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Lecture 10:
Local Alignments

Study Chapter 6.8-6.10
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Outlme

. Ed1t Dlstances
* Longest Common Subsequence

* Global Sequence Alignment

* Scoring Matrices

* Local Sequence Alignment

* Alignment with Affine Gap Penalties
* Multiple Alignhment problem
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Local vs. Global Alignment

. The Global Al1gnment Problem tr1es to fmd the longest

path between vertices (0,0) and (n,m) in the edit graph.

* The Local Alignment Problem tries to find the longest
path among paths between arbitrary vertices

(1,7) and (7, ;') in the edit graph.

* In the edit graph with negatively-scored edges, Local
Alignment may score higher than Global Alignment
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The Local Ahgnment Recurrence

The largest value of s;; over the whole edit graph
is the score of the best local alignment.

* Smith-Waterman local alighment

e The recurrence:
Power of ZERO: there is

0 - only this change from the
S;; =max)) s;;.;to(v,w) original recurrence of a
S T o(v, -) Global Alignment - since
1O W) there is onlly one “free ride”
edge entering into every
vertex
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Smlth Waterman Local Ahgnment
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An Example
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Match = 5, Mismatch = -4, Indel = -7
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Local Ahgnment

|
O OO O O O OO O O O

;\oooqmm.hwwl—ao
HQP QQ P QP QQ

Match = 5, Mismatch = -4, Indel = -7
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Local Ahgnment
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Match = 5, Mismatch = -4, Indel = -7
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Local Ahgnment

j=0 1 2 3 4 5 6 7 8 9 10 11 12
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5 A 0

6 G 0
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10 T 0

Match = 5, Mismatch = -4, Indel = -7
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Local Alignment
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A G - G
|| |
C A G A G

6 matches: 6 x 5 =30
1 mismatch: -4

1 indel: -7

Total: 19

Comp 555 Spring 2015
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Scormg Indels Nalve Approach

c A f1xed penalty o0 is given to every mdel:
— -ogfor 1 indel,
— -20 for 2 consecutive indels
— -3¢ for 3 consecutive indels, etc.

Can be too severe penalty for a series of
consecutive indels
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Affme Gap Penaltles

° In nature, a series of k mdels often come as a
single event rather than a series of k single
nucleotide events:

AT___ GC A_TG__C
ATTGAGC ATTGAGC
\ /

[ Normal scoring would [

This is more likely.  give the same score This is less likely.

Explained by one  for both alignments  Requires 2
event events.
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Accountmg for Gaps

. Gaps Cont1guous sequence of mdels in one of the rOWS

Modity the scoring for a gap of length x to be:
(0 + 0x)

where 0+ 0 > 0 is the penalty for introducing a gap:

gap opening penalty
and o is the cost of extending it further (0 + o >>0):
gap extension penalty

because you do not want to add too much of a CFenalty
for further extending the gap, once it is opene
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Affme Gap Penaltles

. Gap penaltles

- 0-0 when there is 1 indel
- 0-20 when there are 2 indels
- 0-30c when there are 3 indels, etc.
- 0 - x0 (-gap opening - x gap extensions)
* Somehow reduced penalties (as compared to

naive scoring) are given to runs of horizontal
and vertical edges
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Affme Gap Penaltles and Edlt Graph

2/10/15

Comp 555

To reflect affine gap
penalties we have to add
“long” horizontal and
vertical edges to the edit
graph. Each such edge of
length x should have
weight

-p-x*O
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Addmg “ Affine Penalty” Edges to the Edit Graph

2/10/15

Comp 555

There are many such edges!

Adding them to the graph
increases the running time of
the alignment algorithm by a
factor of n (where n is the
number of vertices)

So the complexity increases
from O(n?) to O(n’)
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Affme Gap Penalty Recurrences

Keep track of these intermediate values in two new tables

!

JAt = tigj- O Continue Gap in w (deletion)
) max |S;q; -(po+0) Start Gap in w (deletion): from middle
Uij =  [(Uija - O Continue Gap in v (insertion)

Start Gap in v (insertion):from middle

S.. = + 0 (v, w

K Siaja O (04 W) Match or Mismatch
U End deletion: from top
i

End insertion: from left
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nhattan Grid

DA WDPWDCEPWD@

Matches/Mismatches (s-table)

Gaps in v (u-table)
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Affine Gap Penalties and 3 Layer Manhattan Grid

. The three recurrences for the scoring algonthm
creates a 3-layered graph.

* The top level creates/extends gaps in the
sequence w.

* The bottom level creates/extends gaps in
sequence v.

e The middle level extends matches and
mismatches.
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Manhattan in 3 Layers

Lower Level

Upper Level
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Sw1tch1ng between 3 Layers

* Levels:
— The main level is for diagonal edges
— The lower level is for horizontal edges
— The upper level is for vertical edges

* A jumping penalty is assigned to moving from the main
level to either the upper level or the lower level (-p— 0)

* There is a gap extension penalty for each continuation on
a level other than the main level (-0)

2/10/15 Comp 555 Spring 2015 23



Multiple Alignment versus Pairwise Alignment

* Up until now we have only
tried to align two sequences.

e What about more than two?
And what for?

* A faint similarity between two
sequences becomes significant
if present in many

* Multiple alignments can reveal
subtle similarities that pairwise
alignments do not reveal
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Generalizing the Notion of Pairwise Alignment

* Alignment of 2 sequences is represented as a 2-row
matrix

* In a similar way, we represent alignment of 3 sequences
as a 3-row matrix

AT _GCAQG
A_CGT

_ A
ATCAC_A

* Score: more conserved columns, better alignment
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Ahgnment Paths

o J 11 1] 213 ] 4 x coordinate
A o T G C

o | 1| 2] 3| 3| 4 y coordinate
A A T C

0 | 0] 1 2 1 3] ¢ Z coordinate
A T G C

Resulting path 1n (x,),z) space:
(0,0,0)—(1,1,0)—=(1,2,1) —=(2,3,2) —(3,3,3) —>(4.,4,4)
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Ahgnmg Three Sequences

SOU rce

* Same strategy as aligning
two sequences
* Use a 3-D “Manhattan
Cube”, with each axis N

representing a sequence to

align

* For global alignments, go

from source to sink

sink
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2—D VS 3—D Ahgnment Gr1d

2-D edit graph

3-D edit graph

2/10/15 Comp 555 Spring 2015 28



2-D cell versus 2-D Ahgnment Cell

In 2-D, 3 edges
lead to each
Interior vertex

= I In 3-D, 7 edges
lead to each
Interior vertex
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Archltecture of 3 D Ahgnment Cell

1- Match/Mismatch
Path

6 — indels Paths

3 in one seq
3 in two seqgs

(ij-1,k-1)

(ij-1,k)
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Multiple Alignment: Dynamic Programming

: Sititie1 T OV W, ”k))
crmmae] i
i-1j k-1 i — Up
Siiin1 TO(Lw,u))
Sirje T O(Ve_, )]
ikt o(_, Wi, )
 Sijks T O(_, _,u) J

cube diagonal:
no indels

face diagonal:
one indel

Lattice edge:
two indels

o(x, y, z) is an entry in the 3-D scoring matrix
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Multlple Ahgnment Runmng T1me

. For 3 sequences of length n, the run t1me is 7n3

O(’)

* For k sequences, build a k-dimensional
Manhattan, with run time (2k-1)(n*); O(2kn*)

* Conclusion: dynamic programming approach
for alignment between two sequences is easily
extended to k sequences but it is impractical due
to exponential running time
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Multiple Alignment Induces
Pairwise Alignments

DA WODOACPUUODAdIPUWOIPUODO AP W AP WO PO PO PO CPUDad P4Dd (PO WP WO PO PO PO adPUD P4

Every multiple alignment induces pairwise alignments

x: AC-GCGG-C
y: AC-GC-GAG
z: GCCGC-GAG

Induces:

xX: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG
y: ACGC-GAC; z: GCCGC-GAG; z: GCCGCGAG
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Reverse Problem: Constructing Multiple
_Alignment from Pairwise Alignments

Given 3 arbitrary pairwise alignments:

X: ACGCTGG-C; =x: AC-GCTGG-C; vy: AC-GC-GAG
y: ACGC--GAC; z: GCCGCA-GAG; z: GCCGCAGAG

Can we construct a multiple alignment that induces them?
NOT ALWAYS

Why? Because pairwise alighments may be arbitraily inconsistent
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Combining Optimal Pairwise Alignments into
Multlple Ahgnment

2/10/15

Can combine pairwise

alignments into
multiple alignment

Can not combine
pairwise alignments
into multiple
alignment

Comp 555

AAAATTTT-—~
—-==TTTTGGGG

AAAATTTT-—~—

- =TTTTGGCCS AAAN---GGGG

AAAATTTT -~
AAAA-—--GGGG

’
TTTTGGGG -~ - | ARAAGGGG

AAAA---GGGG
-==TTTTGGGG

() Compatble pairwise aligriments

| ARAATTTT

4

/
AAAATTTT ==~ ///

-—=ARAAATTTT
-==TTTTGGGG :> FGGGAAAA———
- \
\\

TTTTGGGG GGGGAMAAA

-=-=GGGGAMAR
TTTTGGGG~~~

(b} Incompatible pairwise aligrnments
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Inferring Multiple Alighment
_from Pairwise Alignments

* From an optimal multiple alignment, we can
infer pairwise alighments between all pairs ot
sequences, but they are not necessarily optimal

* It is difficult to infer a “good” multiple
alignment from optimal pairwise alignments
between all sequences

e Are we stuck, or is there some other trick?

2/10/15 Comp 555 Spring 2015 36



Profile Representatlon of Multiple Alignment

HQ QP

N o
=
1
=
o)
N

N
[
(o))
N

Thus far we have aligned a sequence against a sequence
Can we align a sequence against a profile?

Can we align a profile against a profile?
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Allgmng ahgnments

* Given two alignments, can we align them?

X GGGCACTGCAT

y GGTTACGTC-- Alignment 1
z GGGAACTGCAG
w GGACGTACC-- Alignment 2

v GGACCT-----
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Ahgmng ahgnments

* Given two alignments, can we align them?

* Hint: don’t use the sequences...
alignment corresponding profiles

GGGCACTGCAT
GGTTACGTC-- Combined Alignment
GGGAACTGCAG
GGACGTACC--
GGACCT-----

4 £ N K ¥
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Multlple Ahgnment Greedy Approach

. Choose most 51m1lar pair of strmgs and combme into a
profile, thereby reducing alignment of k sequences to an
alignment of of k-1 sequences/ profiles. Repeat

* This is a heuristic greedy method

\
flthCGTACGTACGT”.-——* u;= ACgHTACg/tTACg/cT. ..

k % u,=ACTACTACTACT...

= CCGGCCGGCCGA. ./

Ly, = CCGGCCGGCCGAG
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Greedy Approach Example

. Con51der these 4 sequences

2/10/15

s1
S22
s3
s4

GATTCA
GTCTGA
GATATT
GTCAGC

Comp 555

w/Scoring Matrix:

Match = 1
Mismatch = -1
Indel = -1

Spring 2015
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Greedy Approach Example

4
* There are ( 2) = 6 possible alignhments

sZ2 GTCTGA sl GATTCA--
s4 GTCAGC (score = 2) s4 G-T-CAGC (score = 0)
sl GAT-TCA sZ2 G-TCTGA
sZ2 G-TCTGA (score = 1) s3 GATAT-T (score = -1)
sl GAT-TCA s3 GAT-ATT

s3 GATAT-T (score = 1) s4 G-TCAGC (score = -1)
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~ Greedy Approach: Example

S, and s, are closest; combine:

s2 GTCTGA
s4 GTCAGC prgf,g‘) GTCt/ak

new set of 3 sequences:

S; GATTCA
S, GATATT Repeat
S, 4 GTCi/aG
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Progresswe Ahgnment

. Progresszve alzgnment is a variation of greedy
algorithm with a somewhat more intelligent strategy
for choosing the order of alignments.

* Progressive alignment works well for close
sequences, but deteriorates for distant sequences
* Gaps in consensus string are permanent

* Use profiles to compare sequences

e CLUSTAL
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ClustalW

. Popular multiple ahgnment tool today

‘W’ stands for ‘weighted’ (different parts of
alignment are weighted ditferently).

Three-step process
1.) Construct pairwise alignments

2.) Build Guide Tree
3.) Progressive Alignment guided by the tree
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Step 1 Pa1rw1se Ahgnment

. Ahgns each sequence agam each other giving a
similarity matrix

* Similarity = exact matches / sequence length
(percent identity)

Vl V2 V3 V4
\4 —
v, .17 -
vy| .87 .28 - . |
v,| .59 .33 .62 - (.17 means 17 % identical)
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Step 2: Gu1de Tree

’ Create Gu1de Tree usmg the s1m11ar1ty matrix

2/10/15

ClustalW uses the neighbor-joining method

(we will discuss this later in the course, in the
section on clustering)

Guide tree roughly reflects evolutionary
relations
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2/10/15

Step 2 Gulde Tree (contd)

Vi
Vi Vo V3 Vy V3
_ v,
17 - v,
.87 .28 =
.59 .33 .62 -
Calculate:
Vi3 = alignment (v;, v3)
V1 3,4 = alignment ((v4 3),V,)
Vi34 = alignment((v; 3 ,),V;)
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Step 3 Progresswe Ahgnment

* Start by aligning the two most similar sequences

* Following the guide tree, add in the next
sequences, aligning to the existing alignment

* Insert gaps as necessary

FOS RAT PEEMSVTS-LDLTGGLPEATTPESEEAFTLPLLNDPEPK-PSLEPVKNISNMELKAEPED
FOS:MOUSE PEEMSVAS-LDLTGGLPEASTPESEEAFTLPLLNDPEPK-PSLEPVKSISNVELKAEPED
FOS CHICK SEELAAATALDLG----APSPAAAEEAFALPLMTEAPPAVPPKEPSG--SGLELKAEPED
FOSB MOUSE PGPGPLAEVRDLPG—-—-—--— STSAKEDGFGWLLPPPPPPP---——-—-—-————————— LPFQ
FOSB HUMAN PGPGPLAEVRDLPG——-—-—— SAPAKEDGFSWLLPPPPPPP--———-——————————— LPFOQ

. * % . * o K * * * Kk .

Dots and stars show how well-conserved a column is.
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Mult1ple Ahgnments Scormg

. Number of matches (mu1t1ple longest common
subsequence score)

* Entropy score

* Sum of pairs (SP-Score)

2/10/15 Comp 555 Spring 2015 50



Multlple LCS Score

« Acolumnis a “match” if all the letters in the
column are the same

AAA
AAA
AAT
ATC

* Only good for very similar sequences
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* Define frequencies for the occurrence of each letter
in each column of multiple alignment
Pa =1 pr=pc=pc=0 (1* column)
pa = 0.75, pr = 0.25, p=p=0 (24 column)
pa = 0.50, pr =0.25, p=0.25 p-=0 (34 column)

* Compute entropy of each column
AAA

AAA
— E pPxlog py AAT

X=AT GC ATC
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Entropy Example

[ A)
A
emmpyA _o DBestcase
\A4)
(A
T 1, 1 1
! =—>» —log—=—-4(—%-2)=2
Worst case ""°PY| G| =~ 2 l0eg =4 *-2)

\C)
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Multlple Ahgnment Entropy Score

Entropy for a multiple alignment is the
sum of entropies of its columns:

2 over all columns 2 X=A,T,G,C pxlong
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Entropy of an Ahgnment Example

> > > P
Al Ol 0O »

QO »

2/11/15

column entropy:
-( palogp,+ pclogpc+ pglogps + prlogpy)

*Column 1 = -[1*log(1) + 0*log0 + 0*log0 +0*1og0]

0

*Column 2 = -[(1/,)*log('/,) + (*/,)*log(®/,) + 0*log0 + 0*log0]

=-[ (1/)*(-2) + (3/)*(-.415) ] = 0.811

*Column 3 = -[(!/,)*log(*/,)+("/)*log("/)+("/)*log('/y) +('/,)*log('/,)]

= 4 [(1)(2)] = +2.0

*Alignment Entropy =0 + 0.811 +2.0 =2.811
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Multiple Alignment Induces
Pairwise Alignments

AP UWODOCPUUODAdIPUWOIPUODO AP WW AP WO PO PO PO PUDad PUDd (PO WP WO PO PO PO adPUD P4

Every multiple alignment induces pairwise alignments

x: AC-GCGG-C
y: AC-GC-GAG
z: GCCGC-GAG

Induces:

xX: ACGCGG-C; x: AC-GCGG-C; y: AC-GCGAG
y: ACGC-GAG; z: GCCGC-GAG; z: GCCGCGAG
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Inferring Pairwise Alignments
from Multiple Alignments

WP WP WCPWAWAAPWEPWa? WO WODC? OO WCAPWW YU

* This is the inverse of the problem described on
slides 34 and 35

* From a multiple alignment, we can infer
pairwise alignments between all sequences, but
they are not necessarily optimal

* This is like projecting a 3-D multiple alignment
path on to a 2-D face of the cube
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Mult1ple Ahgnment Pro]ectlons

A 3-D alignment can
be projected onto
the 2-D plane to
represent an
alignment between a
pair of sequences.

L1

All 3 Pairwise Projections of the Multiple Alignment
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Sum of Pa1rs Score(SP Score)

. Con51der pairwise ahgnment of sequences
a; and a,
imposed by a multiple alignment of k sequences

* Denote the score of this suboptimal (not necessarily
optimal) pairwise alignment as

s*(a, a]-)
* Sum up the pairwise scores for a multiple
alignment:

s(ay,...m) = 2,.5%a, a)
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Computmg SP—Score

Aligning 4 sequences: 6 pairwise alignments

Given a,,a,,a5,a,:

s(a,...a,) = Zs*(a,a) = s*(a;,a,) + s*(a;,as)
+ s*(ay,a,) + s*(ay,as)
+ s*(ay,a,) + s*(as,a,)
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SP Score Example

a; ATG-C-AAT
A-G-CATA"

a, ATCCCATTT

To calculate each column:

r + - n .
S (al...ak) = E s ( al.,aj) (2)Pa1rs of Sequences

I,

A

1

G

A Score=3 -Mi i 1 Score = 1-2u
A A C G

Column 1 Column 3
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Next Time

e Gene Prediction
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