build keyword tree of patterns,  

and thread text through it 
•  Suffix trees: 

– Build suffix tree of text,  
and thread patterns through it 
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•  In concept, suffix trees are extremely powerful for 
making a variety of queries concerning a sequence 
–  What is the shortest unique substring? 
–  How many times does a given string appear in a text? 

•  Despite the existence of linear-time construction 
algorithms, and O(m) search times, suffix trees are still 
rarely used for genome scale searching 
–  Large storage overhead 

•  Close cousins of the Suffix-Tree (Suffix Arrays and 
Burrows-Wheeler Transforms) are more common 

• Next lecture 


