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• DNA sequences 
–  “OS” that controls 

living biological systems 
–  Sections of DNA (Genes) 

encode proteins, like  
programs 

–  Triplets of nucleotides 
(codons) encode the  
amino-acid sequences,  
as well as the stop codes,  
used to assemble proteins 

–  Complications in going from DNA  Protein:  
introns, RNA editing prior to translation, post-
translational modifications 
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•  Proteins are the “machinery” or “hardware” 
–  Compose the cellular structures 
–  Control the biochemical reactions in cells 
–  Regulate and trigger the chain reactions (metabolic 

pathways) that result in the cell’s life cycle 
–  Determine which parts of the DNA “code” are 

activated, executed, and when 

•  Like DNA, proteins are long molecular chains 
–  Sequences of 20 amino acid residues rather than 4 

nucleic acids 
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Amino Acid 3-Letter 
Code 

1-Letter  
Code 

Molecular  
Weight 

Alanine Ala A 89.09 

Cysteine Cys C 121.16 

Aspartate Asp D 133.10 

Glutamate Glu E 147.13 

Phenylalanine Phe F 165.19 

Glycine Gly G 75.07 

Histidine His H 155.16 

Isoleucine Ile I 131.18 

Lysine Lys K 146.19 

Leucine Leu L 131.18 

Amino Acid 3-Letter 
Code 

1-Letter  
Code 

Molecular  
Weight 

Methionine Met M 149.21 

Asparagine Asn N 132.12 

Proline Pro P 115.13 

Glutamine Gln Q 146.15 

Arginine Arg R 174.20 

Serine Ser S 105.09 

Threonine The T 119.12 

Valine Val V 117.15 

Tryptophan Trp W 204.23 

Tyrosine Tyr Y 181.19 

•  Proteins are made from 20 amino acids 
•  Peptide bonds join amino acids into long chains 
•  100’s to 1000’s of amino acid residues long 
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• Amino acids are joined 
by peptide bonds into 
long chains 

•  These chains “fold” 
into proteins 

•  Interact with other 
proteins and large 
molecules 

N-terminus C-terminus 
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•  Purify a sample 
•  Break into pieces 

–  Proteases cleave 
proteins into  
smaller “peptide” 
chains 

•  Read fragments 
–  Edman degradation for short peptide sequences 
–  Mass spectrometry measures mass/charge 
–  The “Hard” part 

•  Reassemble 
–  Relatively easy 
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•  Peptides tend to fragment along the backbone. 
•  Fragments can also lose neutral chemical groups like 

NH3 and H2O. 

H...-HN-CH-CO    .  .   .   NH-CH-CO-NH-CH-CO-…OH 

Ri-1 Ri Ri+1 

H+ 

Prefix Fragment Suffix Fragment 

Collision Induced Dissociation 
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•  Proteases, e.g. trypsin, break proteins into peptides. 
•  A Tandem Mass Spectrometer further breaks the 

peptides down into fragment ions and measures the 
mass of each piece. 

•  Mass Spectrometer accelerates the fragmented ions; 
heavier ions accelerate slower than lighter ones. 

• Mass Spectrometer measure mass/charge ratio of 
an ion. 
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NH2- -CO2H 
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Peptide 

Mass (D)    57  +  97  + 147 + 114  = 415 

Peptide 

Mass (D)    57  +  97  + 147 + 114 – 18 = 397 

without 
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Reconstruct peptide from the set of masses of fragment ions 

                                   (mass-spectrum) 
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G V D L K 

mass 
0 

57 Da = ‘G’  99 Da = ‘V’ 
L K   D V G 

•  The peaks in the mass spectrum: 
–  Prefix  
–  Fragments with neutral losses (-H2O, -NH3) 
–  Noise and missing peaks. 

and Suffix Fragments. 

D 

H
2O
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G V D L K 

mass 
0 

In
te

ns
ity

 

mass 
0 

MS/MS 
Peptide 
Identification:  
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De Novo 

AVGELTK 

Database 
Search 

Database of all peptides = 20n 

AAAAAAAA,AAAAAAAC,AAAAAAAD,AAAAAAAE,
AAAAAAAG,AAAAAAAF,AAAAAAAH,AAAAAAI, 

AVGELTI, AVGELTK , AVGELTL, AVGELTM, 

YYYYYYYS,YYYYYYYT,YYYYYYYV,YYYYYYYY 

Database of 
known peptides 

MDERHILNM,   KLQWVCSDL, 
PTYWASDL,   ENQIKRSACVM, 
TLACHGGEM,  NGALPQWRT, 
HLLERTKMNVV,   GGPASSDA,   
GGLITGMQSD,  MQPLMNWE, 

ALKIIMNVRT,  AVGELTK, 
HEWAILF,  GHNLWAMNAC, 

GVFGSVLRA,  EKLNKAATYIN.. 

Database of 
known peptides 

MDERHILNM,   KLQWVCSDL, 
PTYWASDL,   ENQIKRSACVM, 
TLACHGGEM,  NGALPQWRT, 
HLLERTKMNVV,   GGPASSDA,   
GGLITGMQSD,  MQPLMNWE, 
ALKIIMNVRT,  AVGELTK,  
HEWAILF,  GHNLWAMNAC, 

GVFGSVLRA,  EKLNKAATYIN.. 

Mass, Score 
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• Database of all peptides is huge ≈ O(20n) . 
• Database of all known peptides is much 

smaller ≈ O(108). 
• However, de novo algorithms can be much 

faster, even though their search space is much 
larger! 

• A database search scans all peptides in the 
database of all known peptides search space 
to find best one. 

• De novo eliminates the need to scan database 
of all peptides by modeling the problem as a 
graph search. 
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b 



11/5/13 Comp 555   Fall 2013 21 

a 

S E    Q   U    E    N    C    E 
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  S   E    Q   U   E    N    C   E 

a is an ion type shift in b 
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y 

 E   C    N    E    U   Q    E  S 
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noise 
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•  Some masses correspond to fragment ions, 

others are just random noise 

•  Known ion types Δ={δ1, δ2,…, δk} allow us 

distinguish fragment ions from noise 

• We can learn ion types δi and their 

probabilities qi by analyzing a large test 

sample of annotated spectra.  
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•  Δ={δ1, δ2,…, δk}   

•  Ion types  

                      {b, b-NH3, b-H2O}  

  correspond to      

                      Δ={0, 17, 18}   

*Note: In reality the δ value of ion type b is -1 but we will “hide” it for the sake of simplicity 
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•  The match between two spectra is the number of masses 
(peaks) they share (Shared Peak Count or SPC) 

•  In practice mass-spectrometrists use the weighted SPC that 

reflects intensities of the peaks 

•  Match between experimental and theoretical spectra is 
defined similarly  
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Goal: Find a peptide with maximal match between an 
experimental and theoretical spectrum. 

Input: 
–  S: experimental spectrum 
– Δ: set of possible ion types 
– m: parent mass 

Output:  
– P: peptide with mass m, whose theoretical 

spectrum best matches the experimental S 
spectrum 
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•  Masses of potential N-terminal peptides	


•  Vertices are generated by reverse shifts corresponding to ion types 	


                                         Δ={δ1, δ2,…, δk}	


•  Every N-terminal peptide can generate up to k  ions	


                                         m-δ1, m-δ2, …, m-δk 	


•  Every mass s in an MS/MS spectrum generates k vertices 	


                                 V(s) = {s+δ1, s+δ2, …, s+δk}	


    corresponding to potential N-terminal peptides	


•  Vertices of the spectrum graph:	

            {initial vertex}∪V(s1) ∪V(s2) ∪... ∪V(sm) ∪{terminal vertex}	
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Shift in H2O+NH3 

Shift in H2O 
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•  Two vertices with mass difference 

corresponding to an amino acid A: 

– Connect with an edge labeled by A 
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•  Paths in the labeled graph spell out amino acid 
sequences 

•  There are many paths, how to find the correct 
one? 

• We need scoring function to evaluate paths 
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•  p(P,S) = probability that peptide P produces 
spectrum S= {s1,s2,…sq} 

•  p(P, s) = the probability that peptide P generates 
a peak s 

•  Scoring = computing probabilities 

•  p(P,S) = ΠsєS p(P, s)  
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•  For a position t that represents ion type dj : 

                     qj,  if peak is generated at t 

     p(P,st) =  

                         1-qj ,  otherwise 
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•  For a position t that is not associated with an ion 
type: 

                             qR ,  if peak is generated at t 
      pR(P,st) =  
                             1-qR ,  otherwise 

•  qR = the probability of a noisy peak that does not 
correspond to any ion type 
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•  For a given MS/MS spectrum S, find a peptide 
P’ maximizing p(P,S) over all peptides P: 

•  Peptides = paths in the spectrum graph 

•  P’ = the optimal path in the spectrum graph 
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•  Tandem mass spectrometry is characterized by a 
set of ion types {δ1,δ2,..,δk} and  their 
probabilities {q1,...,qk} 

•  δi-ions of a partial peptide are produced 
independently with probabilities qi 
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• A peptide has all k peaks with probability            

•  and  no peaks with probability 

• A peptide also produces a “random noise” with 
uniform probability qR in any position. 
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•  Incorporates premiums for observed ions and 
penalties for missing ions. 

•  Example: for k=4, assume that for a partial 
peptide P’ we only see ions δ1,δ2,δ4. �

The score is calculated as: 
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•  T-  set of all positions.  

•  Ti={t δ1,, t δ2,..., ,t δk,}- set of positions that 
represent ions of partial peptides Pi. 

• A peak at position tδj  is generated with 
probability qj. 

•  R=T- (∪Ti ) - set of positions that are not 
associated with any partial peptides (noise).  
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•  For a position t δj ∈ Ti the probability p(t, P,S) that 
peptide P produces a peak  at position t. 

•  Similarly, for t∈R, the probability that P produces a 
random noise peak at t is: 
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•  For a peptide P with n amino acids, the score for 
the whole peptides is expressed by the following 
ratio test: 
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AVGELTK 

Database 
Search 

Database of 
known peptides 

MDERHILNM,   KLQWVCSDL, 
PTYWASDL,   ENQIKRSACVM, 
TLACHGGEM,  NGALPQWRT, 
HLLERTKMNVV,   GGPASSDA,   
GGLITGMQSD,  MQPLMNWE, 

ALKIIMNVRT,  AVGELTK, 
HEWAILF,  GHNLWAMNAC, 

GVFGSVLRA,  EKLNKAATYIN.. 

Database of 
known peptides 

MDERHILNM,   KLQWVCSDL, 
PTYWASDL,   ENQIKRSACVM, 
TLACHGGEM,  NGALPQWRT, 
HLLERTKMNVV,   GGPASSDA,   
GGLITGMQSD,  MQPLMNWE, 
ALKIIMNVRT,  AVGELTK,  
HEWAILF,  GHNLWAMNAC, 

GVFGSVLRA,  EKLNKAATYIN.. 
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Goal: Find a peptide from the database with maximal 
match between an experimental and theoretical 
spectrum. 

Input: 
–  S: experimental spectrum 
–  database of peptides 
– Δ: set of possible ion types 
– m: parent mass 

Output:  
– A peptide of mass m from the database whose 

theoretical spectrum matches the experimental S 
spectrum the best 
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Database search in mass-spectrometry has been very 
successful in identification of already known proteins. 

Experimental spectrum can be compared with theoretical 
spectra of database peptides to find  the best fit. 

SEQUEST  (Yates et al., 1995) 

But reliable algorithms for identification of new protein forms  
via mutation is a much more difficult problem. 
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•  Virtual Database Approach 
•  Yates et al.,1995: an exhaustive search in  a virtual 

database of all modified peptides. 

•  Exhaustive search  leads to a large combinatorial 
problem, even for a small  set of modifications types. 

•  Problem (Yates et al.,1995).  Extend the virtual 
database  approach to a large set of modifications. 
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•      YFDSTDYNMAK 

•  25=32 possibilities, with 2 types of 
modifications!  

Phosphorylation? 

Oxidation? 

•  For each peptide, 
generate all 
modifications. 

•  Score each 
modification. 



11/5/13 Comp 555   Fall 2013 52 

Very similar peptides may have very different 
spectra! 

Goal: Define a  notion of spectral similarity that 
correlates well with the sequence similarity. 

If peptides are a few mutations/modifications 
apart, the spectral similarity between their 
spectra should be high. 
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Shared peaks count (SPC): intuitive measure of 
spectral  similarity. 

Problem: SPC diminishes very quickly as the 
number of mutations increases. 

Only a small portion of correlations between the  
spectra of mutated peptides is captured by SPC. 
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S(PRTEIN)  = {98, 133, 246, 254, 355, 375, 476, 484, 597, 632} 

S(PRTEYN) = {98, 133, 254, 296, 355, 425, 484, 526, 647, 682} 

S(PGTEYN) = {98, 133, 155, 256, 296, 385, 425, 526, 548, 583} 

no mutations 
SPC=10 

1 mutation 
SPC=5 

2 mutations 
SPC=2 
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€ 

S2 −S1 = {s2 − s1:s1∈S1,s2∈S2}
Number of pairs s1∈S1,s2∈S2with s2 − s1 = x :

(S2 −S1)(x)
The shared peaks count (SPC peak):

(S2 −S1)(0)
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Elements of S2       S1 represented as elements of a difference matrix. The 
elements with multiplicity >2 are colored; the elements with multiplicity =2 
are circled. The SPC takes into account only the red entries 
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S = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} 
Which of the spectra   

S’ = {10, 20, 30, 40, 50, 55, 65, 75,85, 95}  
or                                 

S” = {10, 15, 30, 35, 50, 55, 70, 75, 90, 95}  
fits the  spectrum S the best? 

SPC:  both S’ and S” have 5 peaks in common with S. 
Spectral Convolution: reveals the peaks at 0 and 5. 
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S     S’ 

S     S’’ 
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Spectral convolution does not reveal that spectra S 
and S’ are similar, while spectra S and S” are 
not. 

Clumps of shared peaks: the matching positions 
in S’ come in clumps while the matching 
positions in S” don't. 

This important property  was not captured by 
spectral convolution. 
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A = {a1 < … < an} : an ordered set of natural 
numbers.  

A shift (i,Δ) is characterized by two parameters,  
the starting position (i) and the shift distance (Δ). 
The shift (i,Δ) transforms        
                             {a1, …., an} 
into                    
                 {a1, ….,ai-1,ai+Δ,…,an+ Δ } 
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The shift (i,Δ) transforms       {a1, …., an} 
into                   {a1, ….,ai-1,ai+Δ,…,an+ Δ } 

e.g. 
10  20  30  40  50  60  70  80  90 

10  20  30  35  45  55  65  75  85 

10  20  30  35  45  55  62  72  82 

shift  (4, -5) 

  shift (7,-3) 
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•  Find a series of k shifts that make the sets  
A={a1, …., an} and  B={b1,….,bn} 

    as similar as possible. 

•  Provides a notion of “k-similarity” between sets 

•  D(k) - the maximum number of elements in 
common between sets after k shifts (Like SPC). 
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• Quantize (bin) the mass dimension  
•  Convert spectrum to a 0-1 string with 1s 

corresponding to the positions of the peaks. 
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•  A modification with positive offset corresponds to 
inserting a block of 0s 

•  A modification with negative offset corresponds to 
deleting a block of 0s 

•  Comparison of theoretical and experimental spectra 
(represented as 0-1 strings) corresponds to a (somewhat 
unusual)  edit distance/alignment  problem where 
elementary edit operations are insertions/deletions of 
blocks of 0s 

•  Use sequence alignment algorithms! 
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• Manhattan-like graph with different alphabet 
and scoring. 

• Movement can be diagonal (matching masses) or  
horizontal/vertical (insertions/deletions 
corresponding to PTMs). 

• At most  k horizontal/vertical  moves. 
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A={a1, …., an} and  B={b1,…., bn} 
    Spectral product A⊗B: two-dimensional matrix with nm 

1s corresponding to all pairs of  
    indices (ai,bj) and remaining  
    elements being 0s.   

         10  20  30  40  50 55  65   75  85  95 

δ 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

1       1       1       1       1   1       1       1       1       1 

SPC: the number of 1s at 
the main diagonal. 

δ-shifted SPC: the number 
of 1s on the diagonal (i,i+ δ) 
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k-similarity between spectra:  the maximum number of 1s 
on a path through this graph that uses at most k+1 
diagonals. 

k-optimal spectral 
 alignment = a path. 

The spectral alignment 
allows one to detect 
more and more subtle  
similarities between 
spectra by increasing k. 
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SPC reveals only 
D(0)=3 matching 
peaks. 

Spectral Alignment 
reveals more 
hidden similarities 
between spectra: 
D(1)=5 and D(2)=8 
and detects 
corresponding 
mutations. 



11/5/13 Comp 555   Fall 2013 70 

Black line represent  the path for k=0  
Red lines represent the path for  k=1  
Blue lines (right) represents the path for k=2 
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 The spectral convolution considers diagonals 
separately without combining them into feasible 
mutation scenarios. 

D(1) =10       shift function score = 10    D(1) =6 

         10  20  30  40  50 55  65   75  85  95 
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Dij(k):  the maximum number of 1s on a path to 
(ai,bj ) that uses at most k+1 diagonals. 

Running time: O(n4 k) 
€ 

Dij (k) = max
( i ', j ')< ( i, j )

Di ' j ' (k) +1, if (i' , j' ) ~ (i, j)
Di ' j ' (k −1) +1, otherwise

⎧ 
⎨ 
⎩ 
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diag(i,j) – the position 
of previous 1 on the 
same diagonal as (i,j) 
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Running time: O(n2 k)  
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Spectra are combinations of an  increasing (N-
terminal ions)  and a decreasing (C-terminal 
ions) number series. 

These series form  two diagonals in the spectral 
product, the main diagonal and the 
perpendicular diagonal. 

 The  described algorithm  deals with the main 
diagonal only. 
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•  Simultaneous analysis of N- and C-terminal ions 

•  Taking into account the intensities and charges 

• Analysis of minor ions 


