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Bridges of Königsberg 

Find a tour crossing every bridge just once 
Leonhard Euler, 1735  
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•  Find a cycle that visits every 
edge exactly once 

•  Linear time 
–  Starting at any vertex v, and  

follow a trail of edges until  
returning to v. 

–  As long as there exists a vertex v that 
belongs to the current tour, but has  
adjacent edges not part of the tour,  
start a new trail from v, following  
unused edges until returning to v,  
and join the tour formed in this way  
to the previous tour. 

More complicated Königsberg  
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1 2 3 4 

9 8 7 6 5 

10 11 

12 

A. 1 ! 2 ! 9 
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1 2 3 4 

9 8 7 6 5 

10 11 

12 

B. 2 ! 7 ! 3 ! 2 

1 ! 2 ! 9 ! 1 

2 ! 7 ! 3 ! 2 

1 ! 2 ! 7 ! 3 ! 2 ! 9 ! 1 



3/2/15 Comp 555   Spring 2015 6 

1 2 3 4 

9 8 7 6 5 

10 11 

12 

C. 3 ! 6 ! 5 ! 4 ! 3 

1 ! 2 ! 7 ! 3 ! 2 ! 9 ! 1 
1 ! 2 ! 7 ! 3 ! 6 ! 5 ! 4 ! 3 ! 2 ! 9 ! 1 
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1 2 3 4 

9 8 7 6 5 

10 11 

12 

D. 7 !12 !11 ! 8 ! 7 

1 ! 2 ! 7 ! 3 ! 6 ! 5 ! 4 ! 3 ! 2 ! 9 ! 1 
1 ! 2 ! 7 !12 !11 ! 8 ! 7 ! 3 ! 6 ! 5 ! 4 ! 3 ! 2 ! 9 ! 1 
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1 2 3 4 

9 8 7 6 5 

10 11 

12 

D. 9 ! 11 ! 10 ! 9 

1 ! 2 ! 7 !12 !11 ! 8 ! 7 ! 3 ! 6 ! 5 ! 4 ! 3 ! 2 ! 9 ! 1 
1 ! 2 ! 7 !12 !11 ! 8 ! 7 ! 3 ! 6 ! 5 ! 4 ! 3 ! 2 !  
9 ! 11 ! 10 ! 9 ! 1 
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•  Find a cycle that visits 
every vertex exactly 
once 

• Deceptively similar to 
the Eulerian path 

Game invented by Sir  
William Hamilton in 1857 

• NP-complete 
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•  Arthur Cayley studied 
chemical structures of 
hydrocarbons in the 
mid-1800s 

•  He used trees (acyclic 
connected graphs) to 
enumerate structural 
isomers 
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Benzer’s work 
•  Developed deletion 

mapping 
•  “Proved” linearity of 

the gene 
•  Demonstrated internal 

structure of the gene 

Seymour Benzer, 1950s 
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•  Normally bacteriophage T4 kills bacteria  
•  However if T4 is mutated (e.g., an important 

subsequence is deleted) it is disabled and looses its 
ability to kill bacteria  

•  Suppose the bacteria is infected with two different  
mutants each of which is disabled – would the bacteria 
still survive? 

•  Amazingly, a pair of disabled viruses can kill a bacteria 
even if each of them is disabled.  

•  How can it be explained?  
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•  Idea: infect bacteria with pairs of mutant T4 
bacteriophage (virus) 

•  Each T4 mutant has an unknown interval 
deleted from its genome 

•  If the two intervals overlap:  T4 pair is missing 
part of its genome and is disabled – bacteria 
survive 

•  If the two intervals do not overlap:  T4 pair has 
its entire genome and is enabled – bacteria die 
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•  Construct an interval graph:  each T4 mutant is 
a vertex, place an edge between mutant pairs 
where bacteria survived (i.e., the deleted 
intervals in the pair of mutants overlap) 

•  Interval graph structure reveals whether DNA is 
linear or branched DNA 
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Linear genome Branched genome 



3/2/15 Comp 555   Spring 2015 19 

Sanger method (1977): 
labeled ddNTPs 
terminate DNA 
copying at random 
points. 

Both methods generate  
labeled fragments of 
varying lengths that are 
further electrophoresed. 

 Gilbert method (1977): 
   chemical method to cleave 

DNA at specific points (G, 
G+A, T+C, C). 
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1.  Start at primer   
(restriction site) 

2.  Grow DNA chain 

3.  Include ddNTPs  

4.  Stops reaction at all 
possible points 

5.  Separate products by 
length, using gel 
electrophoresis 
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•  Shear DNA into 
millions of small 
fragments 

•  Read 500 – 700 
nucleotides at a time 
from the small 
fragments (Sanger 
method) 
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•  Computational Challenge: assemble individual 
short fragments (reads) into a single genomic 
sequence (“superstring”)  

• Until late 1990s the shotgun fragment assembly 
of human genome was viewed as intractable 
problem    
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•  Problem: Given a set of strings, find a shortest 
string that contains all of them 

•  Input:  Strings s1, s2,…., sn 
• Output:  A string s that contains all strings  
   s1, s2,…., sn as substrings, such that the length of s 

is minimized 

•  Complexity:  NP – complete  
•  Note:  this formulation does not take into account 

sequencing errors 
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Shortest Superstring Solution? 

Find the heaviest 
path (by summing 
edge weights) that 
includes all vertices. 

Sound familiar? 
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•  Define overlap ( si, sj ) as the length of the longest prefix of sj that 
matches a suffix of si. 

     aaaggcatcaaatctaaaggcatcaaa 
                                                  aaaggcatcaaatctaaaggcatcaaa 

What is overlap ( si, sj ) for these strings? 
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•  Define overlap ( si, sj ) as the length of the longest prefix of sj that 
matches a suffix of si. 

     aaaggcatcaaatctaaaggcatcaaa 
                                 aaaggcatcaaatctaaaggcatcaaa 

                                overlap=12 
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•  Define overlap ( si, sj ) as the length of the longest prefix of sj that 
matches a suffix of si. 

     aaaggcatcaaatctaaaggcatcaaa 
                                 aaaggcatcaaatctaaaggcatcaaa 

•  Construct a graph with n vertices representing the n strings s1, s2,
…., sn.   

•  Compute overlap ( si, sj ) between vertices si and sj.  
•   Insert edge Max(|si|- overlap, |sj| - overlap) 
•  Find the shortest path which visits every vertex exactly once. 

This is the Traveling Salesman Problem (TSP),  
which is NP – complete. 
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S = { ATC, CCA, CAG, TCC, AGT } 

 SSP 
                 AGT 
             CCA 

         ATC 

            ATCCAGT       
           TCC   
               CAG                                                                   

  ATCCAGT 

TSP ATC 

CCA 

TCC 

AGT 

CAG 

2 

2 2 2 

1 

1 

1 
0 

1 
1 
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•  1988:  SBH suggested as an 
alternative sequencing method. 
Nobody believed it will ever 
work 

•  1991:  Light directed polymer 
synthesis developed by Steve 
Fodor and colleagues.  

•  1994:  Affymetrix develops first 
64-kb DNA microarray 

First microarray  
prototype (1989) 

First commercial 
DNA microarray 
prototype w/16,000 
features (1994) 

500,000 features 
per chip (2002) 
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•  Attach all possible DNA probes of length l to a flat 
surface, each probe at a distinct and known location.  
This set of probes is called the DNA array. 

•  Apply a solution containing fluorescently labeled 
DNA fragment to the array. 

•  The DNA fragment hybridizes with those probes 
that are complementary to substrings of length l of 
the fragment. 
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• Using a spectroscopic detector, determine which 
probes hybridize to the DNA fragment to obtain 
the l–mer composition of the target DNA 
fragment. 

• Apply the combinatorial algorithm (below) to 
reconstruct the sequence of the target DNA 
fragment from the l–mer composition. 
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•  Spectrum ( s, l ) - unordered multiset of all possible  
(n – l + 1)  l-mers in a string s of length n 

•  The order of individual elements in  Spectrum ( s, l ) 
does not matter 

•  For s = TATGGTGC all of the following are 
equivalent representations of Spectrum ( s, 3 ):    

       {TAT, ATG, TGG, GGT, GTG, TGC} 
       {ATG, GGT, GTG, TAT, TGC, TGG}      
       {TGG, TGC, TAT, GTG, GGT, ATG} 
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•  Spectrum ( s, l ) - unordered multiset of all possible  
(n – l + 1)  l-mers in a string s of length n 

•  The order of individual elements in  Spectrum ( s, l ) 
does not matter 

•  For s = TATGGTGC all of the following are 
equivalent representations of Spectrum ( s, 3 ):    

       {TAT, ATG, TGG, GGT, GTG, TGC} 
       {ATG, GGT, GTG, TAT, TGC, TGG}      
       {TGG, TGC, TAT, GTG, GGT, ATG} 
•   We usually choose the  lexicographically sorted 

representation as the canonical one.             
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• Different sequences may have the same 
spectrum:  

             Spectrum(GTATCT,2)= 
             Spectrum(GTCTAT,2)= 
             {AT, CT, GT, TA, TC} 
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• Goal: Reconstruct a string from its l-mer 
composition 

•  Input:  A set S, representing all l-mers from an 
(unknown) string s 

• Output:  String s such that Spectrum ( s,l ) = S 
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S = { ATG  AGG  TGC  TCC  GTC  GGT  GCA  CAG } 

   Path visited every VERTEX once 

ATG AGG TGC TCC GTC GGT GCA CAG 

ATG C A G G T C C 
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A more complicated graph: 

     S = { ATG    TGG      TGC      GTG      GGC     GCA      GCG     CGT } 
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            S = { ATG   TGG    TGC    GTG    GGC   GCA    GCG    CGT } 

Path 1: 

              ATGCGTGGCA 

ATGGCGTGCA 

Path 2: 
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   S = { ATG, TGG, TGC, GTG, GGC, GCA, GCG, CGT  }  

   Vertices correspond to ( l – 1 ) – mers :  { AT, TG, GC, GG, GT, CA, CG } 

   Edges correspond to l – mers from S 

AT 

GT CG 

CA GC TG 

GG 
Find path that visits every EDGE once 

de Bruijn Graph: a graph
 representing the overlap of
 k-length sequences as
 vertices with directed edges
 from sequences whose k-1
 suffix matches the k-1 prefix
 of a vertex 
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S =  { AT, TG, GC, GG, GT, CA, CG } corresponds to two different paths: 

    ATGGCGTGCA     ATGCGTGGCA 

AT TG GC CA 

GG 

GT CG 

AT 

GT CG 

CA 
GC TG 

GG 
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• A graph is balanced if for every vertex the 
number of incoming edges equals to the number 
of outgoing edges:  

                           in(v)=out(v) 

•  Theorem:  A connected graph is Eulerian if and only 
if each of its vertices are balanced. 
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•  Eulerian → balanced 

   for every edge entering v (incoming edge)  there  
exists an edge leaving v (outgoing edge). 
Therefore  

                        in(v)=out(v) 

•  Balanced → Eulerian 

    ??? 
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a.  Start with an arbitrary vertex 
v and form an arbitrary cycle 
with unused edges until a 
dead end is reached.  Since the 
graph is Eulerian this dead 
end is necessarily the starting 
point, i.e., vertex v. 
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b.   If cycle from (a) above is not 
an Eulerian cycle, it must 
contain a vertex w, which 
has untraversed edges.  
Perform step (a) again, using 
vertex w as the starting 
point. Once again, we will 
end up in the starting vertex 
w. 
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c.  Combine the cycles 
from (a) and (b) into a 
single cycle and 
iterate step (b). 

Running time: linear to the number of edges 
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•  Theorem:  A connected graph has an Eulerian path 
if and only if it contains at most two semi-balanced 
vertices and all other vertices are balanced. 
–  Semi-balanced vertex: in(v)  and out(v) differ by 1 
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•  Fidelity of Hybridization:  difficult to detect differences 
between probes hybridized with perfect matches and 1 
or 2 mismatches 

•  Array Size:  Effect of low fidelity can be decreased with 
longer l-mers, but array size increases exponentially in l.  
Array size is limited with current technology. 

•  Practicality:  SBH is still impractical. As DNA 
microarray technology improves, SBH may become 
practical in the future 

•  Practicality again: Although SBH is still impractical, it 
spearheaded expression analysis and SNP analysis 
techniques 


