Lecture 10: Local Alignments

Study Chapter 6.8-6.10

Homework \#1 is due

Outline

- Edit Distances
- Longest Common Subsequence
- Global Sequence Alignment
- Scoring Matrices
- Local Sequence Alignment
- Alignment with Affine Gap Penalties
- Multiple Alignment problem

Local vs. Global Alignment

- The Global Alignment Problem tries to find the longest path between vertices $(0,0)$ and (n, m) in the edit graph.
- The Local Alignment Problem tries to find the longest path among paths between arbitrary vertices (i, j) and $\left(i^{\prime}, j^{\prime}\right)$ in the edit graph.
- In the edit graph with negatively-scored edges, Local Alignment may score higher than Global Alignment

The Local Alignment Recurrence

- The largest value of $s_{i, j}$ over the whole edit graph is the score of the best local alignment.
- Smith-Waterman local alignment
- The recurrence:

Power of ZERO: there is only this change from the original recurrence of a Global Alignment - since there is only one "free ride" edge entering into every vertex

Smith-Waterman Local Alignment

DAIM 11.

An Example

		$=0$	1	2	3	4	5	6	7	8	9	10	11
i=		-	G	C	T	G	G	A	A	G	G	C	A
0	-	0	0	0	0	0	0	0	0	0	0	0	0
1	G	0											
2	C	0											
3	A	0											
4	G	0											
5	A	0											
6	G	0											
7	C	0											
8	A	0											
9	C	0											
10	T	0											

Match $=5$, Mismatch $=-4$, Indel $=-7$

Local Alignment

		0	1	2	3	4	5	6	7	8	9	10	11	12
i=		-	G	C	T	G	G	A	A	G	G	C	A	T
0	-	0	0	0	0	0	0	0	0	0	0	0	0	0
1	G	0	$\mathrm{S}_{1,1}$											
2	C	0												
3	A	0												
4	G	0												
5	A	0												
6	G	0												
7	C	0												
8	A	0												
9	C	0												
10	T	0												

Match $=5$, Mismatch $=-4$, Indel $=-7$

Local Alignment

		0	1	2	3	4	5	6	7	8	9	10	11	12
$i=$		-	G	C	T	G	G	A	A	G	G	C	A	T
0	-	0	0	0	0	0	0	0	0	0	0	0	0	0
1	G	0	5	$\mathrm{S}_{1,2}$										
2	C	0												
3	A	0												
4	G	0												
5	A	0												
6	G	0												
7	C	0												
8	A	0												
9	C	0												
10	T	0												

Match $=5$, Mismatch $=-4$, Indel $=-7$

Local Alignment

$$
\begin{array}{lllllllllllllr}
& \mathrm{j}=0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\text { i }= & & - & \mathrm{G} & \mathrm{C} & \mathrm{~T} & \mathrm{G} & \mathrm{G} & \mathrm{~A} & \mathrm{~A} & \mathrm{G} & \mathrm{G} & \mathrm{C} & \mathrm{~A} \\
0 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & \mathrm{G} & 0 & 5 & 0 & & & & & & & & & \\
2 & \mathrm{C} & 0 & 0 & \mathrm{~S}_{2,2} & & & & & & & & & \\
3 & \mathrm{~A} & 0 & & & & & & & & & & & \\
4 & \mathrm{G} & 0 & & & & & & & & & & & \\
5 & \mathrm{~A} & 0 & & & & & & & & & & & \\
6 & \mathrm{G} & 0 & & & & & & & & & & & \\
7 & \mathrm{C} & 0 & & & & & & & & & & & \\
8 & \mathrm{~A} & 0 & & & & & & & & & & & \\
9 & \mathrm{C} & 0 & & & & & & & & & & & \\
10 & \mathrm{~T} & 0 & & & & & & & & & & & \\
\hline
\end{array}
$$

Match $=5$, Mismatch $=-4$, Indel $=-7$

Local Alignment

	0	G	C	T	G	G	A	A	G	G	C	A	T
0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	0	5	0	0	5	5	0	0	5	5	0	0	0
C	0	0	10	3	0	1	1	0	0	1	10	3	0
A	0	0	3	6	0	0	6	6	0	0	3	15	8
G	0	5	0	0	11	5	0	2	11	5	0	8	11
A	0	0	1	0	4	7	10	5	4	7	1	5	4
G	0	5	0	0	5	9	3	6	10	9	3	0	1
C	0	0	10	3	0	2	5	0	3	6	14	7	0
A	0	0	3	6	0	0	7	10	3	0	7	19	12
C	0	0	5	0	2	0	0	3	6	0	5	12	15
T	0	0	0	10	3	0	0	0	0	2	0	5	17

Match $=5$, Mismatch $=-4$, Indel $=-7$

Local Alignment

	0	G	C	T	G	G	A	A	G	G	C	A	T
0	0	0	0	0	0	0	0	0	0	0	0	0	0
G	0	5	0	0	5	5	0	0	5	5	0	0	0
C	0	0	10	3	0	1	1	0	0	1	10	3	0
A	0	0	3	6	0	0	6	6	0	0	3	15	8
G	0	5	0	0	11	5	0	2	11_{\downarrow}	5	0	8	11
A	0	0	1	0	4	7	10	5	4	7	1	5	4
G	0	5	0	0	5	9	3	6	10	9	3	0	1
C	0	0	10	3	0	2	5	0	3	6	14	7	0
A	0	0	3	6	0	0	7	10	3	0	7	19	12
C	0	0	5	0	2	0	0	3	6	0	5	12	15
T	0	0	0	10	3	0	0	0	0	2	0	5	17

Match $=5$, Mismatch $=-4$, Indel $=-7$

Local Alignment

6 matches: $6 \times 5=30$
1 mismatch: -4
1 indel: -7
Total: 19

Scoring Indels: Naive Approach

- A fixed penalty σ is given to every indel:
- $-\sigma$ for 1 indel,
$--2 \sigma$ for 2 consecutive indels
$--3 \sigma$ for 3 consecutive indels, etc.

Can be too severe penalty for a series of 100 consecutive indels

Affine Gap Penalties

- In nature, a series of k indels often come as a single event rather than a series of k single nucleotide events:

A_TG__C ATTGAGC

This is more likely.
Explained by one event

Normal scoring would give the same score for both alignments

This is less likely.
Requires 2 events.

Accounting for Gaps

- Gaps- contiguous sequence of indels in one of the rows
- Modify the scoring for a gap of length x to be:

$$
-(\rho+\sigma x)
$$

where $\rho+\sigma>0$ is the penalty for introducing a gap: gap opening penalty
and σ is the cost of extending it further ($\rho+\sigma \gg \sigma$):
gap extension penalty
because you do not want to add too much of a penalty for further extending the gap, once it is opened.

Affine Gap Penalties

- Gap penalties:
$-\rho-\sigma$ when there is 1 indel
$-\rho-2 \sigma$ when there are 2 indels
$-\rho-3 \sigma$ when there are 3 indels, etc.
- $\rho-x \cdot \sigma$ (-gap opening - x gap extensions)
- Somehow reduced penalties (as compared to naïve scoring) are given to runs of horizontal and vertical edges

Affine Gap Penalties and Edit Graph

To reflect affine gap penalties we have to add "long" horizontal and vertical edges to the edit graph. Each such edge of length x should have weight

$$
-\rho-x * \sigma
$$

Adding "Affine Penalty" Edges to the Edit Graph

There are many such edges!

Adding them to the graph increases the running time of the alignment algorithm by a factor of \boldsymbol{n} (where \boldsymbol{n} is the number of vertices)

So the complexity increases from $\mathrm{O}\left(n^{2}\right)$ to $\mathrm{O}\left(n^{3}\right)$

Affine Gap Penalty Recurrences

 Keep track of these intermediate values in two new tables

$$
\begin{aligned}
& \ddot{\circ}\left\{\begin{array}{l}
t_{i, j}
\end{array}\right.=\left\{\begin{array}{l}
t_{i-1, j}-\sigma \\
s_{i-1, j}-(\rho+\sigma)
\end{array}\right. \\
& \max \\
& u_{i, j}= \\
& \max \left\{\begin{array}{l}
u_{i, j-1}-\sigma \\
s_{i, j-1}-(\rho+\sigma)
\end{array}\right. \\
& s_{i, j}= \\
& \max \left\{\begin{array}{l}
s_{i-1, j-1}+\delta\left(v_{i,}, w_{j}\right) \\
t_{i, j} \\
u_{i, j}
\end{array}\right.
\end{aligned}
$$

Continue Gap in w (deletion)
Start Gap in w (deletion): from middle

Continue Gap in v (insertion)
Start Gap in v (insertion):from middle

Match or Mismatch
End deletion: from top
End insertion: from left

The 3-leveled Manhattan Grid

Gaps in w (t-table)

Matches/Mismatches (s-table)

Gaps in v (u-table)

Affine Gap Penalties and 3 Layer Manhattan Grid

- The three recurrences for the scoring algorithm creates a 3-layered graph.
- The top level creates/extends gaps in the sequence w.
- The bottom level creates/extends gaps in sequence v.
- The middle level extends matches and mismatches.

Manhattan in 3 Layers

Switching between 3 Layers

- Levels:
- The main level is for diagonal edges
- The lower level is for horizontal edges
- The upper level is for vertical edges
- A jumping penalty is assigned to moving from the main level to either the upper level or the lower level $\left(-\rho^{-} \sigma\right)$
- There is a gap extension penalty for each continuation on a level other than the main level $(-\sigma)$

Multiple Alignment versus Pairwise Alignment

- Up until now we have only tried to align two sequences.
- What about more than two? And what for?

- A faint similarity between two sequences becomes significant if present in many
- Multiple alignments can reveal subtle similarities that pairwise
 alignments do not reveal

Generalizing the Notion of Pairwise Alignment

- Alignment of 2 sequences is represented as a 2-row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix

- Score: more conserved columns, better alignment

Alignment Paths

- Align 3 sequences: ATGC, AATC,ATGC

0	1	1	2	3	4
	A	--	T	G	C
0	1	2	3	3	4
	A	A	T	--	C
0	0	1	2	3	4
	--	A	T	G	C

x coordinate

y coordinate
z coordinate

- Resulting path in (x, y, z) space:

$$
(0,0,0) \rightarrow(1,1,0) \rightarrow(1,2,1) \rightarrow(2,3,2) \rightarrow(3,3,3) \rightarrow(4,4,4)
$$

Aligning Three Sequences

- Same strategy as aligning two sequences
- Use a 3-D "Manhattan Cube", with each axis representing a sequence to align
- For global alignments, go from source to sink

sink

2-D vs 3-D Alignment Grid

\therefore IIP 11.10

2-D edit graph

Fall 2013

2-D cell versus 2-D Alignment Cell

In 2-D, 3 edges lead to each interior vertex

In 3-D, 7 edges lead to each interior vertex

Architecture of 3-D Alignment Cell

Multiple Alignment: Dynamic Programming

- $\delta(x, y, z)$ is an entry in the 3-D scoring matrix

Multiple Alignment: Running Time

- For 3 sequences of length \boldsymbol{n}, the run time is $7 \boldsymbol{n}^{3}$; $\mathrm{O}\left(n^{3}\right)$
- For \boldsymbol{k} sequences, build a \boldsymbol{k}-dimensional Manhattan, with run time $\left(2^{k}-1\right)\left(n^{k}\right) ; \mathrm{O}\left(2^{k} n^{k}\right)$
- Conclusion: dynamic programming approach for alignment between two sequences is easily extended to k sequences but it is impractical due to exponential running time

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

$$
\begin{array}{ll}
\mathrm{x}: & \text { AC-GCGG-C } \\
\mathrm{y}: & \text { AC-GC-GAG } \\
\mathrm{z}: & \text { GCCGC-GAG }
\end{array}
$$

Induces:

$$
\begin{array}{ll}
\mathrm{x}: ~ A C G C G G-C ; & \mathrm{x}: \text { AC-GCGG-C; } \mathrm{y}: \text { AC-GCGAG } \\
\mathrm{y}: \text { ACGC-GAC; } \mathrm{z}: \text { GCCGC-GAG; } \mathrm{z}: \text { GCCGCGAG }
\end{array}
$$

Reverse Problem: Constructing Multiple Alignment from Pairwise Alignments
 D(11)

Given 3 arbitrary pairwise alignments:

```
x: ACGCTGG-C; x: AC-GCTGG-C; Y: AC-GC-GAG
Y: ACGC--GAC; z: GCCGCA-GAG; z: GCCGCAGAG
```

Can we construct a multiple alignment that induces them?
NOT ALWAYS

Why? Because pairwise alignments may be arbitraily inconsistent

Combining Optimal Pairwise Alignments into Multiple Alignment

Can combine pairwise alignments into multiple alignment

(a) Compatible pairwise aligrments

Can not combine pairwise alignments into multiple alignment

Inferring Multiple Alignment from Pairwise Alignments

- From an optimal multiple alignment, we can infer pairwise alignments between all pairs of sequences, but they are not necessarily optimal
- It is difficult to infer a "good" multiple alignment from optimal pairwise alignments between all sequences
- Are we stuck, or is there some other trick?

Profile Representation of Multiple Alignment

-	\mathbf{A}	\mathbf{G}	\mathbf{G}	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{T}	\mathbf{C}	\mathbf{A}	\mathbf{C}	\mathbf{C}	\mathbf{T}	\mathbf{G}
\mathbf{T}	\mathbf{A}	\mathbf{G}	-	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{C}	\mathbf{C}	\mathbf{A}	-	-	-	\mathbf{G}
\mathbf{C}	\mathbf{A}	\mathbf{G}	-	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{C}	C	A	-	-	-	\mathbf{G}
\mathbf{C}	\mathbf{A}	\mathbf{G}	-	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{T}	\mathbf{C}	\mathbf{A}	\mathbf{C}	-	\mathbf{G}	\mathbf{G}
\mathbf{C}	\mathbf{A}	\mathbf{G}	-	\mathbf{C}	\mathbf{T}	\mathbf{A}	\mathbf{T}	\mathbf{C}	\mathbf{G}	\mathbf{C}	-	\mathbf{G}	\mathbf{G}

Thus far we have aligned a sequence against a sequence
Can we align a sequence against a profile?
Can we align a profile against a profile?

Aligning alignments

- Given two alignments, can we align them?

x GGGCACTGCAT
y GGTTACGTC-- Alignment 1
z GGGAACTGCAG
w GGACGTACC-- Alignment 2
v GGACCT-----

Aligning alignments

- Given two alignments, can we align them?
- Hint: don't use the sequences... alignment corresponding profiles

x GGGCACTGCAT
y GGTTACGTC-- Combined Alignment
z GGGAACTGCAG
w GGACGTACC--
v GGACCT-----

Multiple Alignment: Greedy Approach

- Choose most similar pair of strings and combine into a profile, thereby reducing alignment of k sequences to an alignment of of $k-1$ sequences/ profiles. Repeat
- This is a heuristic greedy method

Greedy Approach: Example

- Consider these 4 sequences

s1	GATTCA
$s 2$	GTCTGA
s3	GATATT
s4	GTCAGC

w/Scoring Matrix:
Match = 1
Mismatch = - 1
Indel = -1

Greedy Approach: Example

- There are $\binom{4}{2}=6$ possible alignments

$\begin{aligned} & s 2 \\ & s 4 \end{aligned}$	GTCTGA GTCAGC (score = 2)	$\begin{aligned} & \text { s1 } \\ & \text { s4 } \end{aligned}$	GATTCA-- G-T-CAGC (score = 0)
s1	GAT-TCA	s2	G-TCTGA
s2	G-TCTGA (score = 1)	s3	GATAT-T (score = -1)
s1	GAT-TCA	s3	GAT-ATT
s3	GATAT-T (score = 1)	s4	G-TCAGC (score $=-1$)

Greedy Approach: Example

s_{2} and s_{4} are closest; combine:

new set of 3 sequences:
$s_{1} \quad$ GATTCA
$s_{3} \quad$ GATATT
Repeat
$\boldsymbol{s}_{2,4} \quad \mathrm{GTCt} / a \mathrm{Ga} / \mathrm{c}$

Progressive Alignment

- Progressive alignment is a variation of greedy algorithm with a somewhat more intelligent strategy for choosing the order of alignments.
- Progressive alignment works well for close sequences, but deteriorates for distant sequences
- Gaps in consensus string are permanent
- Use profiles to compare sequences
- CLUSTAL

ClustalW

- Popular multiple alignment tool today
- 'W' stands for 'weighted' (different parts of alignment are weighted differently).
- Three-step process
1.) Construct pairwise alignments
2.) Build Guide Tree
3.) Progressive Alignment guided by the tree

Step 1: Pairwise Alignment

- Aligns each sequence again each other giving a similarity matrix
- Similarity = exact matches / sequence length (percent identity)

(. 17 means 17% identical)

Step 2: Guide Tree

- Create Guide Tree using the similarity matrix
- ClustalW uses the neighbor-joining method (we will discuss this later in the course, in the section on clustering)
- Guide tree roughly reflects evolutionary relations

Step 2: Guide Tree (cont'd)

Calculate:

$$
\begin{array}{ll}
v_{1,3} & =\text { alignment }\left(v_{1}, v_{3}\right) \\
v_{1,3,4} & =\text { alignment }\left(\left(v_{1,3}\right), v_{4}\right) \\
v_{1,2,3,4} & =\operatorname{alignment}\left(\left(v_{1,3,4}\right), v_{2}\right)
\end{array}
$$

Step 3: Progressive Alignment

- Start by aligning the two most similar sequences
- Following the guide tree, add in the next sequences, aligning to the existing alignment
- Insert gaps as necessary

```
FOS_RAT
FOS_MOUSE
FOS_CHICK
FOSB_MOUSE
FOSB_HUMAN
```


Dots and stars show how well-conserved a column is.

Multiple Alignments: Scoring

- Number of matches (multiple longest common subsequence score)
- Entropy score
- Sum of pairs (SP-Score)

Multiple LCS Score

- A column is a "match" if all the letters in the column are the same

$$
\begin{aligned}
& \text { AAA } \\
& \text { AAA } \\
& \text { AAT } \\
& \text { ATC }
\end{aligned}
$$

- Only good for very similar sequences

Entropy

- Define frequencies for the occurrence of each letter in each column of multiple alignment

$$
\begin{aligned}
& \circ \mathrm{p}_{\mathrm{A}}=1, \mathrm{p}_{\mathrm{T}}=\mathrm{p}_{\mathrm{G}}=\mathrm{p}_{\mathrm{C}}=0\left(1^{\text {st }} \text { column }\right) \\
& \circ \mathrm{p}_{\mathrm{A}}=0.75, \mathrm{p}_{\mathrm{T}}=0.25, \mathrm{p}_{\mathrm{G}}=\mathrm{p}_{\mathrm{C}}=0\left(2^{\text {nd }} \text { column }\right) \\
& \mathrm{p}_{\mathrm{A}}=0.50, \mathrm{p}_{\mathrm{T}}=0.25, \mathrm{p}_{\mathrm{C}}=0.25 \mathrm{p}_{\mathrm{G}}=0\left(3^{\text {rd }} \text { column }\right)
\end{aligned}
$$

- Compute entropy of each column

AAA
AAA
$-\sum_{X=A, T, G, C} p_{X} \log p_{X}$ AAT
ATC

Entropy: Example

 entropy $\left(\begin{array}{l}A \\ A \\ A \\ A\end{array}\right)=0 \quad$ Best case

Worst case entropy $\left(\begin{array}{l}A \\ T \\ G \\ C\end{array}\right)=-\sum \frac{1}{4} \log \frac{1}{4}=-4\left(\frac{1}{4} *-2\right)=2$

Multiple Alignment: Entropy Score

Entropy for a multiple alignment is the sum of entropies of its columns:

$$
\Sigma_{\text {over all columns }} \Sigma_{X=A, T, G, C} p_{X} \log p_{X}
$$

Entropy of an Alignment: Example

$$
-\left(p_{A} \log p_{A}+\frac{\text { column entropy: }}{\left.p_{C} \log p_{C}+p_{C} \log p_{C}+p_{T} \log p_{T}\right)}\right.
$$

A	A	A
A	C	C
A	C	G
A	C	T

- Column $\begin{aligned} 1 & =-[1 * \log (1)+0 * \log 0+0 * \log 0+0 * \log 0] \\ & =0\end{aligned}$

$$
=0
$$

-Column $2=-[(1 / 4) * \log (1 / 4)+(3 / 4) * \log (3 / 4)+0 * \log 0+0 * \log 0]$ $=-[(1 / 4) *(-2)+(3 / 4) *(-.415)]=0.811$
-Column $3=-[(1 / 4) * \log (1 / 4)+(1 / 4) * \log (1 / 4)+(1 / 4) * \log (1 / 4)+(1 / 4) * \log (1 / 4)]$ $=4^{*}-[(1 / 4) *(-2)]=+2.0$

- Alignment Entropy $=0+0.811+2.0=2.811$

Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alignments

$$
\begin{array}{ll}
\mathrm{x}: & \text { AC-GCGG-C } \\
\mathrm{y}: & \text { AC-GC-GAG } \\
\mathrm{z}: & \text { GCCGC-GAG }
\end{array}
$$

Induces:

$$
\begin{array}{ll}
\mathrm{x}: ~ A C G C G G-C ; & \mathrm{x}: \text { AC-GCGG-C; } \mathrm{y}: \text { AC-GCGAG } \\
\mathrm{y}: \text { ACGC-GAC; } \mathrm{z}: \text { GCCGC-GAG; } \mathrm{z}: \text { GCCGCGAG }
\end{array}
$$

Inferring Pairwise Alignments from Multiple Alignments

- This is the inverse of the problem described on slide 35
- From a multiple alignment, we can infer pairwise alignments between all sequences, but they are not necessarily optimal
- This is like projecting a 3-D multiple alignment path on to a 2-D face of the cube

Multiple Alignment Projections

A 3-D alignment can be projected onto the 2-D plane to represent an alignment between a pair of sequences.

All 3 Pairwise Projections of the Multiple Alignment

Sum of Pairs Score(SP-Score)

- Consider pairwise alignment of sequences

$$
a_{i} \text { and } a_{j}
$$

imposed by a multiple alignment of k sequences

- Denote the score of this suboptimal (not necessarily optimal) pairwise alignment as

$$
s^{*}\left(a_{i}, a_{j}\right)
$$

- Sum up the pairwise scores for a multiple alignment:

$$
s\left(a_{1}, \ldots, a_{k}\right)=\Sigma_{i, j} s^{*}\left(a_{i}, a_{j}\right)
$$

Computing SP-Score

Aligning 4 sequences: 6 pairwise alignments

Given $a_{1}, a_{2}, a_{3}, a_{4}$:

$$
\begin{aligned}
s\left(a_{1} \ldots a_{4}\right)=\Sigma s^{*}\left(a_{i}, a_{j}\right) & =s^{*}\left(a_{1}, a_{2}\right)+s^{*}\left(a_{1}, a_{3}\right) \\
& +s^{*}\left(a_{1}, a_{4}\right)+s^{*}\left(a_{2}, a_{3}\right) \\
& +s^{*}\left(a_{2}, a_{4}\right)+s^{*}\left(a_{3}, a_{4}\right)
\end{aligned}
$$

SP-Score: Example

$$
\begin{aligned}
& a_{1} \text { ATG-C-AAT } \\
& \cdot \\
& a_{k} \\
& a^{\prime} \\
& \text { ATCCCATATT }
\end{aligned}
$$

To calculate each column:

$$
s^{\prime}\left(a_{1} \ldots a_{k}\right)=\sum_{i, j} s^{*}\left(a_{i}, a_{j}\right) \longleftarrow\binom{n}{2} \text { Pairs of Sequences }
$$

$$
\text { Score }=1-2 \mu
$$

Next Time

- Gene Prediction

