Lecture 3:
Algorithms and Complexity

Bioalgorithms Spring 2015
Study Chapter 2.1-2.8

1/14/15 Comp 555 Spring 2015

What is an algor1thm7

. An algonthm is a sequence of instructions that
one must perform in order to solve a well-
formulated problem.

Y

input

Problem: Complexity

Algorithm: Correctness
Complexity

output

1/14/15 Comp 555 Spring 2015 2

Problem: Buymg a Textbook

Algorlthm #1 Algorlthm #2

1. Go to the bookstore at 1.~ Go to Amazon.com
the student union. 2. Search for the book entitled
“ An Introduction to
2. Find the shelf with the Bioinformatics Algorithms”.
tag “COMP 555”. 3. Click “Add to shopping cart”.
3 Take a copy of the book. 4. Click “Proceed to checkout”.
4 Go to the register. 5. Sign in your account.
, . 6. Fill the shipping information.
5. Check out using credit 7. Fill in the credit card and

card. billing information.
6. Walk out with book

Place the order.

9. Wait 5-10 days for book to
arrive

o

1/14/15 Comp 555 Spring 2015 3

Two observa’uons

. leen a problem there may be many correct
algorithmes.
— They give identical outputs for the same inputs
— They give the expected outputs for any valid input

* The costs to perform different algorithms may
be different.

— Some are faster (i.e. get the book
immediately, or you wait for a week)

\ / -1

LN

— Some are less expensive

1/14/15 Comp 555 Spring 2015 4

Correctness

’ An algonthm is correct only 1f it produces
correct result for all input instances.

— If the algorithm gives an incorrect answer for one or
more input instances, it is an incorrect algorithm.

* Coin change problem
— Input: an amount of money M in cents
— Output: the smallest number of coins

* US coin change problem

1/14/15 Comp 555 Spring 2015 5

US Coin Change

Classic
Algorithm qg<r/25

Two quarters, 22 cents left p=<—r

generalize
it?

. . Twodimes, 2 cents left

Two pennies

1/14/15 Comp 555 Spring 2015 6

Change Problem

. Input
— an amount of money M

To show an algorithm was
incorrect we showed an inpuj
for which it produced the
wrong result. How do
we show that an

algorithm is correct?

— an array of denominations c = (¢y, ¢y, -..,C,)
in order of decreasing value 7%

* Output: the smallest number of coins

— Incorrect

i |
0 algorithm!

M= 40 fork<—1tod
— 25 20.10 5—1' L<rlc, — 3 The correct answer
c=(25,20,10,5,1) ne n+i, should be 2. ?
r=r-c, Xi, :

return n &O

1/14/15 Comp 555 Spring 2015 7

How to Compare Algonthms?

’ Complex1ty the cost of an algonthm can be
measured in either time and space
— Correct algorithms may have different complexities.

* How do we assign “cost” for time?

* The cost to perform an instruction may vary
dramatically.
— An instruction may be an algorithm itself.

— The complexity of an algorithm is NOT equivalent to
the number of instructions.

* How to analyze an algorithm’s complexity
— An aside: Algorithm “Styles”

1/14/15 Comp 555 Spring 2015 8

Ex Style Recursive Algonthms

. Recurs1on is a techmque for descnbmg functlons
in terms of themselves.

— These recursive calls are to simpler versions of the
original function.

— The simplest versions, called base cases, are merely

declared.
Recursive definition: factorial(n) = nx factorial(n — 1)
Base case: factorial(l) =1

— Easy to analyze

* Thinking recursively...

1/14/15 Comp 555 Spring 2015 9

Towers of Hanoi1

There are three pegs and a number of d1sks W1th
decreasing radii (smaller ones on top of larger
ones) stacked on Peg 1.

* Goal: move all disks to Peg 3.

e Rules:

— When a disk is moved from one
peg it must be placed on another
P€s-

— Only one disk may be moved at a
time, and it must be the top disk
on a tower.

— A larger disk may never be placed
upon a smaller disk.

1/14/15 Comp 555 Spring 2015 10

A smgle dlsk tower

1/14/15 Comp 555 Spring 2015 11

A smgle dlsk tower

1/14/15 Comp 555 Spring 2015 12

A two disk tower

1/14/15 Comp 555 Spring 2015 13

2

1/14/15 Comp 555 Spring 2015 14

1/14/15 Comp 555 Spring 2015 15

1/14/15 Comp 555 Spring 2015 16

A three d1sl< tower

1/14/15 Comp 555 Spring 2015 17

1/14/15 Comp 555 Spring 2015 18

2

1/14/15 Comp 555 Spring 2015 19

1/14/15 Comp 555 Spring 2015 20

1/14/15 Comp 555 Spring 2015 21

2

1/14/15 Comp 555 Spring 2015 22

1/14/15 Comp 555 Spring 2015 23

1/14/15 Comp 555 Spring 2015 24

S1mpl1fy1ng the algorlthm for 3 dlsks

1 2 3

* Step 1. Move the top 2 disks from 1 to 2 using 3 as
intermediate

1/14/15 Comp 555 Spring 2015 25

S1mpl1fy1ng the algorlthm for 3 dlsks

1 2 3

* Step 2. Move the remaining disk from 1 to 3

1/14/15 Comp 555 Spring 2015 26

S1mpl1fy1ng the algorlthm for 3 dlsks

1 2 3

* Step 3. Move 2 disks from 2 to 3 using 1 as intermediate

1/14/15 Comp 555 Spring 2015 27

S1mpl1fy1ng the algorlthm for 3 dlsks

1/14/15 Comp 555 Spring 2015 28

The problem for N dlsks becomes

o A base case of a one-d1sl< move.
* A recursive step for moving n-1 disks.

* To move n disks from Peg 1 to Peg 3, we need to

— Move (n-1) disks from Peg 1 to Peg 2
— Move the n'" disk from Peg 1 to Peg 3 \‘.

~
— Move (n-1) disks from Peg 2 to Peg 3 e move
— The number of disk moves is stack twice
T =1

T(n)=2T(n-1)+1=2" -1 Exponential algorithm

1/14/15 Comp 555 Spring 2015 29

Towers of Hano1

’ If you play Han01Towers Wlth 1t takes

— 1 disk ... 1 move

— 2 disks ... 3 moves

— 3 disks ... 7 moves

— 4 disks ... 15 moves

— 5 disks ... 31 moves

— 20 disks ... 1,048,575 moves

— 32 disks ... 4,294 967,295 moves

1/14/15 Comp 555 Spring 2015 30

Sortmg

. A very common problem is to arrange data into
either ascending or descending order
— Viewing, printing

— Faster to search, find min/max,
compute median/mode, etc

* Lots of sorting algorithms

— From the simple to very complex
— Some optimized for certain

situations (lots of duplicates, | . : =
almost sorted, etc.)

AL

i\
\\\ > o
T

' ~\\\’\\\\ \

1/14/15

Comp 555 Spring 2015

31

Select10n Sort

Find the smallest element and

swap it with the first: 27 I 12 I 3]118 I 11 I 7
"_/’\

Find the next smallest element
and swap it with the second: 3 112 I 27 I 18 | 11 I /
F\/
Do the same for the third element: 3|7 I 27 I 18 | 11 I 12

A\—/A (11 7
In-place” sort

And the fourth: 3 I 7 I 111 18 I 27| 12
'_/’\
Finally, the fifth: 317 I 11 I 12 | 27 I 18
AN
Completely sorted: 3 | I | 11112 | 18 | 27

1/14/15 Comp 555 Spring 2015 32

Selection sort

def selectionSortRecursive(a,first,last):

if (first < last):
index = indexOfMin(a,first,last)
temp = alindex] (n -1) swaps
alindex] = a[first]
a[first] = temp
a = selectionSortRecursive(a,first+1,last)

return a Quadratic in time

def indexOfMin(arr,first,last):
n(n-1) index. = first |
———=—1 comparisons for k in xrange(index+1,last):
if (arr[k] < arr[index]):
index = k
return index

1/14/15 Comp 555 Spring 2015 33

Year 1202: Leonardo F1bonacc1

’ He asked the followmg quest1on

— How many pairs of rabbits are
produced from a single pair in one
year if every year each pair of
rabbits more than 1 year old
produces a new pair?

— Here we assume that each pair has one male and one
female, and each pair lives long enough to have two
litters, and initially we have one pair

— f(n): the number of “breeding” pairs present at the
beginning of year n

1/14/15 Comp 555 Spring 2015 34

Fibonacci Number

o 'y /4
DO\ /A
N "N
1 ;
&
" L/
Y]
~ Va7
O\ L/ A
N N
T ¥
i)
~ Y / .
R\ —/ A - /A
S s ey & T
Lo J Lk
/,. S)
¥ 4 ¥ 4 /
3 L/ & D\ & 3 4
- - e - £ a -
p N ¢ <
E & . W <
LA 4 A AN/ L/ 4
) 1) (™™)
D /A) —/ A R\ /A D\ . R\ L/ &
S = - a & - an = - & T a <
5]
! J L/ 4 \,»“ J L/ J LA J
)))))

1/14/15 Comp 555 Spring 2015 35

F1b0nacc1 Number

. Clearly, we have

— f(1) =1 (the first pair we have)

— f(2) =1 (still only the first pair we have because they
are just 1 month old. They need to be more than one
month old to reproduce)

— f(n) = f(n-1) + f(n-2) because f(n) is the sum of the old
rabbits from last month (f(n-1)) and the new rabbits
reproduced from those f(n-2) rabbits who are now old
enough to reproduce.

-£1,1,2,3,5,8,13,21, 34, 55, ...
— The solution for this recurrence is: 145 5

f(n)= f(()’ —(—))

1/14/15 Comp 555 Spring 2015 36

F1b0nacc1 Number

Exponential time! def fibonacciRecursive(n):
Recursive if (n <= 2):
Algorithm I ." return 1
else:

a = fibonacciRecursive(n-1)
b = fibonacciRecursive(n-2)
return a+b

1/14/15 Comp 555 Spring 2015 37

F1b0nacc1 Number

Linear time! def fibonacci(n):
: f0,f1 =0, 1
lterative .__ y ’
Algorithm T~ for i in xrange(n):

fo, f1 =f1, fO + f1
return fO

1/14/15 Comp 555 Spring 2015 38

Is there a real dlfference ?

* 10M
* 1072 Number of students in computer science department
* 1073 Number of students in the college of art and science

e 10”4 Number of students enrolled at UNC

* 10710 Number of stars in the galaxy
* 10720 Total number of all stars in the universe
* 10780 Total number of particles in the universe

e 10700 << Number of moves needed for 400 disks in the Towers
of Hanoi puzzle

* Towers of Hanoi puzzle is computable but it is NOT feasible.

1/14/15 Comp 555 Spring 2015 39

Is there a “real” difference?

e Growth of functions

200

O(n“?nl} 0(n*2)

O(nlogn)

180 +

160 +

140 4

120 +

100 +

80

60

40 4

20 1

0 4

1/14/15

o(2*n) |
|

|

Comp 555

03 6 9121518 21 24 27 3033 363942 4545 51 54 57 6063 66 69 72 75758 81 54 87 90 93 96 99

n Ign n nign n? n? 2
1 0.00 1 0 1 1 2
10 3.32 10 33 100 1,000 1024
100 6.64 100 664 10,000 1,000,000 | 1.2 x 100
1000 9.97 1000 | 9970 |1,000,000 10 | 1.1 x 1030
— O(n)
O(logn)
A O(1)
Spring 2015 40

Asymptotlc Notat1on

Order of growth is the mterestmg measure:

— Highest-order term is what counts

* As the input size grows larger it is the high order term that
dominates

* O notation: ®(n?) = “this function grows
similarly to n?”.

* Big-O notation: O (n?) = “this function grows at
least as slowly as n?”.

— Describes an upper bound.

1/14/15 Comp 555 Spring 2015 41

B1g—O Notatlon

f (n) O(g (n)) there exist pos1t1ve constants ¢ and 7, such that
0= f(n)s cg(n)for alln = n,

* What does it mean?
— If f(n) = O(n?), then:
* f(n) can be larger than n? sometimes, but...

* We can choose some constant c and some value n, such that
for every value of n larger than n,, : f(n) < cn?

* That is, for values larger than n,, f(n) is never more than a
constant multiplier greater than n?

* Or, in other words, f(1) does not grow more than a constant
factor faster than n2.

1/14/15 Comp 555 Spring 2015 42

Visualization of O(g(n))

1/14/15 Comp 555 Spring 2015 43

Big-O Notation

2 i
2n =O(n)

1/14

1,000,000 +150,000 = O(2*)
Sn° =Tn+20= O(nz)

21 +2 = O(nz)

n>' = O(nz)

/15 Comp 555

B1g—O Notatlon

e Prove that:20n° +2n+5 = O(n2)
* Letc=21and n,=4
e 21n?>20n?+2n+5 foralln >4
n?>2n+5 foralln>4
TRUE

1/14/15 Comp 555 Spring 2015 45

@—Notation

’ Blg-O is not a tlght upper bound In other
words n = O(n?)

* O provides a tight bound

I (n)= @(g (n)) there exist positive constants c¢,, ¢,, and n, such that
0= clg(n)s f(n)s czg(n)for alln = n,

e n=0(n? # 6O(n?
e 200n%= O(n?) = O(n?)
e 1% #0(n?) # 6O(n?)

1/14/15 Comp 555 Spring 2015 46

Visualization of ©(g(n))

1/14/15 Comp 555 Spring 2015 47

Some Other Asymptot1c Functlons

. L1tt1e 0 - A non-tlght asymptot1c upper bound

— = O(ﬂz) 1 = O(HZ) The difference between “big-O” and “little-0” is
! subtle. For f(n) = O(g(n)) the bound 0 < f(n) < ¢ g(n),

— 32 £ 0(1’12), In2 = O(le) n > n, holds for any c. For f(n) = o(g(n)) the bound

0 <f(n) <cg(n), n >n, holds for all c.
e Q- A lower bound

/ (n)= Q(g (n)) there exist positive constants ¢ and n, such that
f(n)z cg(n)for alln =z n,

— n?=Q(n)
* o - A non-tight asymptotic lower bound

+ fin) = ©(n) < f{n) = O(n) and f(n) = (n)

1/14/15 Comp 555 Spring 2015 48

Visualization of Asymptot1c Growth

O(f(n))

O(f(n))
f(n)

2(f(n))

w(f(n))

1/14/15 0 Comp 555 Spring 2015 49

Analogy to Ar1thmet1c Operators

f(n)=0(g(n)) = fs¢g
f(n)=As(n)) =~ f=s
f(n)=0lg(n)) =~ f=z
fln)=olg(n)) = f<g
fln)=w(g(n)) = f>g

1/14/15 Comp 555 Spring 2015 50

Measures of complex1ty

* Best case
— Super-fast in some limited situation is not very valuable
information

* Worst case
— Good upper-bound on behavior
— Never gets worse than this
* Average case
— Averaged over all possible inputs
— Most useful information about overall performance
— Can be hard to compute precisely

1/14/15 Comp 555 Spring 2015 51

Complex1ty

’ T1me complex1ty is not necessarlly the same as
the space complexity

* Space Complexity: how much space an
algorithm needs (as a function of n)

* Time vs. space

1/14/15 Comp 555 Spring 2015 52

Next Time

’ Algorlthm ”Styles and de51gn techmques

— Exhaustive search

— Greedy algorithms

— Branch and bound algorithms
— Dynamic programming

— Divide and conquer algorithms
— Randomized algorithms

* Tractable vs intractable algorithms

1/14/15 Comp 555 Spring 2015 53

