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•  So far we’ve tried: A greedy algorithm that does not 
work for all inputs (it is incorrect) 

•  New tricks we’ve learned…  
–  Is there an exhaustive search algorithm? 

Coin-change problem 

def exhaustiveChange(amount, denominations):

    bestN = 100

    count = [0 for i in xrange(len(denominations))]

    while True:

        for i, coinValue in enumerate(denominations):

            count[i] += 1

            if (count[i]*coinValue < 100):

                break

            count[i] = 0

        n = sum(count)

        if n == 0:

            break

        value = sum([count[i]*denominations[i] for i in xrange(len(denominations))])

        if (value == amount):

            if (n < bestN):

                bestN = n

    return bestN


How many coin combinations  
does this routine test? 
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•  Other Tricks? A branch-and-bound algorithm 

–  Correct, and works well for most cases, but might be as slow as 
an exhaustive search for some inputs. 

•  Is there anything else we can try? 

Coin-change problem 

def branchAndBoundChange(amount, denominations):

    bestN = amount

    count = [0 for i in xrange(len(denominations))]

    while True:

        for i, coinValue in enumerate(denominations):

            count[i] += 1

            if (count[i]*coinValue < amount):

                break

            count[i] = 0

        n = sum(count)

        if n == 0:

            break

        if (n > bestN):

            continue

        value = sum([count[i]*denominations[i] for i in xrange(len(denominations))])

        if (value == amount):

            if (n < bestN):

                bestN = n

    return bestN
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•  If it is costly to compute the answer for a given 
input, then there may be advantages to caching 
the result of previous calculations in a table 

•  This trades-off time-complexity for space 
• How could we fill in 

the table in the first 
place? 
–  Run our best correct 

algorithm 
–  Can the table itself be 

used to speed up the process? 

Amt 25 20 10 5 1 Amt 25 20 10 5 1 
1¢ 1 42¢ 2 2 
2¢ 2 43¢ 2 3 
3¢ 3 44¢ 2 4 
4¢ 4 45¢ 2 1 
5¢ 1 46¢ 2 1 1 
6¢ 1 1 47¢ 2 1 2 
7¢ 1 2 48¢ 2 1 3 
8¢ 1 3 49¢ 2 1 4 
9¢ 1 4 50¢ 2 
10¢ 1 51¢ 2 1 
11¢ 1 1 52¢ 2 2 
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•  Suppose you are asked to fill-in the unknown 
table entry for 67¢ 

•  It must differ from previous known optimal 
result by at most one coin… 

•  So what are the possibilities? 
–  BestChange(67¢) = 25¢ + BestChange(42¢), or 
–  BestChange(67¢) = 20¢ + BestChange(47¢), or 
–  BestChange(67¢) = 10¢ + BestChange(57¢), or 
–  BestChange(67¢) = 5¢ + BestChange(62¢), or 
–  BestChange(67¢) = 1¢ + BestChange(66¢) 

Looks like
 a
 recursive
 definition 
Forget the  

table! 
This gives  

me another  
idea!. 
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•  The only problem is… this is still too slow 
•  Let’s see why…  

def RecursiveChange(M, c):

    if (M == 0):

        return [0 for i in xrange(len(c))]

    smallestNumberOfCoins = M+1

    for i in xrange(len(c)):

        if (M >= c[i]):

            thisChange = RecursiveChange(M - c[i], c)

            thisChange[i] += 1

            if (sum(thisChange) < smallestNumberOfCoins):

                bestChange = thisChange

                smallestNumberOfCoins = sum(thisChange)

    return bestChange
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•  We saw this before with RecursiveFibonacci( ) 
•  Recursion often results in many redundant calls 
•  Even after only  

two levels of  
recursion 6 different 
change values are 
repeated multiple 
times 

•  How can we avoid 
this repetition? 

•  Cache precomputed 
results in a table! 

Change(40)  =  25 + Change(15) 
   25 + 10 + Change(5) 
   25 +   5 + Change(10) 
  20 + Change(20) 
   20 + 20 + Change(0) 
   20 + 10 + Change(10) 
   20 +   5 + Change(15) 
  10 + Change(30) 
   10 + 25 + Change(5) 
   10 + 20 + Change(10) 
   10 + 10 + Change(20) 
   10 +   5 + Change(25) 
  5 + Change(35) 
   5 + 25 + Change(15) 
   5 + 20 + Change(10) 
   5 + 10 + Change(25) 
   5 +   5 + Change(30) 
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•  When do we fill in the values of the table? 
•  We could do it lazily as needed… as each call to 

BestChange() progresses from M down to 1 
•  Or we could do it from the bottom-up –  tabulating all 

values from 1 up to M 
•  Thus, instead of just trying to find the minimal number 

of coins to change M cents, we attempt the solve the 
superficially harder problem of solving for the optimal 
change for all values from 1 to M 

1¢ = [0,0,0,0,1] 2¢ = [0,0,0,0,2] 3¢ = [0,0,0,0,3] M¢ = [?,?,?,?,?] … 
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•  Recall, BruteForceChange( ) was O(Md) 
• DPChange( ) is O(Md) 

def DPChange(M, c):

    change = [[0 for i in xrange(len(c))]]

    for m in xrange(1,M+1):

        bestNumCoins = m+1

        for i in xrange(len(c)):

            if (m >= c[i]):

                thisChange = [x for x in change[m - c[i]]]

                thisChange[i] += 1

                if (sum(thisChange) < bestNumCoins):

                    change[m:m] = [thisChange]

                    bestNumCoins = sum(thisChange)

    return change[M]


While computing best
-change solutions for all
 values from 1 to M
 *seems* like a lot of
 wasted work, we
 frequently reuse results 

M d 
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•  Dynamic Programming is a technique for 
computing recurrence relations efficiently by 
storing partial or intermediate results 

•  Three keys to constructing a dynamic 
programming solution: 
1.  Formulate the answer as a recurrence relation 
2.  Consider all instances of the recurrence at each step 
3.  Order evaluations so you will always have 

precomputed the needed partial results 



9/17/13 Comp 555   Fall 2013 11 

Imagine seeking a path  
from source to destination  
in a Manhattan-like city grid  
that maximizes the number  
of attractions (*) passed.  
With the following caveat–  
at every step you must make  
progress towards the goal. 

We treat the city map as a  
graph, with a “vertices” at 
each corner, and weighted edges along each block. The 
weights are the number of attractions along each block. 

Destination 
*

*

*

*
* 

**

* *

*

* 

Source 

*
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Goal: Find the maximum weighted path in a 
grid. 

Input: A weighted grid G with two distinct 
vertices, one labeled “source” and the other 
labeled “destination” 

Output: A longest path in G from “source” to 
“destination” 
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•  Instead of solving the Manhattan Tourist 
problem directly, (i.e. the path from (0,0) to 
(n,m)) we will solve a more general problem: 
find the longest path from (0,0) to any arbitrary 
vertex (i,j). 

•  If the longest path from (0,0) to (n,m) passes 
through some vertex (i,j), then the path from 
(0,0) to (i,j) must be the longest. Otherwise, you 
could increase your path by changing it. 
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MT(n,m) 
   if n = 0 and m = 0 

 return 0 
   if n = 0 

 return MT(0,m-1) + len(edge) from (0,m-1) to (0,m) 
   if m = 0 

 return MT(n-1, 0) + len(edge) from (n-1,0) to (n,0) 
   x  MT(n-1,m) + len(edge) from (n- 1,m) to (n,m) 
   y  MT(n,m-1) + len(edge) from (n,m-1) to (n,m) 
   return max{x,y} 

We saw this in our
 recursive change
 algorithm. It
 computes the same
 paths multiple
 times 

What’s wrong with this approach? 
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•  Calculate optimal path score for each vertex in the graph 

•  Each vertex’s score is the maximum of the prior vertices 
score plus the weight of the connecting edge in between 
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Those 1 block  
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Then grow the solution a  
block at a time while tabulating  
the results for each intersection 

Note: We’ll use our table to keep
 track of two things. The value of
 the best path to the given
 intersection, and the direction
 from where it came 

First, fill in the easy ones! 
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Once the 
“destination” node 
(intersection) is 
reached, we’re done. 

Our table will have 
the answer of the 
maximum number of 
attractions stored 
in the entry 
associated with the 
destination. 

We use the “links” 
back in the table to 
recover the path. 
   (Backtracking) 

dest 



9/17/13 Comp 555   Fall 2013 23 

Computing the score for a point (i,j) by the 
recurrence relation: 

si, j   = 
max  si-1, j + weight of the edge between (i-1, j) and (i, j)  

si, j-1 + weight of the edge between (i, j-1) and (i, j) 

The running time is n x m  for a n by m grid 
 (You visit all intersections once, and performed 2 tests) 

(n = # of rows, m = # of columns) 

Path to the intersection from the left 

Path to the intersection from above 
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What about diagonals? 
   Broadway, Greenwich, etc. 

•  Easy to fix. Just adds more recursion cases.  
•  The score at point B is given by: 

sB  = max 
sA1 + weight of the edge  (A1, B) 

sA2 + weight of the edge  (A2, B) 

sA3 + weight of the edge  (A3, B) 

B 

A3 

A1 

A2 
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Computing the score for point x is given by the 
recurrence relation: 

sx  =  max  

of 
sy + weight of vertex (y, x) where  
                     y in Predecessors(x) 

•  Predecessors (x) – set of vertices having edges  
      leading to x  

•  The running time for a graph G(V, E) 
      (V is the set of all vertices and E is the set of all edges) 
      is O(E) since each edge is considered once 
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•  The only hitch is that one must decide on an 
order to visit the vertices  

•  We must assure that by the time the vertex x is 
analyzed, the values, sy, for all its predecessors, y, 
should be computed – otherwise we are in 
trouble.  

•  We need to traverse the vertices in some order 

•  How to find such order for any directed graph? 

                                      ??? 
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•  Since most cities are not perfect regular grids, we 
represent paths in them as a DAGs  

• DAG for Dressing in the morning problem 
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• A numbering of vertices of the graph  is called 
topological ordering of the DAG if every edge of 
the DAG connects a vertex with a smaller label to 
a vertex with a larger label 

•  In other words, if vertices are positioned on a line 
in an increasing order of labels then all edges go 
from left to right.  
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•  2 different topological orderings of the DAG 
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• Goal: Find a longest path between two vertices in 
a weighted DAG 

•  Input: A weighted DAG G with source and 
destination vertices 

• Output: A longest path in G from source to 
destination 
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•  Suppose vertex v has indegree 3 and 
predecessors {u1, u2, u3} 

•  Longest path to v  from source is: 

In General:  
 sv = maxu  (su + weight of edge from u to v)  

sv = max 
of 

su1 + weight of edge from u1 to v  

su2 + weight of edge from u2 to v  

su3 + weight of edge from u3 to v  
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•  We chose to evaluate our 
table in a particular order. 
Uniform distances from the 
source (all points one block 
away, then 2 blocks, etc.) 

•  Other strategies: 
–  a) Column by column 
–  b) Row by row 
–  c) Along diagonals 

•  This choice can have 
performance implications 

a) b) 

c) 



• Return to biology 
• Solving sequence alignments using  

             Dynamic Programming 
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