Lecture 8: Dynamic Programming Preliminaries

Study Chapter 6.1-6.3

Revisit Coin-Change Problem

- So far we've tried: A greedy algorithm that does not work for all inputs (it is incorrect)
- New tricks we've learned...
- Is there an exhaustive search algorithm?

```
def exhaustiveChange(amount, denominations):
    bestN = 100
    count = [O for i in xrange(len(denominations))]
    while True:
        for i, coinValue in enumerate(denominations):
            count[i] += l
                if (count[i]* coinValue < 100):
                break
                count[i] = 0
```


Coin-change problem

Revisit Coin-Change Problem

- Other Tricks? A branch-and-bound algorithm
def branchAndBoundChange(amount, denominations):
bestN = amount
count $=[0$ for i in xrange(len(denominations)) $]$ while True:
for i, coinValue in enumerate(denominations):
count[i] += 1
if (count[i]* coinValue < amount):
break
count[i] = 0
$\mathrm{n}=\operatorname{sum}$ (count)
if $\mathrm{n}=0$:
break
if ($\mathrm{n}>$ bestN):
continue

Coin-change problem
value $=\operatorname{sum}([$ count[i] $*$ denominations[i] for i in $x r a n g e(l e n(d e n o m i n a t i o n s))])$
if (value == amount):
if ($\mathrm{n}<\mathrm{bestN}$):
bestN = n
return bestN

- Correct, and works well for most cases, but might be as slow as an exhaustive search for some inputs.
- Is there anything else we can try?

Tabulating the Answers

- If it is costly to compute the answer for a given input, then there may be advantages to caching the result of previous calculations in a table
- This trades-off time-complexity for space
- How could we fill in the table in the first place?
- Run our best correct algorithm
- Can the table itself be
 used to speed up the process?

Solutions using a Table

- Suppose you are asked to fill-in the unknown table entry for 67 ¢
- It must differ from previous known optimal result by at most one coin...

Looks like

- So what are the possibilities?
- BestChange(67¢) $=25 \Phi+$ BestChange(42థ), or
- BestChange(67థ) $=20 \Phi+$ BestChange(47 $)$, or
- BestChange(67¢) $=10 \Phi+$ BestChange(57 $)$, or
- BestChange(67¢) $=5 \Phi+$ BestChange(62థ), or
- BestChange(67¢) $=1 \Phi+$ BestChange(66\$)

A Recursive Coin-Change Algorithm


```
def RecursiveChange(M, c):
    if (M == 0):
            return [O for i in xrange(len(c))]
    smallestNumberOfCoins = M +1
    for i in xrange(len(c)):
            if (M >= c[i]):
            thisChange = RecursiveChange(M - c[i], c)
            thisChange[i] += l
            if (sum(thisChange) < smallestNumberOfCoins):
                bestChange = thisChange
                smallestNumberOfCoins = sum(thisChange)
    return bestChange
```

- The only problem is... this is still too slow
- Let's see why...

Recursion Recalculations

- We saw this before with RecursiveFibonacci()
- Recursion often results in many redundant calls
- Even after only two levels of recursion 6 different change values are repeated multiple times
- How can we avoid this repetition?
- Cache precomputed results in a table!

Back to Table Evaluation

- When do we fill in the values of the table?
- We could do it lazily as needed... as each call to BestChange() progresses from M down to 1
- Or we could do it from the bottom-up - tabulating all values from 1 up to M
- Thus, instead of just trying to find the minimal number of coins to change M cents, we attempt the solve the superficially harder problem of solving for the optimal change for all values from 1 to M

$1 \phi=[0,0,0,0,1] / 2 \phi=[0,0,0,0,2] / 3 \phi=[0,0,0,0,3]$
$\mathrm{M} \phi=$ [?,?,?,?,?]

Change via Dynamic Programming


```
def DPChange(M, c):
    change = [[O for i in xrange(len(c))]]
    for m in xrange( }1,M+1)\mathrm{ :
            bestNumCoins = m+1
            for i in xrange(len(c)):
            if (m >= c[i]):
                thisChange = [x for x in change[m-c[i]]]
                        thisChange[i] += l
                if (sum(thisChange) < bestNumCoins):
```

While computing best -change solutions for all values from 1 to M
seems like a lot of
wasted work, we
frequently reuse results


``` change[m:m] = [thisChange]
bestNumCoins = sum(thisChange) return change[M]
```

- Recall, BruteForceChange() was $\mathrm{O}\left(\mathrm{M}^{\mathrm{d}}\right)$
- DPChange() is $\mathrm{O}(\mathrm{Md})$

Dynamic Programming

- Dynamic Programming is a technique for computing recurrence relations efficiently by storing partial or intermediate results
- Three keys to constructing a dynamic programming solution:

1. Formulate the answer as a recurrence relation
2. Consider all instances of the recurrence at each step
3. Order evaluations so you will always have precomputed the needed partial results

Yet Another DP Example

Manhattan Tourist Problem (MTP)

Imagine seeking a path from source to destination Source in a Manhattan-like city grid that maximizes the number of attractions (*) passed. With the following caveatat every step you must make progress towards the goal.

We treat the city map as a graph, with a "vertices" at

each corner, and weighted edges along each block. The weights are the number of attractions along each block.

Manhattan Tourist Problem: Formulation

Goal: Find the maximum weighted path in a grid.

Input: A weighted grid \boldsymbol{G} with two distinct vertices, one labeled "source" and the other labeled "destination"

Output: A longest path in \boldsymbol{G} from "source" to "destination"

MTP: Greedy Algorithm Is Not Optimal

MTP as a Dynamic Program

MTP Strategy

- Instead of solving the Manhattan Tourist problem directly, (i.e. the path from $(0,0)$ to (n, m)) we will solve a more general problem: find the longest path from $(0,0)$ to any arbitrary vertex (i,j).
- If the longest path from $(0,0)$ to (n, m) passes through some vertex (i, j), then the path from $(0,0)$ to (i, j) must be the longest. Otherwise, you could increase your path by changing it.

MTP: Simple Recursive Program

What's wrong with this approach?

```
MT( \(n, m\) )
    if \(\mathrm{n}=0\) and \(\mathrm{m}=0\)
        return 0
    if \(\mathrm{n}=0\)
    return \(M T(0, m-1)+\) len(edge) from ( \(0, m-1\) ) to ( \(0, m\) )
    if \(m=0\)
    return \(M T(n-1,0)+\) len(edge) from \((n-1,0)\) to \((n, 0)\)
    \(x \leftarrow M T(n-1, m)+\) len(edge) from \((n-1, m)\) to \((n, m)\)
    \(y \leftarrow M T(n, m-1)+\) len(edge) from \((n, m-1)\) to \((n, m)\)
    return \(\max \{x, y\}\)
```


MTP: Ordering Evaluations

- Calculate optimal path score for each vertex in the graph
- Each vertex's score is the maximum of the prior vertices score plus the weight of the connecting edge in between

MTP: Dynamic Programming (cont'd)

First, fill in the easy ones!

MTP: Dynamic Programming (cont'd)

MTP: Dynamic Programming (cont d)

MTP: Dynamic Programming (cont'd)

MTP: Dynamic Programming (cont'd)

MTP: Recurrence

Computing the score for a point (i,j) by the recurrence relation:

$$
s_{i, j}=\max \left\{\begin{array}{l}
\text { Path to the intersection from the left } \\
s_{i-1, j}+\text { weight of the edge between }(i-1, j) \text { and }(i, j) \\
s_{i, j-1}+\text { weight of the edge between }(i, j-1) \text { and }(i, j)
\end{array}\right.
$$

The running time is $\boldsymbol{n} \boldsymbol{x} \boldsymbol{m}$ for a \boldsymbol{n} by \boldsymbol{m} grid (You visit all intersections once, and performed 2 tests)

$$
\text { (} \boldsymbol{n}=\# \text { of rows, } \boldsymbol{m}=\# \text { of columns) }
$$

Manhattan Is Not A Perfect Grid

What about diagonals?

Broadway, Greenwich, etc.

- Easy to fix. Just adds more recursion cases.
- The score at point B is given by:

$$
s_{B}=\max \left\{\begin{array}{l}
s_{A 1}+\text { weight of the edge }\left(A_{1}, B\right) \\
s_{A 2}+\text { weight of the edge }\left(A_{2}, B\right) \\
s_{A 3}+\text { weight of the edge }\left(A_{3}, B\right)
\end{array}\right.
$$

Generalizing Manhattan to a Directed Graph

Computing the score for point \boldsymbol{x} is given by the recurrence relation:
$s_{x}=\quad \max _{\text {of }}\left\{\begin{array}{r}s_{y}+\text { weight of vertex }(y, x) \text { where } \\ y \text { in Predecessors }(x)\end{array}\right.$

- Predecessors (x) - set of vertices having edges leading to x
- The running time for a graph $G(V, E)$
(\boldsymbol{V} is the set of all vertices and E is the set of all edges) is $O(E)$ since each edge is considered once

Traveling in the Grid

- The only hitch is that one must decide on an order to visit the vertices
- We must assure that by the time the vertex x is analyzed, the values, s_{y}, for all its predecessors, y, should be computed - otherwise we are in trouble.
- We need to traverse the vertices in some order
- How to find such order for any directed graph?

DAG: Directed Acyclic Graph

- Since most cities are not perfect regular grids, we represent paths in them as a DAGs
- DAG for Dressing in the morning problem

Topological Ordering

- A numbering of vertices of the graph is called topological ordering of the DAG if every edge of the DAG connects a vertex with a smaller label to a vertex with a larger label
- In other words, if vertices are positioned on a line in an increasing order of labels then all edges go from left to right.

Topological Ordering

- 2 different topological orderings of the DAG

Longest Path in DAG Problem

- Goal: Find a longest path between two vertices in a weighted DAG
- Input: A weighted DAG G with source and destination vertices
- Output: A longest path in G from source to destination

Longest Path in DAG: Dynamic Programming

- Suppose vertex v has indegree 3 and predecessors $\left\{u_{1}, u_{2}, u_{3}\right\}$
- Longest path to v from source is:

```
\(\iota_{v}=\underset{\text { of }}{\max }\left\{\begin{array}{l}a_{u_{l}}+\text { weight of edge from } u_{1} \text { to } v \\ a_{u_{2}}+\text { weight of edge from } u_{2} \text { to } v \\ x_{u}+\text { weight of edge from } u_{3} \text { to } v\end{array}\right.\)
\(s_{v}=\max _{u}\left(s_{u}+\right.\) weight of edge from \(\boldsymbol{u}\) to \(\left.\boldsymbol{v}\right)\)
```


Traversing the Manhattan Grid

- We chose to evaluate our table in a particular order. Uniform distances from the source (all points one block away, then 2 blocks, etc.)
- Other strategies:
- a) Column by column
- b) Row by row
- c) Along diagonals
- This choice can have performance implications

Next Time

- Return to biology
- Solving sequence alignments using Dynamic Programming

