Genome Rearrangements

Study Chapters 5.3-5.5

Python Tutorial on 9/11

From Last Time

noman

- We developed a SimpleReversalSort algorithm that sorts by extending its prefix on every iteration (n-1) steps.
- On
$\pi: \underline{612345}$
Flip 1: $1 \underline{62345}$
Flip 2: $12 \underline{63} 45$
Flip 3: 123645
Flip 4: $1234 \underline{65}$
Flip 5: 123456

We probably don't want to use this algorithm to estimate the reversal distance between two genomes

- But it could have been sorted in two flips:

$$
\text { Flip 1: } \frac{\pi 432166}{\text { Flip 2: } 123456}
$$

Approximation Algorithms

- Today's algorithms find approximate solutions rather than optimal solutions
- The approximation ratio of an algorithm \mathcal{A} on input π is:

$$
\mathcal{A}(\pi) / \operatorname{OPT}(\pi)
$$

where
$\mathcal{A}(\pi)$ - solution produced by algorithm \mathcal{A} OPT (π) - optimal solution of the problem

Approximation Ratio/Performance Guarantee

an

- Approximation ratio (performance guarantee) of algorithm \mathcal{A} : max approximation ratio over all inputs of size n
- For a minimizing algorithm \mathcal{A} (like ours):
- Approx Ratio $=\max _{|\pi|=n} \mathcal{A}(\pi) / \operatorname{OPT}(\pi) \geq 1.0$
- For maximization algorithms:
- Approx Ratio $=\min _{|\pi|=n} \mathcal{A}(\pi) / \operatorname{OPT}(\pi) \leq 1.0$

Approximation Ratio

SimpleReversalSort (π)
1 for $i \leftarrow 1$ to $n-1$
$2 \quad j \leftarrow$ position of element i in $\pi\left(\right.$ i.e., $\left.\pi_{j}=i\right)$
$3 \quad$ if $j \neq i$
$4 \quad \pi \leftarrow \pi \rho(i, j)$
5
$6 \quad$ output π
$7 \quad$ if π is the identity permutation
$7 \quad$ return

Step 0: 612345 Step 1: 162345 Step 2: $12 \underline{6345}$ Step 3: 123645 Step 4: 123465 Step 5: 123456

Step 0: 612345
Step 1: 543216
Step 2: 123456

New Idea: Adjacencies

$$
\pi=\pi_{1} \pi_{2} \pi_{3} \ldots \pi_{n-1} \pi_{n}
$$

- A pair of neighboring elements π_{i} and π_{i+1} are adjacent if

$$
\pi_{i+1}=\pi_{i} \pm 1
$$

- For example:

$$
\pi=193478265
$$

- $(3,4)$ or $(7,8)$ and $(6,5)$ are adjacent pairs

Breakpoints

Breakpoints occur between neighboring nonadjacent elements:

$$
\pi=1|9| \underline{34}|\underline{78}| 2 \mid \underline{65}
$$

- Pairs $(1,9),(9,3),(4,7),(8,2)$ and $(2,5)$ define 5 breakpoints of permutation π
- $b(\pi)$ - \# breakpoints in permutation π

Extending Permutations

- One can place two elements $\pi_{0}=0$ and $\pi_{n+1}=n+1$ at the beginning and end of π respectively

$$
\begin{aligned}
& \pi=1|9| 34|78| 2 \mid 65 \\
& \begin{array}{l}
\text { Extending with } 0 \text { and } 10
\end{array} \\
& \pi=01|9| 34|78| 2|6 \quad 5| 10
\end{aligned}
$$

A new breakpoint was created after extending
An extended permutation of n can have at most ($n+1$) breakpoints, ($\mathrm{n}-1$ between elements plus 2)

Reversal Distance and Breakpoints

- Breakpoints are the bottlenecks for sorting by reversals once they are removed, the permutation is sorted.
- Each "useful" reversal eliminates at least 1 and at most 2 breakpoints.
- Consider the following application of SimpleReversalSort(Extend (π)):

$$
\begin{aligned}
& \pi=2314465 \\
& 0|\underline{2} 3| 1|4| 6 \quad 5 \mid 7 \quad b(\pi)=5 \\
& \begin{array}{llll}
0 & 1 \mid & \underline{3} 2 & 2
\end{array}|65| 7 \quad b(\pi)=4 \\
& 012234|\underline{6} 5| 7 \quad b(\pi)=2 \\
& 01234567 b(\pi)=0
\end{aligned}
$$

Sorting By Reversals: A Better Greedy Algorithm

BreakPointReversalSort (π)

1 while $b(\pi)>0$
2 Among all possible reversals, choose reversal ρ minimizing $b(\pi \cdot \rho)$
$3 \pi \leftarrow \pi \bullet \rho(i, j)$
4 output π
5 return

The "greedy" concept here is to reduce as many breakpoints as possible

Does it always terminate?
What if no reversal reduces the
number of breakpoints?
$012|567| 34 \mid 89$

New Concept: Strips

- Strip: an interval between two consecutive breakpoints in a permutation
- Decreasing strip: strip of elements in decreasing order (e.g. 65 and 32).
- Increasing strip: strip of elements in increasing order (e.g. 78)

$$
019437825610
$$

- A single-element strip can be declared either increasing or decreasing. We will choose to declare them as decreasing with exception of extension strips (with 0 and $n+1$)

Reducing the Number of Breakpoints

Consider $\pi=14657832$

$\left.0 \quad 1|4| \begin{array}{ll}6 & 5\end{array}\right] \quad 8|3 \quad 2| \underline{\rightarrow} \quad b(\pi)=5$

If permutation π contains at least one decreasing strip, then there exists a reversal ρ which decreases the number of breakpoints (i.e. $b(\pi \bullet \rho)<b(\pi)$).

How can we be sure that we decrease the number of breakpoints?
\qquad

Things to Consider

Consider $\pi=14657832$

- Choose the decreasing strip with the smallest element k in π (it'll always be the rightmost)
- Find $k-1$ in the permutation
(it'll always be flanked by a breakpoint)
- Reverse the segment between k and $k-1 \rightarrow \begin{gathered}\text { Thus, removing } \\ \text { the breakpoint }\end{gathered}$
- Reverse the segment between k and $k-1 \rightarrow \substack{\text { the breakpoint } \\ \text { fanken } k-1}$ flanking k-1

Things to Consider

Consider $\pi=14657832$

reduced by 1!

- Choose the decreasing strip with the smallest element k in π (it'll always be the rightmost)
- Find $k-1$ in the permutation
(it'll always be flanked by a breakpoint)
- Reverse the segment between k and $k-1$
- Repeat until there is no decreasing strip

Things to Consider

Consider $\pi=14657832$

$0123|87| \underset{\underbrace{}}{56|4| 9} \quad b(\pi)=4$

- Choose the decreasing strip with the smallest element k in π (it'll always be the rightmost)
- Find $k-1$ in the permutation
(it'll always be flanked by a breakpoint)
- Reverse the segment between k and $k-1$
- Repeat until there is no decreasing strip

Things to Consider

Consider $\pi=14657832$
$\xrightarrow{01234} \underset{\sim}{65} \underset{\sim}{789} b(\pi)=2$

- Choose the decreasing strip with the smallest element k in π (it'll always be the rightmost)
- Find $k-1$ in the permutation
(it'll always be flanked by a breakpoint)
- Reverse the segment between k and $k-1$
- Repeat until there is no decreasing strip

Things to Consider

Consider $\pi=14657832$

$$
0123465 \left\lvert\, \begin{array}{ll}
0 & 89
\end{array} b(\pi)=2\right.
$$

- Choose the decreasing strip with the smallest element k in π (it'll always be the rightmost)
- Find $k-1$ in the permutation
(it'll always be flanked by a breakpoint)
- Reverse the segment between k and $k-1$
- Repeat until there is no decreasing strip

Things to Consider

Consider $\pi=14657832$

No breakpoint left!
$0123456789 \quad b(\pi)=0$

- Choose the decreasing strip with the smallest element k in π (it'll always be the rightmost)
- Find $k-1$ in the permutation
(it'll always be flanked by a breakpoint)
- Reverse the segment between k and $k-1$
- Repeat until there is no decreasing strip

Things to Consider

 Consider $\pi=14657832$

$0123|87| 56|4| 9 \quad b(\pi)=4$
$01234|65| \begin{array}{ll}789\end{array} b(\pi)=2$
$0123456789 \quad b(\pi)=0$
$d(\pi)=3$

Does it work
for any permutation?

Potential Gotcha

- If there is no decreasing strip, there may be no strip-reversal ρ that reduces the number of breakpoints (i.e. $b(\pi \bullet \rho) \geq b(\pi)$ for any reversal ρ).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.

Potential Gotcha

$012|765| \xrightarrow{34} \mid \xrightarrow{89} \quad b(\pi)=3$

- If there is no decreasing strip, there may be no strip-reversal ρ that reduces the number of breakpoints (i.e. $b(\pi \bullet \rho) \geq b(\pi)$ for any reversal ρ).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.

Potential Gotcha

- If there is no decreasing strip, there may be no strip-reversal ρ that reduces the number of breakpoints (i.e. $b(\pi \bullet \rho) \geq b(\pi)$ for any reversal ρ).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.

Potential Gotcha

- If there is no decreasing strip, there may be no strip-reversal ρ that reduces the number of breakpoints (i.e. $b(\pi \bullet \rho) \geq b(\pi)$ for any reversal ρ).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.

Potential Gotcha

- If there is no decreasing strip, there may be no strip-reversal ρ that reduces the number of breakpoints (i.e. $b(\pi \cdot \rho) \geq b(\pi)$ for any reversal ρ).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.

ImprovedBreakpointReversalSort

ImprovedBreakpointReversalSort (π)
1 while $b(\pi)>0$
2 if π has a decreasing strip
Among all possible reversals, choose reversal ρ that minimizes $b(\pi \bullet \rho)$
4 else
5 Choose a reversal ρ that flips an increasing strip in π
$6 \pi \leftarrow \pi \cdot \rho$
7 output π
8 return

In Python

def improvedBreakpointReversalSort(seq):
while hasBreakpoints(seq):
increasing, decreasing = getStrips(seq)
if len(decreasing) >0 :
reversal = pickReversal(seq, decreasing)
else:
reversal = increasing[0]
print seq, "reversal", reversal
seq = doReversal(seq,reversal)
print seq, "Sorted"
return

Performance

- ImprovedBreakPointReversalSort is an approximation algorithm with a performance guarantee of no worse than 4
- It eliminates at least one breakpoint in every two steps; at most $2 b(\pi)$ steps
- Optimal algorithm eliminates at most 2 breakpoints in every step: $d(\pi) \geq b(\pi) / 2$
- Approximation ratio:

$$
\frac{2 b(\pi)}{d(\pi)} \leq \frac{2 b(\pi)}{\frac{b(\pi)}{2}}=4
$$

A Better Approximation Ratio

- If there is a decreasing strip, the next reversal reduces $b(\pi)$ by at least one.
- The only bad case is when there is no decreasing strip, as then we need a reversal that does not reduce $b(\pi)$.
- If we could always choose a reversal reducing $b(\pi)$ and, at the same time, yielding a permutation that again has at least one decreasing strip, the bad case would never occur.
- If all reversals that reduce $b(\pi)$ create a permutation without decreasing strips, then there exists a reversal that reduces $b(\pi)$ by two?!
- When the algorithm creates a permutation without decreasing strip, the previous reversal must have reduced $b(\pi)$ by two.
- At most $b(\pi)$ reversals are needed.
- Approximation ratio: $\frac{b(\pi)}{d(\pi)} \leqslant \frac{b(\pi)}{\frac{b(\pi)}{2}}=2$

Both are Greedy Algorithms

- SimpleReversalSort - ImprovedBreakPointReversalSort
- Attempts to reduce the number of breakpoints at each step
- Performance guarantee: 2
- Performance guarantee: $\frac{n-1}{2}$

Try it yourself

$$
0 \text { 1|3|8 } 7 \text { 6|2|4 } 5 \mid 910
$$

Next Time

- Dynamic Programming Algorithms

