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• An algorithm is a sequence of instructions that 
one must perform in order to solve a well-
formulated problem. 

problem 

input 

output 

algorithm Algorithm: Correctness 
Complexity 

Problem: Complexity 
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Algorithm #1: 
1.  Go to the bookstore at 

the student union. 
2.  Find the shelf with the 

tag “COMP 555”. 
3.  Take a copy of the book. 
4.  Go to the register. 
5.  Check out using credit 

card. 
6.  Walk out with book 

Algorithm #2: 
1.  Go to Amazon.com 
2.  Search for the book entitled  

“An Introduction to 
Bioinformatics Algorithms”. 

3.  Click “Add to shopping cart”. 
4.  Click “Proceed to checkout”. 
5.  Sign in your account.  
6.  Fill the shipping information. 
7.  Fill in the credit card and 

billing information. 
8.  Place the order. 
9.  Wait 5-10 days for book to 

arrive 
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• Given a problem, there may be many correct 
algorithms. 
–  They give identical outputs for the same inputs 
–  They give the expected outputs for any valid input 

•  The costs to perform different algorithms may 
be different. 
–  Some are faster (i.e. get the book  

immediately, or you wait for a week) 
–  Some are less expensive 
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• An algorithm is correct only if it produces 
correct result for all input instances.  
–  If the algorithm gives an incorrect answer for one or 

more input instances, it is an incorrect algorithm.  

•  Coin change problem 
–  Input: an amount of money M in cents  
–  Output: the smallest number of coins 

• US coin change problem 
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US Coin Change 

72 cents 

Two quarters, 22 cents left 

Two dimes, 2 cents left 

Two pennies Is it
 correct? 

Can we 
generalize

 it? 

Classic 
     Algorithm 
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•  Input:  
–  an amount of money M 
–  an array of denominations c = (c1, c2, …,cd)  

in order of decreasing value 

• Output: the smallest number of coins 

n M 
c = (c1, c2, …,cd) 

Is it
 correct? 

M = 40 
c = (25, 20, 10, 5, 1) 

? 3 The correct answer
 should be 2. 

Incorrect
 algorithm! 

€ 

r← M
n← 0
for k← 1 to d

ik← r /ck
n← n + ik
r← r − ck × ik

return n

To show an algorithm was
 incorrect we showed an input
 for which it produced the
 wrong result. How do  
we show that an  
algorithm is correct? 
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•  Complexity — the cost of an algorithm can be 
measured in either time and space 
–  Correct algorithms may have different complexities.  

• How do we assign “cost” for time?  
•  The cost to perform an instruction may vary 

dramatically. 
–  An instruction may be an algorithm itself. 
–  The complexity of an algorithm is NOT equivalent to 

the number of instructions. 

• How to analyze an algorithm’s complexity 
–  An aside: Algorithm “Styles” 

Comp 555    Fall 2013 



8/29/13 9 

•  Recursion is a technique for describing functions 
in terms of themselves.  
–  These recursive calls are to simpler versions of the 

original function.  
–  The simplest versions, called base cases, are merely 

declared.  

–  Easy to analyze 

•  Thinking recursively… 

Recursive definition: 

Base case: 
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•  There are three pegs and a number of disks with 
decreasing radii (smaller ones on top of larger 
ones) stacked on Peg 1. 

• Goal: move all disks to Peg 3. 
•  Rules: 

–  When a disk is moved from one  
peg it must be placed on another  
peg. 

–  Only one disk may be moved at a  
time, and it must be the top disk  
on a tower. 

–  A larger disk may never be placed  
upon a smaller disk. 
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1 2 3 
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1 2 3 
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1 2 3 
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1 2 3 
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•  Step 1.  Move the top 2 disks from 1 to 2 using 3 as 
intermediate 

1 2 3 
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•  Step 2.  Move the remaining disk from 1 to 3 

1 2 3 
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•  Step 3.  Move 2 disks from 2 to 3 using 1 as intermediate 

1 2 3 
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1 2 3 
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• A base case of a one-disk move.  
• A recursive step for moving n-1 disks. 

•  To move n disks from Peg 1 to Peg 3, we need to 
–  Move (n-1) disks from Peg 1 to Peg 2 
–  Move the nth disk from Peg 1 to Peg 3 
–  Move (n-1) disks from Peg 2 to Peg 3 
–  The number of disk moves is  

Exponential algorithm 

We move
 the n-1
 stack twice 
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•  If you play HanoiTowers with . . . it takes . . . 
–  1 disk  …  1 move 
–  2 disks  …  3 moves 
–  3 disks  …  7 moves 
–  4 disks  …  15 moves 
–  5 disks  …  31 moves 
–  . 
–  . 
–  . 
–  20 disks    . . .  1,048,575 moves 
–  32 disks    . . .  4,294,967,295 moves 
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• A very common problem is to arrange data into 
either ascending or descending order 
–  Viewing, printing 
–  Faster to search, find min/max,  

compute median/mode, etc. 
•  Lots of sorting algorithms 

–  From the simple to very complex 
–  Some optimized for certain  

situations (lots of duplicates,  
almost sorted, etc.) 
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Find the smallest element and  
swap it with the first: 

3 7 11 12 18 27 Completely sorted: 

“In-place” sort 

3 12 27 18 11 7 
Find the next smallest element  
and swap it with the second: 

3 7 27 18 11 12 Do the same for the third element: 

11 3 7 18 27 12 And the fourth: 

3 7 11 12 27 18 Finally, the fifth: 
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def selectionSortRecursive(a,first,last):  
      if (first < last):  

 index = indexOfMin(a,first,last)  
 temp = a[index]  
 a[index] = a[first]  
 a[first] = temp  
 a = selectionSortRecursive(a,first+1,last)  

      return a  

def indexOfMin(arr,first,last):  
      index = first  
      for k in xrange(index+1,last):  

 if (arr[k] < arr[index]):  
  index = k  

      return index  

comparisons 

(n -1) swaps 

Quadratic in time  

Comp 555    Fall 2013 



8/29/13 34 

• He asked the following question: 
–  How many pairs of rabbits are  

produced from a single pair in one  
year if every year each pair of  
rabbits more than 1 year old  
produces a new pair? 

–  Here we assume that each pair has one male and one 
female, and each pair lives long enough to have two 
litters, and initially we have one pair 

–  f(n): the number of “breeding” pairs present at the 
beginning of year n 
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1 

1 

2 

3 

5 
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•  Clearly, we have: 
–  f(1) = 1 (the first pair we have) 
–  f(2) = 1 (still only the first pair we have because they 

are just 1 month old. They need to be more than one 
month old to reproduce) 

–  f(n) = f(n-1) + f(n-2) because f(n) is the sum of the old 
rabbits from last month (f(n-1)) and the new rabbits 
reproduced from those f(n-2) rabbits who are now old 
enough to reproduce. 

–  f: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … 
–  The solution for this recurrence is: 
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def fibonacciRecursive(n): 
        if (n <= 2):  

 return 1  
else:  

 a = fibonacciRecursive(n-1)  
 b = fibonacciRecursive(n-2) 
 return a+b 

Recursive
 Algorithm 

Exponential time! 

n 

n - 1 n - 2 

n - 3 

n - 4 n - 5 

n - 2 

n - 3 n - 4 n - 5 n - 4 n - 5 n - 6 

n - 3 n - 4 
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def fibonacci(n):  
      f0, f1 = 0, 1 
      for i in xrange(n): 
           f0, f1 =f1, f0 + f1 
      return f0 

Iterative 
Algorithm 

Linear time! 

n 

n - 1 n - 2 

n - 3 

n - 4 n - 5 

n - 2 

n - 3 n - 4 n - 5 n - 4 n - 5 n - 6 

n - 3 n - 4 
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•  10^1 
•  10^2 Number of students in computer science department 
•  10^3 Number of students in the college of art and science 
•  10^4 Number of students enrolled at UNC 
•  … 
•  … 
•  10^10 Number of stars in the galaxy 
•  10^20 Total number of all stars in the universe 
•  10^80 Total number of particles in the universe 
•  10^100 << Number of moves needed for 400 disks in the Towers 

of Hanoi puzzle 

•  Towers of Hanoi puzzle is computable but it is NOT feasible. 
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• Growth of functions 
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• Order of growth is the interesting measure: 
–  Highest-order term is what counts 

• As the input size grows larger it is the high order term that 
dominates 

• Θ notation: Θ(n2) = “this function grows 
similarly to n2”. 

•  Big-O notation:  O (n2) = “this function grows at 
least as slowly as n2”. 
–  Describes an upper bound. 
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• What does it mean? 
–  If f(n) = O(n2), then: 

•  f(n) can be larger than n2 sometimes, but… 
• We can choose some constant c and some value n0 such that 

for every value of n larger than n0 : f(n) < cn2 

• That is, for values larger than n0, f(n) is never more than a 
constant multiplier greater than n2 

• Or, in other words, f(n) does not grow more than a constant 
factor faster than n2. 
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n0 

cg(n) 

f(n) 
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•  Prove that: 
•  Let c = 21 and n0 = 4 
•  21n2 > 20n2 + 2n + 5  for all n > 4 

  n2 > 2n + 5  for all n > 4 
 TRUE 

Comp 555    Fall 2013 



8/29/13 46 

•  Big-O is not a tight upper bound.  In other 
words n = O(n2) 

• Θ provides a tight bound 

•  n = O(n2) ≠ Θ(n2) 
•  200n2 = O(n2) = Θ(n2) 
•  n2.5 ≠ O(n2) ≠ Θ(n2) 

Comp 555    Fall 2013 



8/29/13 47 

n0 

c2g(n) 

f(n) 

c1g(n) 
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•  Little o – A non-tight asymptotic upper bound 
–  n = o(n2), n = O(n2) 
–  3n2 ≠ o(n2), 3n2 = O(n2) 

• Ω – A lower bound 

–  n2 = Ω(n) 

•  ω – A non-tight asymptotic lower bound 

•  f(n) = Θ(n) ⇔ f(n) = O(n) and f(n) = Ω(n) 

The difference between “big-O” and “little-o” is
 subtle. For f(n) = O(g(n)) the bound 0 ≤ f(n) ≤ c g(n),
 n > n0 holds for any c. For f(n) = o(g(n)) the bound  
0 ≤ f(n) < c g(n), n > n0 holds for all c.  
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n0 

O(f(n)) 

f(n) 

Ω(f(n)) 

ω(f(n)) 

o(f(n)) 

Θ(f(n)) 
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€ 

f n( ) =O g n( )( ) ≈ f ≤ g

f n( ) =Ω g n( )( ) ≈ f ≥ g

f n( ) =Θ g n( )( ) ≈ f = g

f n( ) = o g n( )( ) ≈ f < g

f n( ) =ω g n( )( ) ≈ f > g
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•  Best case 
–  Super-fast in some limited situation is not very valuable 

information 
•  Worst case 

–  Good upper-bound on behavior 
–  Never gets worse than this 

•  Average case 
–  Averaged over all possible inputs 
–  Most useful information about overall performance 
–  Can be hard to compute precisely 
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•  Time complexity is not necessarily the same as 
the space complexity 

•  Space Complexity: how much space an 
algorithm needs (as a function of n) 

•  Time vs. space 
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• Algorithm “Styles” and design techniques 
–  Exhaustive search 
–  Greedy algorithms 
–  Branch and bound algorithms 
–  Dynamic programming 
–  Divide and conquer algorithms 
–  Randomized algorithms 

•  Tractable vs intractable algorithms 
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