
9/2/13 Comp 555 Fall 2013 1

9/2/13 Comp 555 Fall 2013 2

• As a precursor to transcription (the reading of
DNA to construct RNAs that eventually leading
to protein synthesis) special proteins bind to the
DNA, separate it to enable its reading.

• How do these proteins know where the coding
genes are in order to bind?

• Genes are relatively rare
–  O(1,000,000,000) bases/genome
–  O(10000) genes/genome
–  O(1000) bases/gene

• Approximately 1% of DNA
codes for genes (103104/109)

9/2/13 Comp 555 Fall 2013 3

•  RNA polymerases seek out regulatory or promoting regions
located 100-1000 bp upstream from the coding region

•  They work in conjunction with special proteins called
transcription factors whose presence enables gene
expression

•  Within these regions are the Transcription Factor Binding
Sites (TFBS), special DNA sequence patterns known as
motifs that are specific to a given transcription factor

codons codons codons regulatory region

Transcription
factor

RNA RNA RNA

9/2/13 Comp 555 Fall 2013 4

• A TFBS can be located anywhere within the
regulatory region.

•  TFBS may vary slightly across different
regulatory regions since non-essential bases
could mutate

•  Transcription factors are robust (they will still
bind) in the presence of small changes in a few
bases

Transcription
factor

5’-ccatttagg-3’

cggggctatgcaaccattttaggtgggtcgtcacacattcccctttcgata

9/2/13 Comp 555 Fall 2013 5

gene ATCCCG

gene TTCCGG

gene ATCCCG

gene ATGCCG

gene ATGCCC

Motif (n) - A repeated structural element in
 architecture or decoration

9/2/13 Comp 555 Fall 2013 6

• We do not know the motif sequence for every TF
• We do not know where it is located relative to

the gene’s start
• Motifs can differ slightly from one gene to the

next
• We only know that it occurs frequently
• How to discern a Motif’s frequent “similar”

pattern from “random” patterns?

9/2/13 Comp 555 Fall 2013 7

• A popular form of word puzzle

N oucgupju dlgw ynouo nwu sbu ynoho ld n jlzu dlw eupuo, xbhjb,
snqup hp swhvmuo, zusuwihpuo vwlsuhp oucgupjuo.

•  Based on letter, multi-letter, and word frequency
it is not hard to figure out the most likely
answer.

•  Try solving it using
 http://rumkin.com/tools/cipher/cryptogram-solver.php

9/2/13 Comp 555 Fall 2013 8

• Nucleotides in motifs encode a message in a
“genetic” language. Symbols in a cryptogram,
encode messages in English

•  In order to solve the problem, we analyze the
frequencies of patterns in DNA/Cryptogram.

•  Knowledge of established regulatory motifs
makes the Motif Finding problem simpler.
Knowledge of the words in the English
dictionary helps to solve cryptograms.

9/2/13 Comp 555 Fall 2013 9

• We don’t have a complete dictionary of motifs
•  The “genetic” language doesn’t have a

standard “grammar”
• Only a small fraction of nucleotide sequences

encode for motifs
•  The size of the genome sequence is enormous

9/2/13 Comp 555 Fall 2013 10

• Given a random sample of DNA sequences:
cctgatagacgctatctggctatccacgtacgtaggtcctctgtgcgaatctatgcgtttccaaccat
agtactggtgtacatttgatacgtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc
aaacgtacgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt
agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtacgtataca
Ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaacgtacgtc

•  Find the pattern that is implanted in each of the
individual sequences, namely, the motif

• Additional information:
–  Assume the hidden sequence is of length 8
–  The pattern is not exactly the same in each sequence

because random point mutations have been
introduced

9/2/13 Comp 555 Fall 2013 11

•  Finding motifs if there are no mutations
•  Probability of a given 8-mer in an infinite

sequence is 1/48 ≈ 1.5x10-5 (1 every 65Kb)
• Assuming 5 strings of length 68, there are

5 (68 - 8) = 300 distinct 8-mers
•  Probability of any one 8-mer is 300/48 ≈ 0.005
•  So any repeat is rare

cctgatagacgctatctggctatccacgtacgtaggtcctctgtgcgaatctatgcgtttccaaccat

agtactggtgtacatttgatacgtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

aaacgtacgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtacgtataca

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaacgtacgtc

acgtacgt

9/2/13 Comp 555 Fall 2013 12

•  Introduce 2 point mutations into each pattern:

cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcgaatctatgcgtttccaaccat

agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

aaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtCcAtataca

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaCcgtacgGc

• Our original target pattern no longer appears in
any sequence!

Can we still find the motif?

9/2/13 Comp 555 Fall 2013 13

• To define a motif, let’s assume that we know
where the motif starts in each sequence

• The start positions can be represented as
 s = [s1,s2,s3,…,st]

9/2/13 Comp 555 Fall 2013 14

•  Line up the patterns by
their start indexes
 s = (s1, s2, …, st)

•  Construct a matrix profile
with the frequencies of
each nucleotide in
columns

•  Consensus nucleotide in
each position has the
highest score in column

 a G g t a c T t
 C c A t a c g t
Alignment a c g t T A g t
 a c g t C c A t
 C c g t a c g G

 A 3 0 1 0 3 1 1 0
Profile C 2 4 0 0 1 4 0 0
 G 0 1 4 0 0 0 3 1
 T 0 0 0 5 1 0 1 4

Consensus A C G T A C G T

9/2/13 Comp 555 Fall 2013 15

• One can think of the consensus as an “ancestor”
motif, from which mutated motifs emerged

•  The distance between an actual motif and the
consensus sequence is generally less than that
for any two actual motifs

• Hamming distance is number of positions that
differ between two strings

G A G A C T C A T
X X
T A G A C G C A T

A Hamming
distance of 2

9/3/13 Comp 555 Fall 2013 16

• A consensus string has a minimal hamming
distance to all source strings

9/3/13 Comp 555 Fall 2013 17

• DNA – array of sequence fragments
•  t - number of sample DNA sequences
•  n - length of each DNA sequence

• l - length of the motif (l -mer)
•  si - starting position of an l -mer in sequence i
•  s=(s1, s2,… st) - array of motif’s starting

 positions

9/3/13 Comp 555 Fall 2013 18

 cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcgaatctatgcgtttccaaccat

 agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

 aaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt

 agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtCcAtataca

 ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaCcgtacgGc

l = 8

t=5

s1 = 26 s2 = 21 s3= 3 s4 = 56 s5 = 60 s

DNA

n = 69

9/3/13 Comp 555 Fall 2013 19

• Given s = (s1, … st) and DNA:

 Score(s,DNA) =

 a G g t a c T t
 C c A t a c g t
 a c g t T A g t
 a c g t C c A t
 C c g t a c g G

 A 3 0 1 0 3 1 1 0
 C 2 4 0 0 1 4 0 0
 G 0 1 4 0 0 0 3 1
 T 0 0 0 5 1 0 1 4

 Consensus a c g t a c g t

 Score 3+4+4+5+3+4+3+4=30

l

t

9/3/13 Comp 555 Fall 2013 20

• Goal: Given a set of DNA sequences, find a set of
l -mers, one from each sequence, that maximizes
the consensus score

•  Input: A t x n matrix of DNA, and l, the length of
the pattern to find

• Output: An array of t starting positions
s = (s1, s2, … st) maximizing Score(s,DNA)

9/3/13 Comp 555 Fall 2013 21

•  Compute the scores for all possible combinations
of starting positions s

•  The best score determines the best profile and
the consensus pattern in DNA

•  The goal is to maximize Score(s,DNA) by varying
the starting positions si, where:

si = [1, …, n-l+1]
i = [1, …, t]

9/3/13 Comp 555 Fall 2013 22

1.  BruteForceMotifSearch(DNA, t, n, l)!
2.  bestScore 0!
3.  for each s = (s1, s2, …, st) from (1, 1, …, 1) !

 to (n- l+1, n- l+1, …, n- l+1)!
4.  if score(s, DNA, l) > bestScore!
5.  bestScore score(s, DNA, l)!
6.  bestMotif (s1, s2, …, st)!
7.  return bestMotif!

9/3/13 Comp 555 Fall 2013 23

•  Search (n - l + 1) positions in each of t sequences, by
examining (n - l + 1)t sets of starting positions

•  For each set of starting positions, the scoring
function makes l operations, so complexity is
l (n – l + 1)t = O(l nt)

•  That means that for t = 8, n = 1000, l = 10 we must
perform approximately 1025 computations

•  Generously assuming 109 comps/sec
it will require only 1016 secs

•  1016/(60 * 60 * 24 *365) millions of years

9/2/13 Comp 555 Fall 2013 24

• Given a set of t DNA sequences find a pattern
that appears in all t sequences with the
minimum number of mutations

•  This pattern will be the motif
•  Rather than finding the maximal consensus

string, this approach attempts to the minimal
distance string

9/2/13 Comp 555 Fall 2013 25

9/2/13 Comp 555 Fall 2013 26

9/3/13 Comp 555 Fall 2013 27

•  For each DNA sequence i, compute all dH(v, x),
where x is an l -mer with starting position si

 (1 < si < n – l + 1)

•  Find minimum of dH(v, x) among all l -mers in
sequence i

•  TotalDistance(v,DNA) is the sum of the minimum
Hamming distances for each DNA sequence i

•  TotalDistance(v,DNA) = mins dH(v, s), where s is the
set of starting positions s1, s2,… st

9/3/13 Comp 555 Fall 2013 28

• Goal: Given a set of DNA sequences, find a
median string

•  Input: A t x n matrix DNA, and l, the length of
the pattern to find

• Output: A string v of l nucleotides that
minimizes TotalDistance(v,DNA) over all strings
of that length

9/3/13 Comp 555 Fall 2013 29

1.  MedianStringSearch(DNA, t, n, l)!
2.  bestMotif “”!
3.  bestDistance t × l!
4.  for each l –mer, s, from “aaa…a” to “ttt…t”!
5.  if TotalDistance(s, DNA) < bestDistance!
6.  bestDistance TotalDistance(s, DNA)!
7.  bestMotif s!
8.  return bestMotif!

9/3/13 Comp 555 Fall 2013 30

• Motif Finding Problem ≡ Median String Problem
•  The Motif Finding is a maximization problem

while Median String is a minimization problem
• However, the Motif Finding problem and Median

String problem are computationally equivalent
(they give the same output for a common input)

• Need to show that minimizing TotalDistance is
equivalent to maximizing Score

9/3/13 Comp 555 Fall 2013 31

•  At any column i
Scorei + TotalDistancei = t

•  Because there are l columns
 Score + TotalDistance = l * t

•  Rearranging:
 Score = l * t - TotalDistance

•  l * t is constant the
minimization of the right side
is equivalent to the
maximization of the left side

 a G g t a c T t
 C c A t a c g t
Alignment a c g t T A g t
 a c g t C c A t
 C c g t a c g G

 A 3 0 1 0 3 1 1 0
Profile C 2 4 0 0 1 4 0 0
 G 0 1 4 0 0 0 3 1
 T 0 0 0 5 1 0 1 4

Consensus a c g t a c g t

Score 3+4+4+5+3+4+3+4

TotalDistance 2+1+1+0+2+1+2+1

Sum 5 5 5 5 5 5 5 5

l

t

9/3/13 Comp 555 Fall 2013 32

• What is the point of reformulating the Motif
Finding problem as the Median String problem?

– The Motif Finding Problem needs to examine
all the combinations for s. That is (n - l + 1)t
combinations!!!

– The Median String Problem needs to examine
all 4l combinations for v. This number is
relatively smaller

n=1000, l=10, t=8
(1000-10+1)8 ≈ 9.3 x 1023

8(1000-10+1)410 ≈ 8.3 x 109

9/3/13 Comp 555 Fall 2013 33

1.  BruteForceMotifSearch(DNA, t, n, l)!
2.  bestScore 0!
3.  for each s = (s1, s2, …, st) from (1, 1, …, 1) !

 to (n- l+1, n- l+1, …, n- l+1)!
4.  if score(s, DNA, l) > bestScore!
5.  bestScore score(s, DNA, l)!
6.  bestMotif (s1, s2, …, st)!
7.  return bestMotif!

9/3/13 Comp 555 Fall 2013 34

• How can we perform the line

for each s=(s1,s2 , . . ., st) from (1,1 . . . 1) to (n-l +1, . . ., n-l +1) ?

• We need a method to more efficiently examine
the many possible motifs locations

•  This is not very different than exploring all
“t-digit base (n-l+1)” numbers

9/3/13 Comp 555 Fall 2013 35

1.  MedianStringSearch(DNA, t, n, l)!
2.  bestMotif “”!
3.  bestDistance t ×l!
4.  for each l –mer, s, from “aaa…a” to “ttt…t”!
5.  if TotalDistance(s, DNA) < bestDistance!
6.  bestDistance TotalDistance(s, DNA)!
7.  bestMotif s!
8.  return bestMotif!

9/3/13 Comp 555 Fall 2013 36

•  For the Median String Problem we need to
consider all 4l possible l -mers:

aa… aa
aa… ac
aa… ag
aa… at
aa… ca

.

.
tt… tt  

 How to organize this search?

• We’ve used variations of this idea before

•  Each call generates a new permutation

9/3/13 Comp 555 Fall 2013 37

def NextLeaf(a, L, k):
 # generates L^k permutations
 for i in reversed(xrange(L)):
 if (a[i] < k):
 a[i] += 1
 break
 else:
 a[i] = 1
 return a

The “break” here is very important is
 terminates the loop once any index is
 increased

9/3/13 Comp 555 Fall 2013 38

•  This is the basic loop structure that we have
used for many examples thus far
(e. g. BruteForceChange)

•  Is there another way to search permutations?

def AllLeaves(L, k):
 a = [1 for i in xrange(L)]
 while True:
 print a
 a = NextLeaf(a, L, k)
 if (sum(a) == L)
 return

9/3/13 Comp 555 Fall 2013 39

•  Our standard method for enumerating permutations just
traverses the leaf nodes

•  Suppose after checking the first or second letter we
already know the solution could not be the one we are
looking for?

AA- AT- AG- AC- TA- TT- TG- TC- GA- GT- CC- CG- CT- CA- GC- GG-

A-- T-- G-- C--

AAAA
AAAA
ATGC

AAAA
TTTT
ATGC

AAAA
GGGG
ATGC

AAAA
CCCC
ATGC

TTTT
AAAA
ATGC

TTTT
TTTT
ATGC

TTTT
GGGG
ATGC

TTTT
CCCC
ATGC

GGGG
AAAA
ATGC

GGGG
TTTT
ATGC

GGGG
GGGG
ATGC

GGGG
CCCC
ATGC

CCCC
AAAA
ATGC

CCCC
TTTT
ATGC

CCCC
GGGG
ATGC

CCCC
CCCC
ATGC

9/2/13 Comp 555 Fall 2013 40

•  Characteristics of the search trees:
– The unique permutations reside at leaves
– A parent node is a common prefix of its

children
• How can we traverse the tree?
•  Things we’d like to do:

– Visit all the nodes (interior and leaves)
– Visit the next node (in an ordered way)
– Bypass the children of a node

9/2/13 Comp 555 Fall 2013 41

•  Start from the root and explore down to the
bottom one path at a time

1111 1112 1121 1122 1211 1212 1221 1222 2111 2112 2222 2221 2212 2211 2122 2121

111- 112- 121- 122- 211- 212- 221- 222-

11-- 12-- 21-- 22--

1--- 2---

1

5 6 8 9 12 13 15 16 20 21 23 24 27 28 30 31

4 7 11 14 19 22 26 29

3 10 18 25

2 17

Initial Location

Location after 10 moves

9/2/13 Comp 555 Fall 2013 42

• Uses 0s to encode unspecified part of interior
nodes (the dashes in our figure)

def NextVertex(a, i, L, k):
 if (i < L):
 a[i] = 1
 return (a, i+1)
 else:
 for j in reversed(xrange(L)):
 if (a[j] < k):
 a[j] += 1
 return (a, j+1)
 a[j] = 0
 return (a, 0)

9/2/13 Comp 555 Fall 2013 43

• Given a prefix (internal vertex), find next
vertex after skipping all of the current
vertex’s children

def Bypass(a, i, L, k):
 for j in reversed(xrange(i)):
 if (a[j] < k):
 a[j] += 1
 return (a, j+1)
 a[j] = 0
 return (a, 0)

9/2/13 Comp 555 Fall 2013 44

•  Bypassing descendents of nodes “12—” and
“211-”

1111 1112 1121 1122 1211 1212 1221 1222 2111 2112 2222 2221 2212 2211 2122 2121

111- 112- 121- 122- 211- 212- 221- 222-

11-- 12-- 21-- 22--

1--- 2---

1

5 6 8 9 12 13 15 16 20 21 23 24 27 28 30 31

4 7 11 14 19 22 26 29

3 10 18 25

2 17

Initial Location

Location after 4 moves

9/2/13 Comp 555 Fall 2013 45

• Now that we have method for navigating the
tree, lets convert our pseudocode version of
BruteForceMotifSearch to real code

def BruteForceMotifSearchAgain(DNA,t,n,l):
 s = [1 for i in xrange(t)]
 bestScore = Score(s, DNA)
 while (True):
 s = NextLeaf(s,t,n-l+1)
 if (Score(s, DNA) > bestScore):
 bestScore = Score(s, DNA)
 bestMotif = [x for x in s]
 if (sum(s) == t):
 break
 return bestMotif

9/2/13 Comp 555 Fall 2013 46

•  Sets of s=(s1, s2, …,st) may have a weak profile for the
first i positions (s1, s2, …,si)

•  Every row of alignment may add at most l to Score
•  Optimism: if all subsequent (t-i) positions (si+1, …st) add

 (t – i) * l to Score(s,i,DNA)

•  If Score(s,i,DNA) + (t – i) * l < BestScore, it makes no
sense to search subtrees of the current vertex
–  Use ByPass()

9/2/13 Comp 555 Fall 2013 47

•  Before we apply a branch-and-bound strategy
let’s rewrite the brute-force algorithm using a
search tree

def SimpleMotifSearch(DNA,t,n,l):
 s = [0 for i in xrange(t)]
 bestScore = 0
 i = 0
 while (True):
 if (i < t):
 s, i = NextVertex(s,i,t,n-l+1)
 else:
 if (Score(s, DNA, l) > bestScore):
 bestScore = Score(s, DNA, l)
 bestMotif = [x for x in s]
 s, i = NextVertex(s,i,t,n-l+1)
 if (sum(s) == 0):
 break
 return bestMotif

9/2/13 Comp 555 Fall 2013 48

•  Since each level of the
tree goes deeper into
search, discarding a
prefix discards all
following branches

•  This saves us from
looking at (n – l + 1)t-i

leaves
–  Use NextVertex() and

ByPass() to navigate the tree

9/2/13 Comp 555 Fall 2013 49

def BranchAndBoundMotifSearch(DNA,t,n,l):
 s = [0 for i in xrange(t)]
 bestScore = 0
 i = 0
 while (True):
 if (i < t):
 optimisticScore = Score(s, DNA, l) + (t-i)*l
 if (optimisticScore < bestScore):
 s, i = Bypass(s,i,t,n-l+1)
 else:
 s, i = NextVertex(s,i,t,n-l+1)
 else:
 score = Score(s, DNA, l)
 if (score > bestScore):
 bestScore = score
 bestMotif = [x for x in s]
 s, i = NextVertex(s,i,t,n-l+1)
 if (sum(s) == 0):
 break
 return bestMotif

9/2/13 Comp 555 Fall 2013 50

•  Recall the computational differences between
motif search and median string search

– The Motif Finding Problem needs to examine
all (n-l +1)t combinations for s.

– The Median String Problem needs to examine
4l combinations of v. This number is relatively
small

• We want to use median string algorithm with
the Branch and Bound trick!

9/2/13 Comp 555 Fall 2013 51

• Note that if, at any point, the total distance for a
prefix is greater than that for the best word so
far:

 TotalDistance (prefix, DNA) > BestDistance

 there is no use exploring the remaining part of
the word

• We can eliminate that branch and BYPASS
exploring that branch further

9/2/13 Comp 555 Fall 2013 52

def BranchAndBoundMedianSearch(DNA,t,n,l):
 s = [1 for i in xrange(t)]
 bestDistance, bestWord = l*t, ''
 i = 1
 while (i > 0):
 if (i < l):
 prefix = NucleotideString(s, i)
 optimisticDistance = TotalDistance(prefix, DNA)
 if (optimisticDistance > bestDistance):
 s, i = Bypass(s,i,l,t)
 else:
 s, i = NextVertex(s,i,l,t)
 else:
 word = NucleotideString(s, l)
 if (TotalDistance(word, DNA) < bestDistance):
 bestDistance = TotalDistance(word, DNA)
 bestWord = word
 s, i = NextVertex(s,i,l,t)
 return bestWord

9/2/13 Comp 555 Fall 2013 53

• An embarrassing confession. I got bitten by a
bug in the online notes for the book!

cctgatagacgctatctggctatccaGgtacTtaggtcctctgtgcgaatctatgcgtttccaaccat

agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtgc

aaacgtTAgtgcaccctctttcttcgtggctctggccaacgagggctgatgtataagacgaaaatttt

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtCcAtataca

ctgttatacaacgcgtcatggcggggtatgcgttttggtcgtcgtacgctcgatcgttaCcgtacgGc

•  The target motif has a consensus score of 30
•  But [2, 5, 46, 4, 1] = 31 and [2, 5, 46, 6, 1] = 34
•  >30 solutions with consensus of 30 or better
• Which is the real Motif?

9/2/13 Comp 555 Fall 2013 54

• More improvements to Motif searching
–  Why just prune based on prefixes?

Can you consider suffixes too?
–  Consider a random subset of t strings, or l characters
–  Consider multiple letters at a time?

• How do you really find a TFBS?
–  Multiple answers
–  Near optimal answers
–  Motifs are just a starting point

• Next Time
–  We revisit greedy algorithms

