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EcoRI EcoRI 

(from Lecture 2) 

•  Restriction enzymes break DNA whenever they 
encounter specific base sequences 

•  They occur reasonably frequently within long 
sequences (a 6-base sequence target appears, on 
average, 1:4096 bases) 

•  Can be used as molecular scissors  

cggtacgtggtggtg 
gccatgcaccaccacttaa 

aattctgtaagccgattccgcttcggggag 
    gacattcggctaaggcgaagcccctcttaa 

aattccatgccatcatgggcgttgc 
    ggtacggtagtacccgcaacg 
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•  Recombinant DNA technology 
–  make novel DNA constructs, 
–  add fluorophores 
–   add other probes  

•  Digesting DNA into pieces that can be efficiently and reliably 
replicated through PCR (Polymerase Chain Reaction) 

•  Cutting DNA for genotyping via Microarrays 
•  Sequence Cloning 

–  Inserting sequences into a host cell, via vectors 

•  cDNA/genomic library construction  
–  Coding DNA, is a byproduct of transcription 
–  Targeted sequencing (ex. RRBS) 

•  DNA restriction mapping 
–  A rough map of a DNA fragment 
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• A map of the 
restriction sites in a 
DNA sequence 

•  If the DNA sequence 
is known, then 
constructing a 
restriction map is 
trivial 

•  Restriction maps are 
a cheap alternative to 
sequencing for 
unknown sequences 
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•  Begin with an isolated strand of DNA 
•  Digest it with restriction enzymes 

–  Breaks strand it in variable  
length fragments 

•  Use gel electrophoresis to sort  
fragments according to size 
–  Can accurately sort DNA  

fragments that differ in length  
by a single nucleotide, and 
estimate their relative abundance 

•  Use fragment “lengths” to  
reassemble a map of the  
original strand 

Smaller 
fragments 

move 
farther 



8/29/13 Comp 555    Fall 2013 6 

• What can be learned from a single complete 
digest? 

• Not much. There are many possible answers 

0     1            3                           7                                 12 

1 2 4 5 

0                            4     5                                10           12 

0             2                           6                                11    12 

0                                   5     6            8                          12 
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• An alternative approach is to digest with two 
different enzymes in three stages 
–  First, with restriction enzyme A 
–  Second, with restriction enzyme B 
–  Third, with both enzymes, A & B 

•  The inputs are three sets of restriction fragment 
lengths [1,2,4,5], [3,3,6], [1,1,1,2,3,4] 

0                            4     5                                10           12 

0                    3                                          9                  12 

0                    3     4     5                           9                   12 

           3            1      1                4                1         2 
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•  Given two sets of intervals on a common line segment 
between two disjoint interior point sets, and a third set 
of intervals between all points, reconstruct the positions 
of the points. 

Input:   
    dA – fragment lengths from the digest with enzyme A. 

  dB – fragment lengths from the digest with enzyme B. 

  dX – fragment lengths from the digest with both A and B. 

Output: A – location of the cuts for the enzyme A. 

     B – location of the cuts for the enzyme B. 
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•  Suppose you are asked to assemble a map from 
three digests 
–  A = [1,2,3] 
–  B = [2,4] 
–  AB = [1,1,2,2] 

• How do you solve for the map? 
• How do you state your strategy as a general 

purpose algorithm? 
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• Given a set [A,B,C,D] find all permutations 

• How many? 
–  1st choice = n 
–  2nd choice = n-1 
–  3rd choice = n-2 

[A,B,C,D] 
[A,B,D,C] 
[A,C,B,D] 
[A,C,D,B] 
[A,D,B,C] 
[A,D,C,B] 

[B,A,C,D] 
[B,A,D,C] 
[B,C,A,D] 
[B,C,D,A] 
[B,D,A,C] 
[B,D,C,A] 

[C,A,B,D] 
[C,A,D,B] 
[C,B,A,D] 
[C,B,D,A] 
[C,D,A,B] 
[C,D,B,A] 

[D,A,B,C] 
[D,A,C,B] 
[D,B,A,C] 
[D,B,C,A] 
[D,C,A,B] 
[D,C,B,A] 

N! permutations of N elements 

10! = 3628800 
24! = 620448401733239439360000 
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def doubleDigest(seta, setb, setab, circular = False): 
    a = Permute(seta) 
    while (a.permutationsRemain()): 
        ab = Permute(setab) 
        while (ab.permutationsRemain()): 
            if compatible(a.order, ab.order): 
                b = Permute(setb) 
                while (b.permutationsRemain()): 
                    if (circular): 
                        for i in xrange(len(setab)): 
                            abShift = shift(ab.order, i) 
                            if compatible(b.order, abShift): 
                                return (a.order, b.order, ab.order, i) 
                    else: 
                        if compatible(b.order, ab.order): 
                            return (a.order, b.order, ab.order, 0) 
    return (aState, bState, abState, -1) 

•  Test all permutations of A and B checking they 
are compatible with some permuation of AB  

len(a)! 

len(ab)! 

len(b)! 
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•  What strategy can we use to solve the double restriction 
map problem faster? 

•  Is there a branch-and-bound strategy? 
–  Does the given code *really* test every permutation? 
–  How does compatible( ) help? 
–  Does the order of the loops help? 

•  Could you do all permutations of A and B, then compute 
the intervals and compare to AB? 

•  The double digest problem is truly a hard problem (NP-
complete). No one knows an algorithm whose execution 
time does not grow slower than some exponent in the 
size of the inputs. If one is found, then an entire set of 
problems will suddenly also be solvable in less than 
exponential time. 
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•  Another way to construct a restriction map 
•  Expose DNA to the restriction enzyme for a 

limited amount of time to prevent it from cutting 
at all restriction sites (partial digestion) 

•  Generates the set of all possible restriction 
fragments between every pair  of (not necessarily 
consecutive) points 

•  The set of fragment sizes is used to determine the 
positions of the restriction sites 

•  We assume that the multiplicity of a repeated 
fragment can be determined, i.e., multiple 
restriction fragments of the same length can be 
determined (e.g., by observing twice as much 
fluorescence for a double fragment than for a 
single fragment) 
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• A complete set of pairwise distances between 
points. In the following example a set of 10 
fragments is generated. 

                L = {3, 5, 5, 8, 9, 14, 14, 17, 19, 22} 
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• Often useful to consider 
partial digests in a 
distance matrix form 

•  Each entry is the distance 
between a pair of point 
positions labeled on the 
rows and columns 

•  The distance matrix for n  
points has n(n-1)/2 entries, therefore we expect 
that many digest values as inputs 

•  Largest value in L establishes the segment length 
• Actual non-zero point values are a subset of L 

0 5 14 19 22 
0 - 5 14 19 22 
5 - 9 14 17 
14 - 5 8 
19 - 3 
22 - 
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• Given all pairwise distances between points on a 
line, reconstruct the positions of those points. 

 Input: A multiset of pairwise distances L, 
containing             elements 

 Output: A set X, of n integers, such that the set of 
pairwise distances ΔX = L  
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•  The solution of a PDP is not always unique 
•  Two distinct point sets, A and B, can lead to 

indistinguishable distance multisets, ΔA = ΔB 

0 1 3 4 5 7 12 13 15 
0 1 3 4 5 7 12 13 15 
1 2 3 4 6 11 12 14 
3 1 2 4 9 10 12 
4 1 3 8 9 11 
5 2 7 8 10 
7 5 6 8 

12 1 3 
13 2 
15 

0 1 3 8 9 11 12 13 15 
0 1 3 8 9 11 12 13 15 
1 2 7 8 10 11 12 14 
3 5 6 8 9 10 12 
8 1 3 4 5 7 
9 2 3 4 6 
11 1 2 4 
12 1 3 
13 2 
15 



•  Basic idea: Construct all combinations of n - 2 
integers between 0 and max(L), and check to see 
if the pairwise distances match. 
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def bruteForcePDP(L, n): 
    L.sort() 
    M = max(L) 
    X = intsBetween(0,M,n-2) 
    while (X.combinationsRemain()): 
        dX = allPairsDist(X.intSet()) 
        dX.sort() 
        if (dX == L): 
            print "X =", X.intSet() 

Compare this 
Python code to 
the pseudocode 
on page 88 in 
the book 
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•  Combinations of A things taken B at a time 
• Order is unimportant 

[A,B,C] ≡ [A,C,B] ≡ [B,A,C] ≡ [B,C,A] ≡ [C,A,B] ≡ [C,B,A] 

• All combinations of n items in k positions 
[1,1,0,0], [1,0,1,0],[1,0,0,1],[0,1,1,0],[0,1,0,1],[0,0,1,1] 

•  Smaller than a factorial 

•  Interesting relation 
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•  BruteForcePDP takes O(max(L) n-2) time since it 
must examine all possible sets of positions. 

•  The problem scales with the size of the largest 
pairwise distance 

•  Suppose we multiply each element in L by a 
constant factor? 

•  Should we consider every possible combination 
of n - 2 points? (Consider our observations 
concerning distance matrices) 
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•  Recall that the actual point values are a subset of L’s 
values. Thus, rather than consider all combinations of 
possible points, we need only consider  
n – 2 combinations of values from L. 

def anotherBruteForcePDP(L, n): 
    L.sort() 
    M = max(L) 
    X = intsFromL(L,n-2) 
    while (X.combinationsRemain()): 
        dX = allPairsDist(X.intSet()) 
        dX.sort() 
        if (dX == L): 
            print "X = ", X.intSet() 

Compare this 
Python code to 
the pseudocode 
on page 88 in 
the book 
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•  It’s more efficient, but still slow 
•  If L = {2, 998, 1000} (n = 3, M = 1000), 

BruteForcePDP will be extremely slow, but 
AnotherBruteForcePDP will be quite fast 

•  Fewer sets are examined, but runtime is still 
exponential: O(n2n-4) 

•  Is there a better way? 
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1.  Begin with X = {0} 
3.  Remove the largest element in L and  

place it in X 
5.  See if the element fits on the right or  

left side of the restriction map 
7.  When it fits, find the other lengths it creates 

and remove those from L 
9.  Go back to step 3 until L is empty 
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•  Before describing PartialDigest,  we first define a 
helper function:  

                                    delta(y, X)  

as the multiset of all distances between point y 
and the points in the set X 

        delta(y, X) = {|y – x1|, |y – x2|, …, |y – xn|} 

                    ex. [3,6,11] = delta(8,[5,14,19]) 



L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0 }"



L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0 }"

Remove 10 from L and insert it into X.  We know this must be 
the total length of the DNA sequence because it is the largest 
fragment. 



L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 10 }"



L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 10 }"

Remove 8 from L and make y = 2 or 8.  But since the two cases 
are symmetric, we can assume y = 2.   



L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 10 }"

Find the distances from y = 2 to other elements in X. 
D(y, X) = {8, 2}, so we remove {8, 2} from L and add 2 to X. 



L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 10 }"



L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 10 }"

Next, remove 7 from L and make y = 7 or y = 10 – 7 = 3.   
We explore y = 7 first, so delta(y, X ) = {7, 5, 3}.   



L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 10 }"

For y = 7 first, delta(y, X ) = {7, 5, 3}.  Therefore, we  
remove {7, 5 ,3} from L and add 7 to X. 

D(y, X) = {7, 5, 3} = {|7 – 0|, |7 – 2|, |7 – 10|} 



L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 7, 10 }"



L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 7, 10 }"

Next, take 6 from L and make y = 6.  Unfortunately,  
delta(y, X) = {6, 4, 1 ,4}, which is not a subset of L.   
Therefore, we won’t explore this branch. 

6 



L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 7, 10 }"

This time make y = 4. delta(y, X) = {4, 2, 3 ,6}, which is a  
subset of L, so we explore this branch.  We remove  
{4, 2, 3 ,6} from L and add 4 to X. 



L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 4, 7, 10 }"



L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 4, 7, 10 }"

L is now empty, so we have a solution, which is X. 



L = { 2, 2, 3, 3, 4, 5, 6, 7, 8, 10 }"
X = { 0, 2, 7, 10 }"

To find other solutions, we backtrack (remove old insertions 
and try different ones). 
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def partialDigest(L): 
    width = max(L) 
    L.remove(width) 
    X = [0, width] 
    Place(L, X) 

def Place(L, X): 
    if (len(L) == 0): 
        print X 
        return 
    y = max(L) 
    dyX = delta(y, X) 
    if (dyX.subset(L)): 
        X.append(y); map(L.remove, dyX.items) 
        Place(L, X) 
        X.remove(y); map(L.append, dyX.items) 
    w = max(X) - y 
    dwX = delta(w, X) 
    if (dwX.subset(L)): 
        X.append(w); map(L.remove, dwX.items) 
        Place(L,X) 
        X.remove(w); map(L.append, dwX.items) 
    return 

Checks distances from the “0” end 

Checks distances from the “width” end 

This PDP algorithm
 outputs all solutions.  
In fact, it might even
 repeat solutions 



•  Let T(n) be the maximum time that partialDigest
 takes to solve an n-point instance of PDP 

•  If, at every step, there is only one viable solution,
 then partialDigest reduces the size of the
 problem by one on each recursive call 

   T(n) = T(n-1) + O(n)  O(n2) 

• However, if there are two alternatives then 

   T(n) = 2T(n-1) + O(n)  O(2n) 
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•  In the book there is a reference to a polynomial 
algorithm for solving PDP (pg. 115). The authors 
of this paper have since posted a clarification 
that their solution does not suggest a polynomial 
algorithm. Therefore, the complexity of the PDP 
is still unknown. 

• Next Time: More Exhaustive Search problems 
• Next Time: The Motif Finding Problem 


