
9/16/13 Comp 555 Fall 2013 1

9/16/13 Comp 555 Fall 2013 2

•  So far we’ve tried: A greedy algorithm that does not
work for all inputs (it is incorrect)

•  New tricks we’ve learned…
–  Is there an exhaustive search algorithm?

Coin-change problem

def exhaustiveChange(amount, denominations):

 bestN = 100

 count = [0 for i in xrange(len(denominations))]

 while True:

 for i, coinValue in enumerate(denominations):

 count[i] += 1

 if (count[i]*coinValue < 100):

 break

 count[i] = 0

 n = sum(count)

 if n == 0:

 break

 value = sum([count[i]*denominations[i] for i in xrange(len(denominations))])

 if (value == amount):

 if (n < bestN):

 bestN = n

 return bestN

How many coin combinations
does this routine test?

9/16/13 Comp 555 Fall 2013 3

•  Other Tricks? A branch-and-bound algorithm

–  Correct, and works well for most cases, but might be as slow as
an exhaustive search for some inputs.

•  Is there anything else we can try?

Coin-change problem

def branchAndBoundChange(amount, denominations):

 bestN = amount

 count = [0 for i in xrange(len(denominations))]

 while True:

 for i, coinValue in enumerate(denominations):

 count[i] += 1

 if (count[i]*coinValue < amount):

 break

 count[i] = 0

 n = sum(count)

 if n == 0:

 break

 if (n > bestN):

 continue

 value = sum([count[i]*denominations[i] for i in xrange(len(denominations))])

 if (value == amount):

 if (n < bestN):

 bestN = n

 return bestN

9/16/13 Comp 555 Fall 2013 4

•  If it is costly to compute the answer for a given
input, then there may be advantages to caching
the result of previous calculations in a table

•  This trades-off time-complexity for space
• How could we fill in

the table in the first
place?
–  Run our best correct

algorithm
–  Can the table itself be

used to speed up the process?

Amt 25 20 10 5 1 Amt 25 20 10 5 1
1¢ 1 42¢ 2 2
2¢ 2 43¢ 2 3
3¢ 3 44¢ 2 4
4¢ 4 45¢ 2 1
5¢ 1 46¢ 2 1 1
6¢ 1 1 47¢ 2 1 2
7¢ 1 2 48¢ 2 1 3
8¢ 1 3 49¢ 2 1 4
9¢ 1 4 50¢ 2
10¢ 1 51¢ 2 1
11¢ 1 1 52¢ 2 2

9/16/13 Comp 555 Fall 2013 5

•  Suppose you are asked to fill-in the unknown
table entry for 67¢

•  It must differ from previous known optimal
result by at most one coin…

•  So what are the possibilities?
–  BestChange(67¢) = 25¢ + BestChange(42¢), or
–  BestChange(67¢) = 20¢ + BestChange(47¢), or
–  BestChange(67¢) = 10¢ + BestChange(57¢), or
–  BestChange(67¢) = 5¢ + BestChange(62¢), or
–  BestChange(67¢) = 1¢ + BestChange(66¢)

Looks like
 a
 recursive
 definition
Forget the

table!
This gives

me another
idea!.

9/16/13 Comp 555 Fall 2013 6

•  The only problem is… this is still too slow
•  Let’s see why…

def RecursiveChange(M, c):

 if (M == 0):

 return [0 for i in xrange(len(c))]

 smallestNumberOfCoins = M+1

 for i in xrange(len(c)):

 if (M >= c[i]):

 thisChange = RecursiveChange(M - c[i], c)

 thisChange[i] += 1

 if (sum(thisChange) < smallestNumberOfCoins):

 bestChange = thisChange

 smallestNumberOfCoins = sum(thisChange)

 return bestChange

9/16/13 Comp 555 Fall 2013 7

•  We saw this before with RecursiveFibonacci()
•  Recursion often results in many redundant calls
•  Even after only

two levels of
recursion 6 different
change values are
repeated multiple
times

•  How can we avoid
this repetition?

•  Cache precomputed
results in a table!

Change(40) = 25 + Change(15)
 25 + 10 + Change(5)
 25 + 5 + Change(10)
 20 + Change(20)
 20 + 20 + Change(0)
 20 + 10 + Change(10)
 20 + 5 + Change(15)
 10 + Change(30)
 10 + 25 + Change(5)
 10 + 20 + Change(10)
 10 + 10 + Change(20)
 10 + 5 + Change(25)
 5 + Change(35)
 5 + 25 + Change(15)
 5 + 20 + Change(10)
 5 + 10 + Change(25)
 5 + 5 + Change(30)

9/16/13 Comp 555 Fall 2013 8

•  When do we fill in the values of the table?
•  We could do it lazily as needed… as each call to

BestChange() progresses from M down to 1
•  Or we could do it from the bottom-up – tabulating all

values from 1 up to M
•  Thus, instead of just trying to find the minimal number

of coins to change M cents, we attempt the solve the
superficially harder problem of solving for the optimal
change for all values from 1 to M

1¢ = [0,0,0,0,1] 2¢ = [0,0,0,0,2] 3¢ = [0,0,0,0,3] M¢ = [?,?,?,?,?] …

9/16/13 Comp 555 Fall 2013 9

•  Recall, BruteForceChange() was O(Md)
• DPChange() is O(Md)

def DPChange(M, c):

 change = [[0 for i in xrange(len(c))]]

 for m in xrange(1,M+1):

 bestNumCoins = m+1

 for i in xrange(len(c)):

 if (m >= c[i]):

 thisChange = [x for x in change[m - c[i]]]

 thisChange[i] += 1

 if (sum(thisChange) < bestNumCoins):

 change[m:m] = [thisChange]

 bestNumCoins = sum(thisChange)

 return change[M]

While computing best
-change solutions for all
 values from 1 to M
 seems like a lot of
 wasted work, we
 frequently reuse results

M d

9/17/13 Comp 555 Fall 2013 10

•  Dynamic Programming is a technique for
computing recurrence relations efficiently by
storing partial or intermediate results

•  Three keys to constructing a dynamic
programming solution:
1.  Formulate the answer as a recurrence relation
2.  Consider all instances of the recurrence at each step
3.  Order evaluations so you will always have

precomputed the needed partial results

9/17/13 Comp 555 Fall 2013 11

Imagine seeking a path
from source to destination
in a Manhattan-like city grid
that maximizes the number
of attractions (*) passed.
With the following caveat–
at every step you must make
progress towards the goal.

We treat the city map as a
graph, with a “vertices” at
each corner, and weighted edges along each block. The
weights are the number of attractions along each block.

Destination
*

*

*

*
*

**

* *

*

*

Source

*

9/17/13 Comp 555 Fall 2013 12

Goal: Find the maximum weighted path in a
grid.

Input: A weighted grid G with two distinct
vertices, one labeled “source” and the other
labeled “destination”

Output: A longest path in G from “source” to
“destination”

9/17/13 Comp 555 Fall 2013 13

1 2 5

 2 1 5

2 3 4

0 0 0

5

3

0

3

5

0

10

3

5

5

1

2 promising start,
but leads to
bad choices!

source

dest
18

Greedy Algorithm:
 At each step select
 the maximum
 weight block.

Greed has a short
 horizon

21 22

9/17/13 Comp 555 Fall 2013 14

3 2 4

0 7 3

3 3 0

1 3 2

4

4

5

6

4

6

5

5

8

2

2

5

0 1 2 3

0

1

2

3

j coordinate
i c

oo
rd

in
at

e

13

source

dest

4

3 2 4 0

1 0 2 4 3

3

1

1

2

2

2

4 19

9 5

15

23

0

20

3

4

9/17/13 Comp 555 Fall 2013 15

•  Instead of solving the Manhattan Tourist
problem directly, (i.e. the path from (0,0) to
(n,m)) we will solve a more general problem:
find the longest path from (0,0) to any arbitrary
vertex (i,j).

•  If the longest path from (0,0) to (n,m) passes
through some vertex (i,j), then the path from
(0,0) to (i,j) must be the longest. Otherwise, you
could increase your path by changing it.

9/17/13 Comp 555 Fall 2013 16

MT(n,m)
 if n = 0 and m = 0

 return 0
 if n = 0

 return MT(0,m-1) + len(edge) from (0,m-1) to (0,m)
 if m = 0

 return MT(n-1, 0) + len(edge) from (n-1,0) to (n,0)
 x  MT(n-1,m) + len(edge) from (n- 1,m) to (n,m)
 y  MT(n,m-1) + len(edge) from (n,m-1) to (n,m)
 return max{x,y}

We saw this in our
 recursive change
 algorithm. It
 computes the same
 paths multiple
 times

What’s wrong with this approach?

9/17/13 Comp 555 Fall 2013 17

1

5

0 1

0

1

i

source

1

5
S1,0 = 5

S0,1 = 1

•  Calculate optimal path score for each vertex in the graph

•  Each vertex’s score is the maximum of the prior vertices
score plus the weight of the connecting edge in between

j
First, fill in the easy ones!
Those 1 block
from the source

9/17/13 Comp 555 Fall 2013 18

1 2

5

3

0 1 2

0

1

2

source

1 3

5

8

4

S2,0 = 8

i

S1,1 = 4

S0,2 = 3 3

-5

j

Then grow the solution a
block at a time while tabulating
the results for each intersection

Note: We’ll use our table to keep
 track of two things. The value of
 the best path to the given
 intersection, and the direction
 from where it came

First, fill in the easy ones!

9/17/13 Comp 555 Fall 2013 19

1 2

5

3

0 1 2 3

0

1

2

3

i

source

1 3

5

8

8

4

0

5

8
10 3

5

-5
9

13
1 -5

S3,0 = 8

S2,1 = 9

S1,2 = 13

S3,0 = 8

j

Keep growing…
 (3 blocks)

9/17/13 Comp 555 Fall 2013 20

1 2 5

-5 1 -5

-5 3

0

5

3

0

3

5

0

10

-3

-5

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

9

12

S3,1 = 9

S2,2 = 12

S1,3 = 8

j

And growing…
 (4 blocks)

9/17/13 Comp 555 Fall 2013 21

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

S3,2 = 9

S2,3 = 15

And growing…
 (5 blocks)

9/17/13 Comp 555 Fall 2013 22

1 2 5

-5 1 -5

-5 3 3

0 0

5

3

0

3

5

0

10

-3

-5

-5

2

0 1 2 3

0

1

2

3

i

source

1 3 8

5

8

8

4

9

13 8

12

9

15

9

j

0

1

16
S3,3 = 16

Once the
“destination” node
(intersection) is
reached, we’re done.

Our table will have
the answer of the
maximum number of
attractions stored
in the entry
associated with the
destination.

We use the “links”
back in the table to
recover the path.
 (Backtracking)

dest

9/17/13 Comp 555 Fall 2013 23

Computing the score for a point (i,j) by the
recurrence relation:

si, j =
max si-1, j + weight of the edge between (i-1, j) and (i, j)

si, j-1 + weight of the edge between (i, j-1) and (i, j)

The running time is n x m for a n by m grid
 (You visit all intersections once, and performed 2 tests)

(n = # of rows, m = # of columns)

Path to the intersection from the left

Path to the intersection from above

9/17/13 Comp 555 Fall 2013 24

What about diagonals?
 Broadway, Greenwich, etc.

•  Easy to fix. Just adds more recursion cases.
•  The score at point B is given by:

sB = max
sA1 + weight of the edge (A1, B)

sA2 + weight of the edge (A2, B)

sA3 + weight of the edge (A3, B)

B

A3

A1

A2

9/17/13 Comp 555 Fall 2013 25

Computing the score for point x is given by the
recurrence relation:

sx = max

of
sy + weight of vertex (y, x) where
 y in Predecessors(x)

•  Predecessors (x) – set of vertices having edges
 leading to x

•  The running time for a graph G(V, E)
 (V is the set of all vertices and E is the set of all edges)
 is O(E) since each edge is considered once

9/17/13 Comp 555 Fall 2013 26

•  The only hitch is that one must decide on an
order to visit the vertices

•  We must assure that by the time the vertex x is
analyzed, the values, sy, for all its predecessors, y,
should be computed – otherwise we are in
trouble.

•  We need to traverse the vertices in some order

•  How to find such order for any directed graph?

 ???

9/17/13 Comp 555 Fall 2013 27

•  Since most cities are not perfect regular grids, we
represent paths in them as a DAGs

• DAG for Dressing in the morning problem

9/17/13 Comp 555 Fall 2013 28

• A numbering of vertices of the graph is called
topological ordering of the DAG if every edge of
the DAG connects a vertex with a smaller label to
a vertex with a larger label

•  In other words, if vertices are positioned on a line
in an increasing order of labels then all edges go
from left to right.

9/17/13 Comp 555 Fall 2013 29

•  2 different topological orderings of the DAG

9/17/13 Comp 555 Fall 2013 30

• Goal: Find a longest path between two vertices in
a weighted DAG

•  Input: A weighted DAG G with source and
destination vertices

• Output: A longest path in G from source to
destination

9/17/13 Comp 555 Fall 2013 31

•  Suppose vertex v has indegree 3 and
predecessors {u1, u2, u3}

•  Longest path to v from source is:

In General:
 sv = maxu (su + weight of edge from u to v)

sv = max
of

su1 + weight of edge from u1 to v

su2 + weight of edge from u2 to v

su3 + weight of edge from u3 to v

9/17/13 Comp 555 Fall 2013 32

•  We chose to evaluate our
table in a particular order.
Uniform distances from the
source (all points one block
away, then 2 blocks, etc.)

•  Other strategies:
–  a) Column by column
–  b) Row by row
–  c) Along diagonals

•  This choice can have
performance implications

a) b)

c)

• Return to biology
• Solving sequence alignments using

 Dynamic Programming

9/17/13 Comp 555 Fall 2013 33

