
1/21/15 Comp 555 Spring 2015 1

1/21/15 Comp 555 Spring 2015 2

EcoRI EcoRI

(from Lecture 2)

•  Restriction enzymes break DNA whenever they
encounter specific base sequences

•  They occur reasonably frequently within long
sequences (a 6-base sequence target appears, on
average, 1:4096 bases)

•  Can be used as molecular scissors

cggtacgtggtggtg
gccatgcaccaccacttaa

aattctgtaagccgattccgcttcggggag
 gacattcggctaaggcgaagcccctcttaa

aattccatgccatcatgggcgttgc
 ggtacggtagtacccgcaacg

1/21/15 Comp 555 Spring 2015 3

•  Recombinant DNA technology
–  make novel DNA constructs,
–  add fluorophores
–  add other probes

•  Digesting DNA into pieces that can be efficiently and reliably
replicated through PCR (Polymerase Chain Reaction)

•  Cutting DNA for genotyping via Microarrays
•  Sequence Cloning

–  Inserting sequences into a host cell, via vectors

•  cDNA/genomic library construction
–  Coding DNA, is a byproduct of transcription
–  Targeted sequencing (ex. RRBS)

•  DNA restriction mapping
–  A rough map of a DNA fragment

1/21/15 Comp 555 Spring 2015 4

• A map of the
restriction sites in a
DNA sequence

•  If the DNA sequence
is known, then
constructing a
restriction map is
trivial

•  Restriction maps are
a cheap alternative to
sequencing for
unknown sequences

1/21/15 Comp 555 Spring 2015 5

•  Begin with an isolated strand of DNA
•  Digest it with restriction enzymes

–  Breaks strand it in variable
length fragments

•  Use gel electrophoresis to sort
fragments according to size
–  Can accurately sort DNA

fragments that differ in length
by a single nucleotide, and
estimate their relative abundance

•  Use fragment “lengths” to
reassemble a map of the
original strand

Smaller
fragments

move
farther

1/21/15 Comp 555 Spring 2015 6

• What can be learned from a single complete
digest?

• Not much. There are many possible answers

0 1 3 7 12

1 2 4 5

0 4 5 10 12

0 2 6 11 12

0 5 6 8 12

1/21/15 Comp 555 Spring 2015 7

• An alternative approach is to digest with two
different enzymes in three stages
–  First, with restriction enzyme A
–  Second, with restriction enzyme B
–  Third, with both enzymes, A & B

•  The inputs are three sets of restriction fragment
lengths [1,2,4,5], [3,3,6], [1,1,1,2,3,4]

0 4 5 10 12

0 3 9 12

0 3 4 5 9 12

 3 1 1 4 1 2

1/21/15 Comp 555 Spring 2015 8

Given two sets of intervals on a common line segment between
two disjoint interior point sets, and a third set of intervals
between all points, reconstruct the positions of the points.
Input:

 dA – fragment lengths after digestion with enzyme A.

 dB –fragment lengths after digestion with enzyme B.

 dX – fragment lengths after digestion with both A and B.

Output:

 A – location of the cuts for the enzyme A.

 B – location of the cuts for the enzyme B.

1/21/15 Comp 555 Spring 2015 9

•  Suppose you are asked to assemble a map from
three digests
–  A = [1,2,3]
–  B = [2,4]
–  AB = [1,1,2,2]

• How do you solve for the map?
• How do you state your strategy as a general

purpose algorithm?

1/21/15 Comp 555 Spring 2015 10

• Given a set [A,B,C,D] find all permutations

• How many?
–  1st choice = n
–  2nd choice = n-1
–  3rd choice = n-2

[A,B,C,D]
[A,B,D,C]
[A,C,B,D]
[A,C,D,B]
[A,D,B,C]
[A,D,C,B]

[B,A,C,D]
[B,A,D,C]
[B,C,A,D]
[B,C,D,A]
[B,D,A,C]
[B,D,C,A]

[C,A,B,D]
[C,A,D,B]
[C,B,A,D]
[C,B,D,A]
[C,D,A,B]
[C,D,B,A]

[D,A,B,C]
[D,A,C,B]
[D,B,A,C]
[D,B,C,A]
[D,C,A,B]
[D,C,B,A]

N! permutations of N elements

10! = 3628800
24! = 620448401733239439360000

1/21/15 Comp 555 Spring 2015 11

def doubleDigest(seta, setb, setab, circular = False):
 a = Permute(seta)
 while (a.permutationsRemain()):
 ab = Permute(setab)
 while (ab.permutationsRemain()):
 if compatible(a.order, ab.order):
 b = Permute(setb)
 while (b.permutationsRemain()):
 if (circular):
 for i in xrange(len(setab)):
 abShift = shift(ab.order, i)
 if compatible(b.order, abShift):
 return (a.order, b.order, ab.order, i)
 else:
 if compatible(b.order, ab.order):
 return (a.order, b.order, ab.order, 0)
 return (aState, bState, abState, -1)

•  Test all permutations of A and B checking they
are compatible with some permuation of AB

len(a)!

len(ab)!

len(b)!

1/21/15 Comp 555 Spring 2015 12

•  What strategy can we use to solve the double restriction
map problem faster?

•  Is there a branch-and-bound strategy?
–  Does the given code *really* test every permutation?
–  How does compatible() help?
–  Does the order of the loops help?

•  Could you do all permutations of A and B, then compute
the intervals and compare to AB?

•  The double digest problem is truly a hard problem (NP-
complete). No one knows an algorithm whose execution
time does not grow slower than some exponent in the
size of the inputs. If one is found, then an entire set of
problems will suddenly also be solvable in less than
exponential time.

1/21/15 Comp 555 Spring 2015 13

•  Another way to construct a restriction map
•  Expose DNA to the restriction enzyme for a

limited amount of time to prevent it from cutting
at all restriction sites (partial digestion)

•  Generates the set of all possible restriction
fragments between every pair of (not necessarily
consecutive) points

•  The set of fragment sizes is used to determine the
positions of the restriction sites

•  We assume that the multiplicity of a repeated
fragment can be determined, i.e., multiple
restriction fragments of the same length can be
determined (e.g., by observing twice as much
fluorescence for a double fragment than for a
single fragment)

1/21/15 Comp 555 Spring 2015 14

• A complete set of pairwise distances between
points. In the following example a set of 10
fragments is generated.

 L = {3, 5, 5, 8, 9, 14, 14, 17, 19, 22}

1/21/15 Comp 555 Spring 2015 15

• Often useful to consider
partial digests in a
distance matrix form

•  Each entry is the distance
between a pair of point
positions labeled on the
rows and columns

•  The distance matrix for n
points has n(n-1)/2 entries, therefore we expect
that many digest values as inputs

•  Largest value in L establishes the segment length
• Actual non-zero point values are a subset of L

0 5 14 19 22
0 - 5 14 19 22
5 - 9 14 17
14 - 5 8
19 - 3
22 -

1/21/15 Comp 555 Spring 2015 16

Given all pairwise distances between points on a line,
reconstruct the positions of those points.

 Input: A multiset of pairwise distances L,
containing elements

 Output: A set X, of n integers, such that the set of
pairwise distances ΔX = L

1/21/15 Comp 555 Spring 2015 17

•  The solution of a PDP is not always unique
•  Two distinct point sets, A and B, can lead to

indistinguishable distance multisets, ΔA = ΔB

0 1 3 4 5 7 12 13 15
0 1 3 4 5 7 12 13 15
1 2 3 4 6 11 12 14
3 1 2 4 9 10 12
4 1 3 8 9 11
5 2 7 8 10
7 5 6 8

12 1 3
13 2
15

0 1 3 8 9 11 12 13 15
0 1 3 8 9 11 12 13 15
1 2 7 8 10 11 12 14
3 5 6 8 9 10 12
8 1 3 4 5 7
9 2 3 4 6
11 1 2 4
12 1 3
13 2
15

•  Basic idea: Construct all combinations of n - 2
integers between 0 and max(L), and check to see
if the pairwise distances match.

1/21/15 Comp 555 Spring 2015 18

def bruteForcePDP(L, n):
 L.sort()
 M = max(L)
 X = intsBetween(0,M,n-2)
 while (X.combinationsRemain()):
 dX = allPairsDist(X.intSet())
 dX.sort()
 if (dX == L):
 print "X =", X.intSet()

Compare this
Python code to
the pseudocode
on page 88 in
the book

1/21/15 Comp 555 Spring 2015 19

•  Combinations of A things taken B at a time
• Order is unimportant

[A,B,C] ≡ [A,C,B] ≡ [B,A,C] ≡ [B,C,A] ≡ [C,A,B] ≡ [C,B,A]

• All combinations of n items in k positions
[1,1,0,0], [1,0,1,0],[1,0,0,1],[0,1,1,0],[0,1,0,1],[0,0,1,1]

•  Smaller than a factorial

•  Interesting relation

1/21/15 Comp 555 Spring 2015 20

•  BruteForcePDP takes O(max(L) n-2) time since it
must examine all possible sets of positions.

•  The problem scales with the size of the largest
pairwise distance

•  Suppose we multiply each element in L by a
constant factor?

•  Should we consider every possible combination
of n - 2 points? (Consider our observations
concerning distance matrices)

1/21/15 Comp 555 Spring 2015 21

•  Recall that the actual point values are a subset of L’s
values. Thus, rather than consider all combinations of
possible points, we need only consider
n – 2 combinations of values from L.

def anotherBruteForcePDP(L, n):
 L.sort()
 M = max(L)
 X = intsFromL(L,n-2)
 while (X.combinationsRemain()):
 dX = allPairsDist(X.intSet())
 dX.sort()
 if (dX == L):
 print "X = ", X.intSet()

Compare this
Python code to
the pseudocode
on page 88 in
the book

1/21/15 Comp 555 Spring 2015 22

•  It’s more efficient, but still slow
•  If L = {2, 998, 1000} (n = 3, M = 1000),

BruteForcePDP will be extremely slow, but
AnotherBruteForcePDP will be quite fast

•  Fewer sets are examined, but runtime is still
exponential: O(n2n-4)

•  Is there a better way?

1/21/15 Comp 555 Spring 2015 23

1.  Begin with X = {0}
3.  Remove the largest element in L and

place it in X
5.  See if the element fits on the right or

left side of the restriction map
7.  When it fits, find the other lengths it creates

and remove those from L
9.  Go back to step 3 until L is empty

1/21/15 Comp 555 Spring 2015 24

•  Before describing PartialDigest, we first define a
helper function:

 delta(y, X)

as the multiset of all distances between point y
and the points in the set X

 delta(y, X) = {|y – x1|, |y – x2|, …, |y – xn|}

 ex. [3,6,11] = delta(8,[5,14,19])

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0 }"

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0 }"

Remove 10 from L and insert it into X. We know this must be
the total length of the DNA sequence because it is the largest
fragment.

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 10 }"

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 10 }"

Remove 8 from L and make y = 2 or 8. But since the two cases
are symmetric, we can assume y = 2.

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 10 }"

Find the distances from y = 2 to other elements in X.
D(y, X) = {8, 2}, so we remove {8, 2} from L and add 2 to X.

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 10 }"

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 10 }"

Next, remove 7 from L and make y = 7 or y = 10 – 7 = 3.
We explore y = 7 first, so delta(y, X) = {7, 5, 3}.

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 10 }"

For y = 7 first, delta(y, X) = {7, 5, 3}. Therefore, we
remove {7, 5 ,3} from L and add 7 to X.

D(y, X) = {7, 5, 3} = {|7 – 0|, |7 – 2|, |7 – 10|}

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 7, 10 }"

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 7, 10 }"

Next, take 6 from L and make y = 6. Unfortunately,
delta(y, X) = {6, 4, 1 ,4}, which is not a subset of L.
Therefore, we won’t explore this branch.

6

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 7, 10 }"

This time make y = 4. delta(y, X) = {4, 2, 3 ,6}, which is a
subset of L, so we explore this branch. We remove
{4, 2, 3 ,6} from L and add 4 to X.

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 4, 7, 10 }"

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 4, 7, 10 }"

L is now empty, so we have a solution, which is X.

L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 7, 10 }"

To find other solutions, we backtrack (remove old insertions
and try different ones).

1/21/15 Comp 555 Spring 2015 39

def partialDigest(L):
 width = max(L)
 L.remove(width)
 X = [0, width]
 Place(L, X)

def Place(L, X):
 if (len(L) == 0):
 print X
 return
 y = max(L)
 dyX = delta(y, X)
 if (dyX.subset(L)):
 X.append(y); map(L.remove, dyX.items)
 Place(L, X)
 X.remove(y); map(L.append, dyX.items)
 w = max(X) - y
 dwX = delta(w, X)
 if (dwX.subset(L)):
 X.append(w); map(L.remove, dwX.items)
 Place(L,X)
 X.remove(w); map(L.append, dwX.items)
 return

Checks distances from the “0” end

Checks distances from the “width” end

This PDP algorithm
 outputs all solutions.
In fact, it might even
 repeat solutions

•  Let T(n) be the maximum time that partialDigest
 takes to solve an n-point instance of PDP

•  If, at every step, there is only one viable solution,
 then partialDigest reduces the size of the
 problem by one on each recursive call

 T(n) = T(n-1) + O(n) ! O(n2)

• However, if there are two alternatives then

 T(n) = 2T(n-1) + O(n) ! O(2n)

1/21/15 Comp 555 Spring 2015 40

1/20/15 Comp 555 Spring 2015 41

•  In the book there is a reference to a polynomial
algorithm for solving PDP (pg. 115). The authors
of this paper have since posted a clarification
that their solution does not suggest a polynomial
algorithm. Therefore, the complexity of the PDP
is still unknown.

• Next Time: More Exhaustive Search problems
• Next Time: The Motif Finding Problem

