

Lecture 3: Algorithms and Complexity

Bioalgorithms Fall 2013 Study Chapter 2.1-2.8

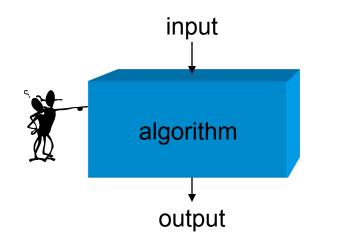
8/29/13

Comp 555

Fall 2013

What is an algorithm?

• An algorithm is a sequence of instructions that one must perform in order to solve a well-formulated problem.



Problem: Complexity

Algorithm: Correctness Complexity

Problem: Buying Textbook with Credit Card

Algorithm #1:

1. Go to the bookstore at the student union.

֎֍֎֎֎֎֎֎֎֎֎֎

- 2. Find the shelf with the tag "COMP 555".
- 3. Take a copy of the book.
- 4. Go to the register.
- 5. Check out using credit card.
- 6. Walk out with book

Algorithm #2:

- 1. Go to Amazon.com
- Search for the book entitled "An Introduction to Bioinformatics Algorithms".

֎֎֎֎֎֎֎֎֎֎֎

- 3. Click "Add to shopping cart".
- 4. Click "Proceed to checkout".
- 5. Sign in your account.
- 6. Fill the shipping information.
- 7. Fill in the credit card and billing information.
- 8. Place the order.
- 9. Wait 5-10 days for book to arrive

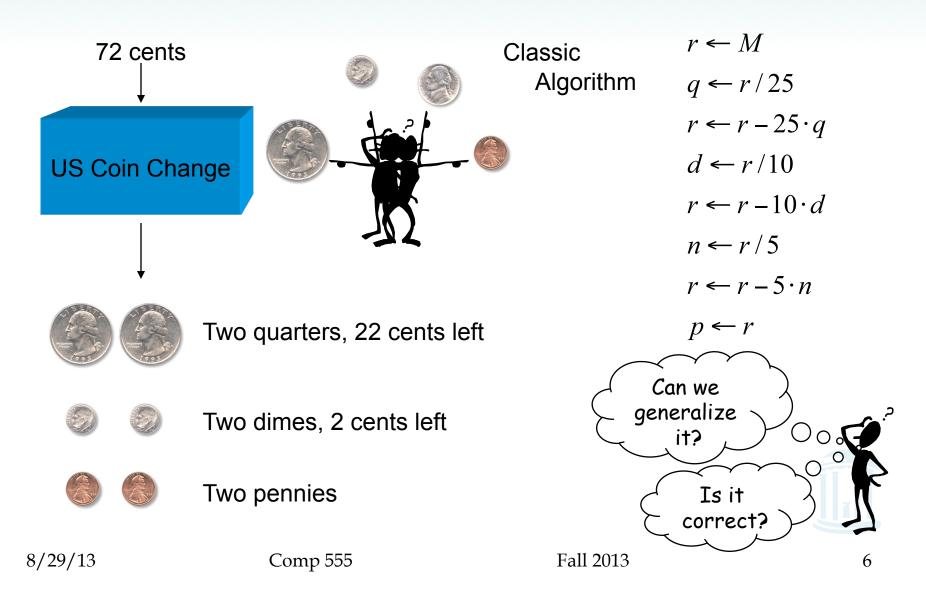
Two observations

- Given a problem, there may be many correct algorithms.
 - They give identical outputs for the same inputs
 - They give the expected outputs for any valid input
- The costs to perform different algorithms may be different.
 - Some are faster (i.e. get the book immediately, or you wait for a week)
 - Some are less expensive

Correctness

- An algorithm is correct only if it produces correct result for all input instances.
 - If the algorithm gives an incorrect answer for one or more input instances, it is an incorrect algorithm.
- Coin change problem
 - Input: an amount of money *M* in cents
 - Output: the smallest number of coins
- US coin change problem

US Coin Change

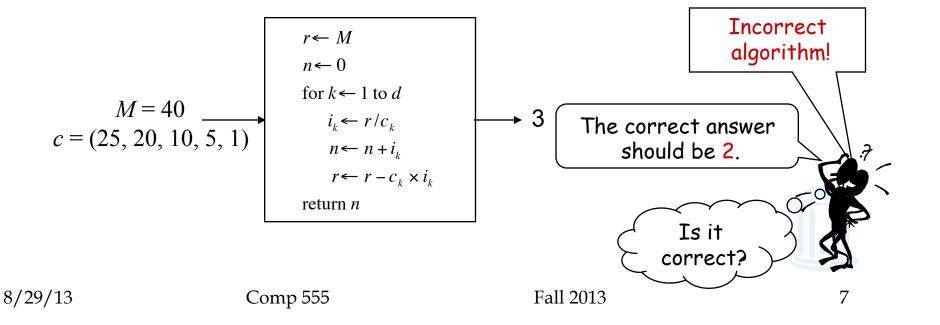


Change Problem

> To show an algorithm was incorrect we showed an input for which it produced the

wrong result. How do we show that an algorithm is correct?

- Input:
 - an amount of money *M*
 - an array of denominations $c = (c_1, c_2, ..., c_d)$ in order of decreasing value
- Output: the smallest number of coins



How to Compare Algorithms?

- Complexity the cost of an algorithm can be measured in either time and space
 - Correct algorithms may have different complexities.
- How do we assign "cost" for time?
- The cost to perform an instruction may vary dramatically.
 - An instruction may be an algorithm itself.
 - The complexity of an algorithm is NOT equivalent to the number of instructions.
- How to analyze an algorithm's complexity
 - An aside: Algorithm "Styles"

Ex Style: Recursive Algorithms

- Recursion is a technique for describing functions in terms of themselves.
 - These recursive calls are to simpler versions of the original function.
 - The simplest versions, called base cases, are merely declared.
 - Recursive definition:
 - Base case:

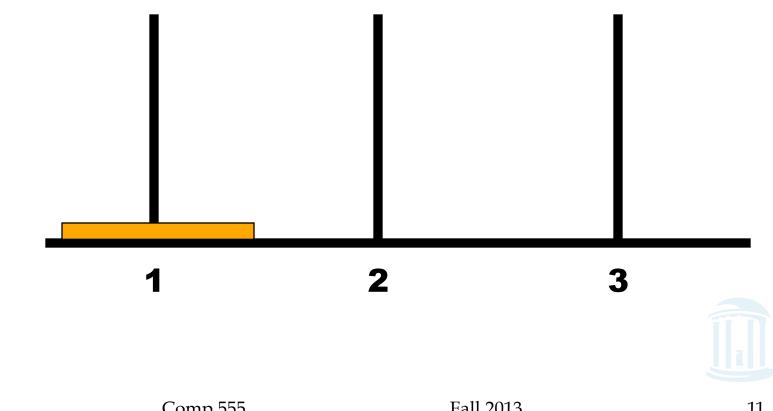
 $factorial(n) = n \times factorial(n-1)$ factorial(1) = 1

- Easy to analyze
- Thinking recursively...

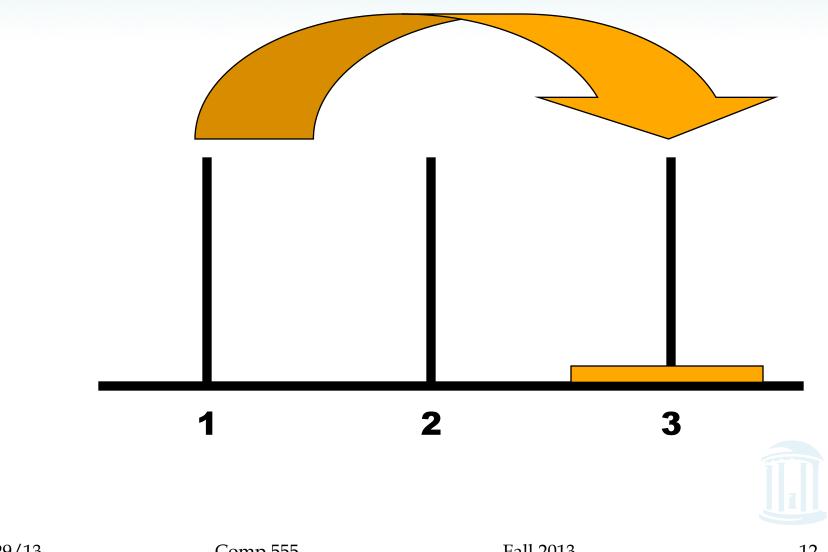
Towers of Hanoi

- There are three pegs and a number of disks with decreasing radii (smaller ones on top of larger ones) stacked on Peg 1.
- Goal: move all disks to Peg 3.
- Rules:
 - When a disk is moved from one peg it must be placed on another peg.
 - Only one disk may be moved at a time, and it must be the top disk on a tower.
 - A larger disk may never be placed upon a smaller disk.

A single disk tower

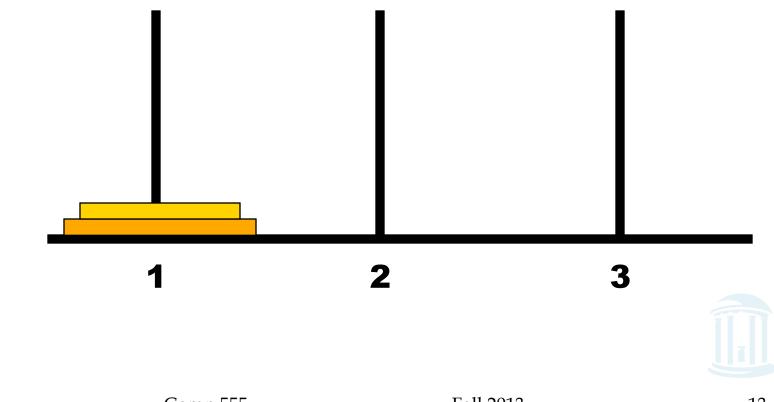


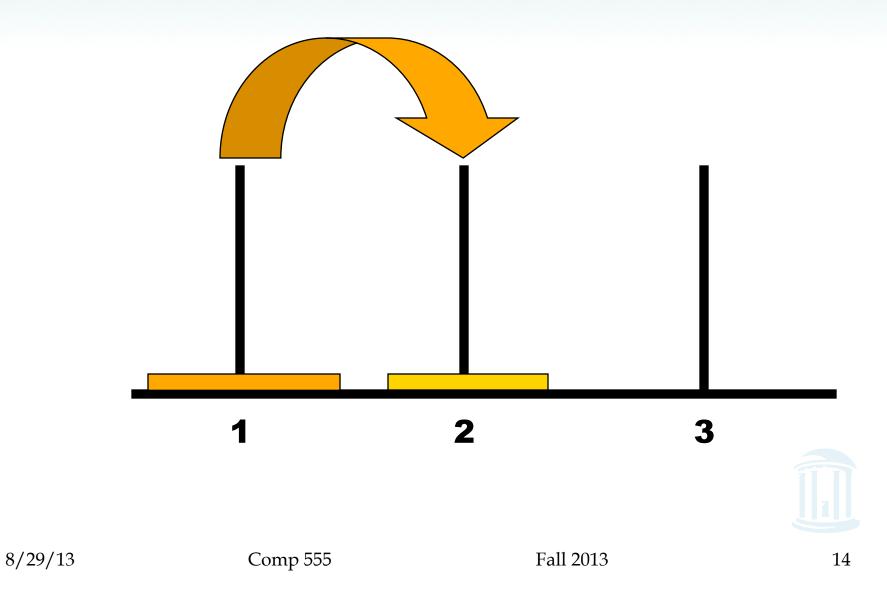
A single disk tower

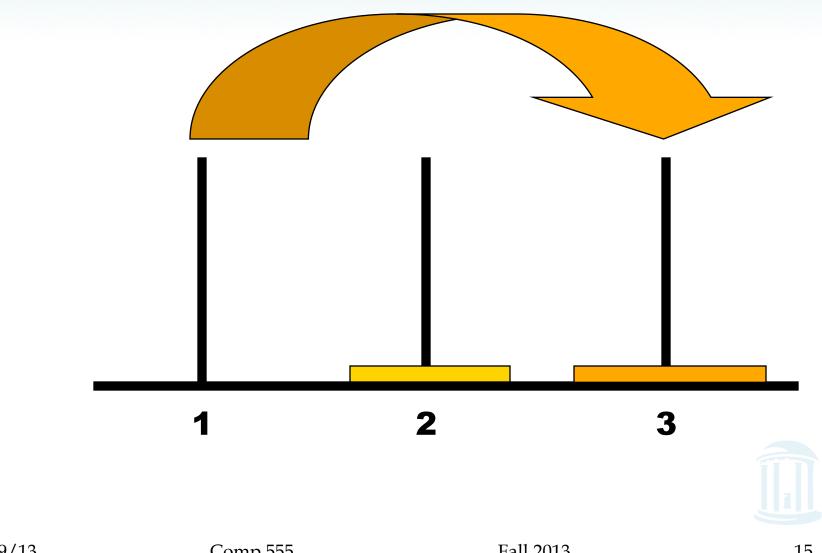


8/29/13

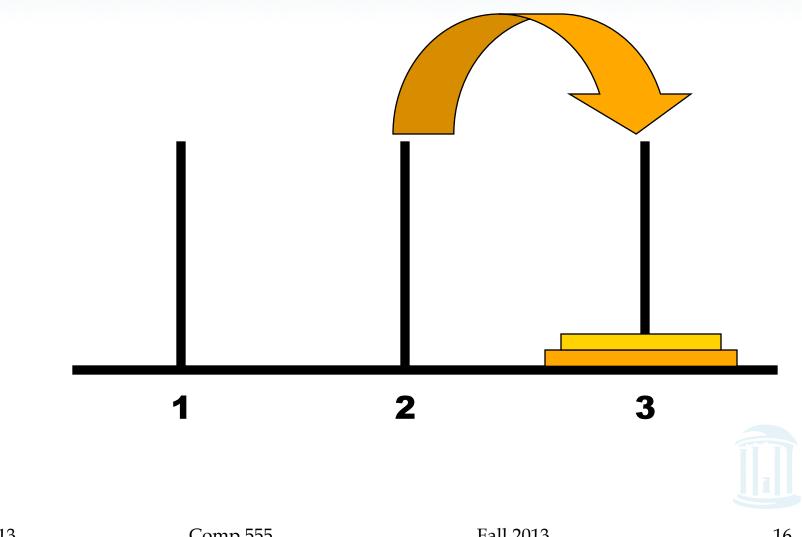
A two disk tower





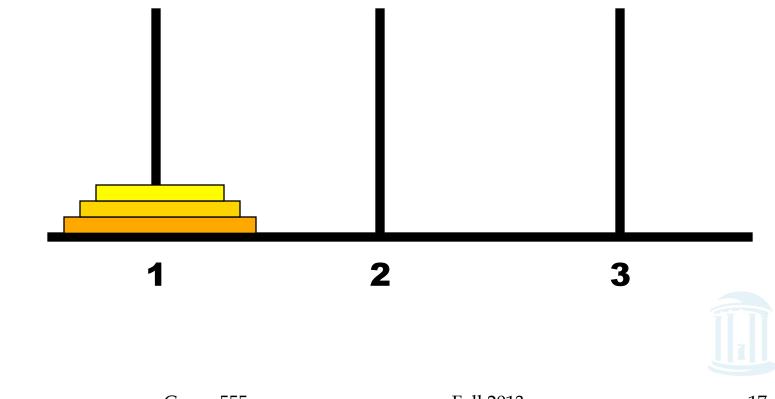


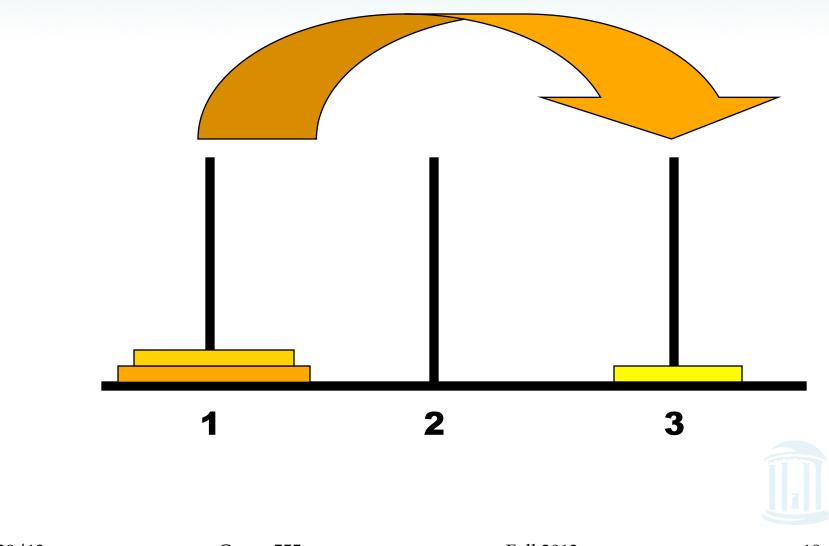
8/29/13

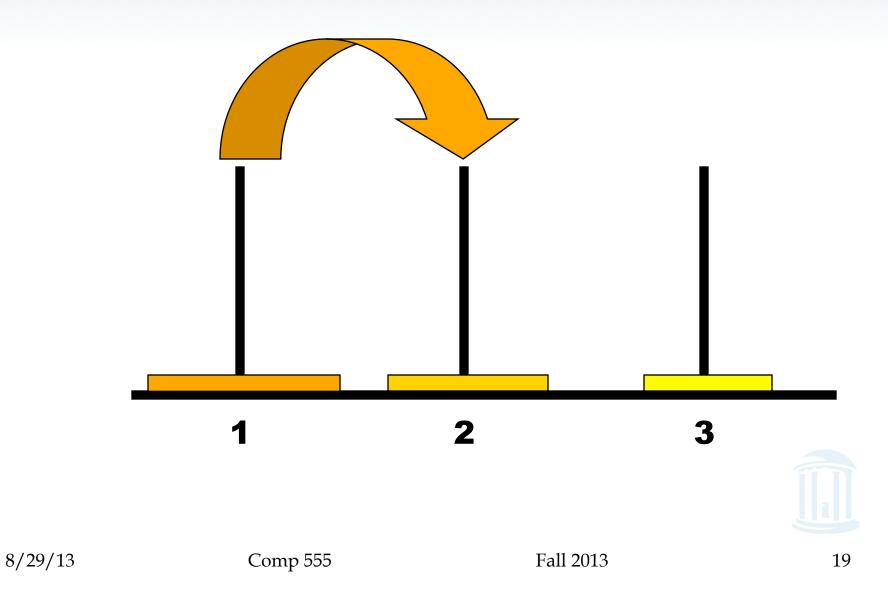


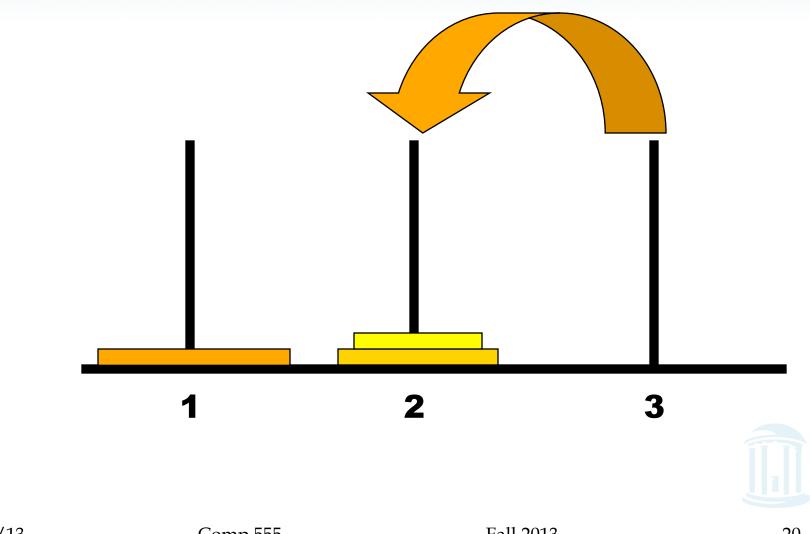
8/29/13

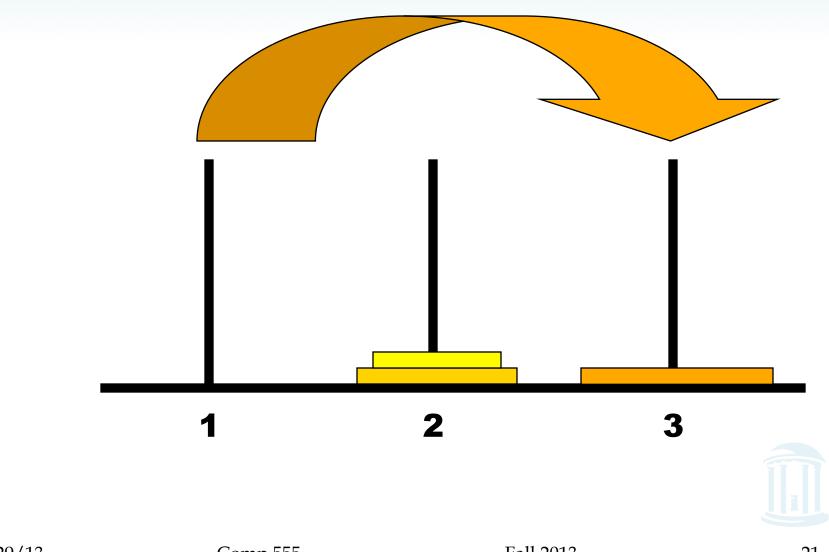
A three disk tower



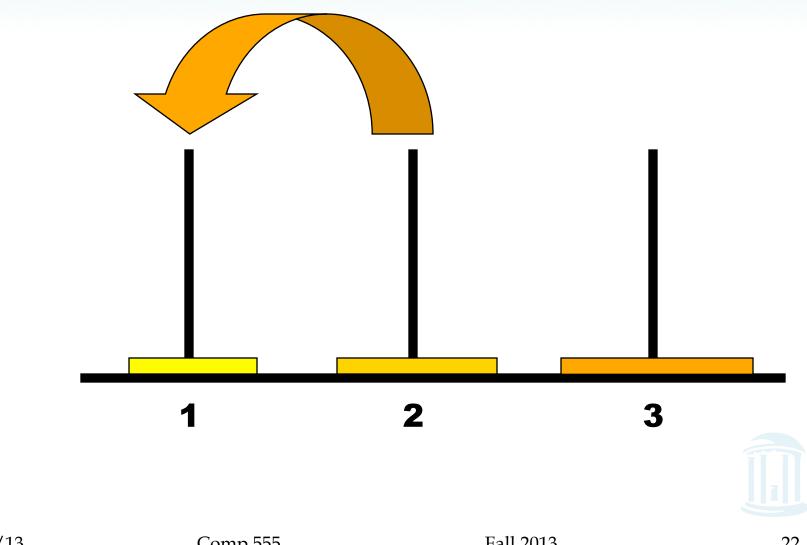


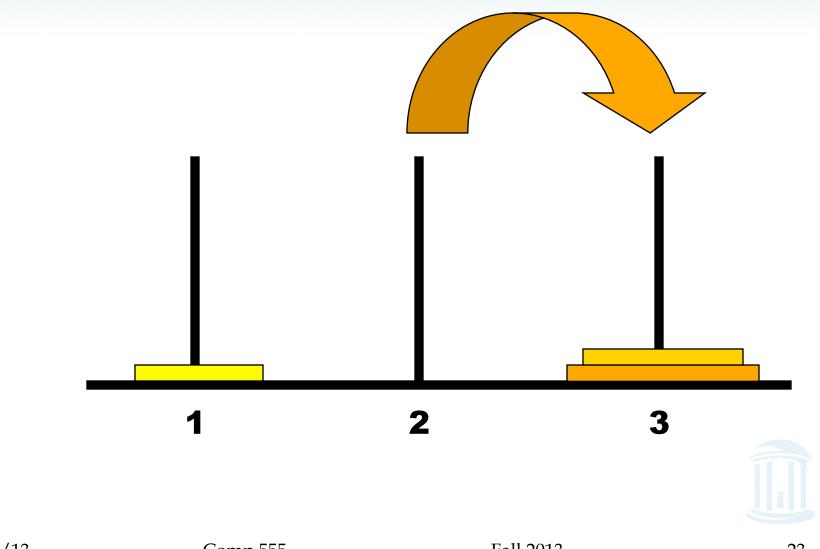


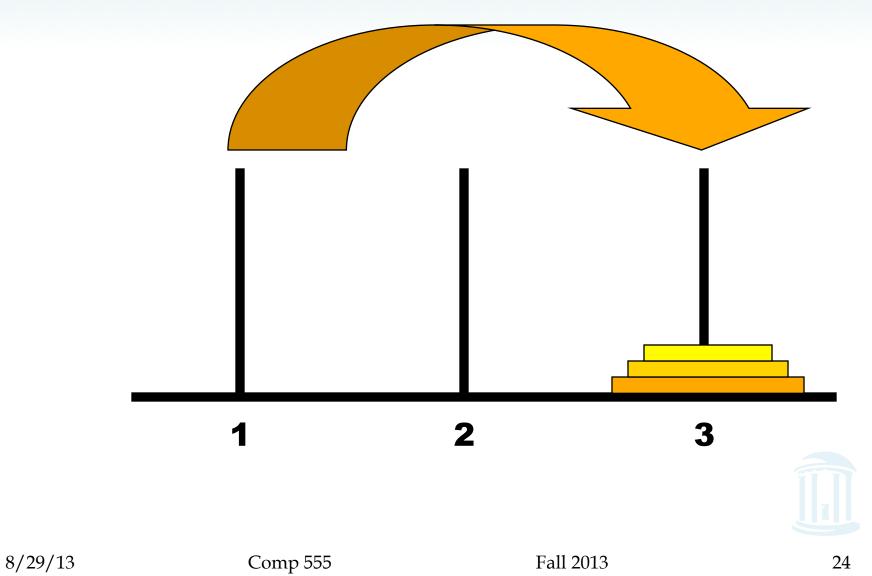


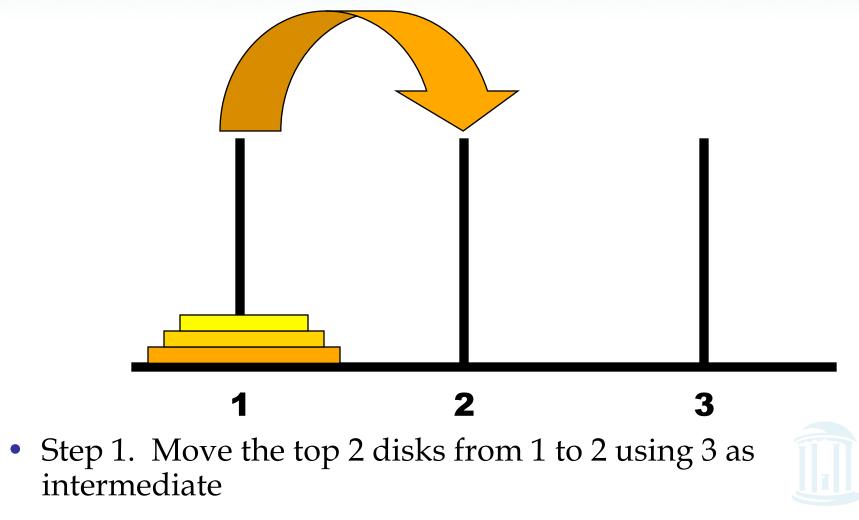


8/29/13

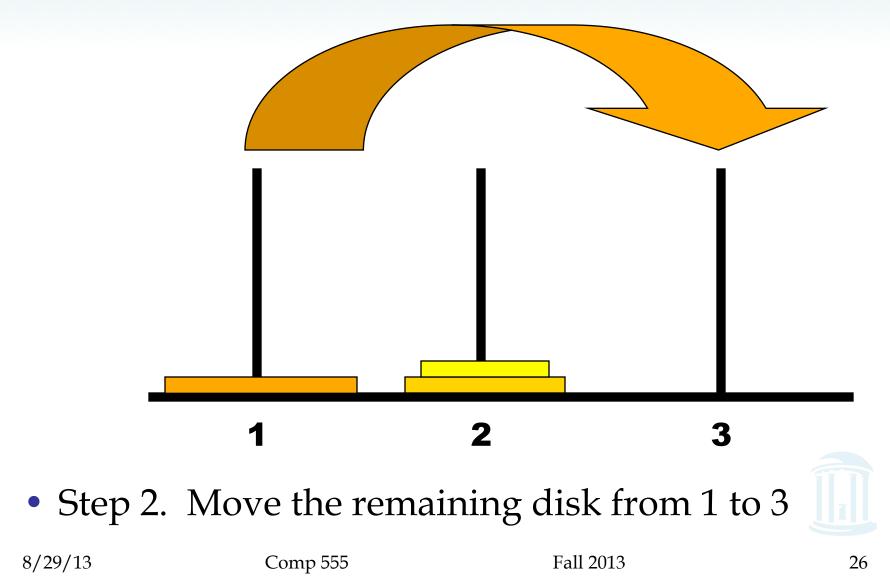


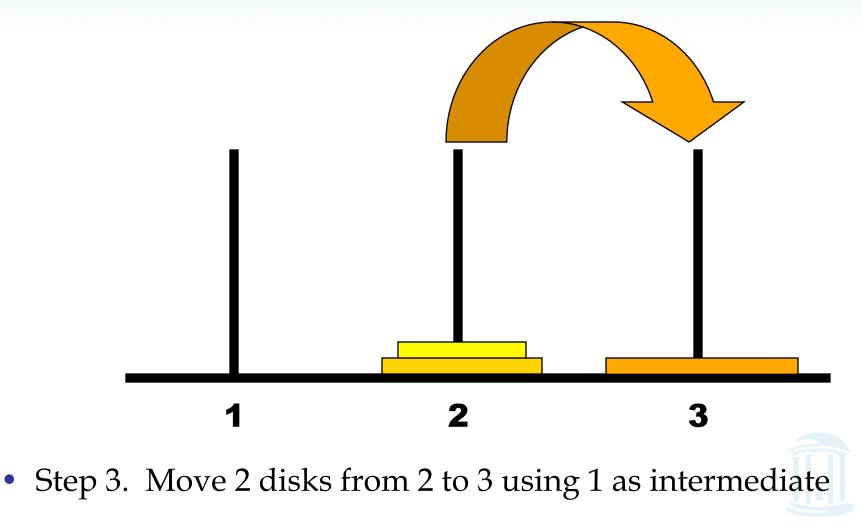


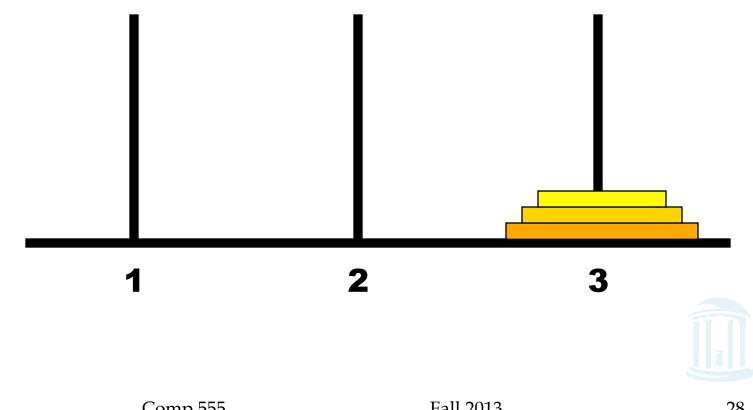




Fall 2013







The problem for N disks becomes

- A base case of a one-disk move.
- A recursive step for moving n-1 disks.
- To move *n* disks from Peg 1 to Peg 3, we need to
 - Move (*n*-1) disks from Peg 1 to Peg 2
 - Move the n^{th} disk from Peg 1 to Peg 3
 - Move (*n*-1) disks from Peg 2 to Peg 3 –
 - The number of disk moves is

∕ We move the n-1 stack twice

$$T(1) = 1$$

$$T(n) = 2T(n-1) + 1 = 2^{n} - 1$$

Towers of Hanoi

- If you play HanoiTowers with . . . it takes . . .
 - 1 disk … 1 move
 - 2 disks ... 3 moves
 - 3 disks ... 7 moves
 - 4 disks … 15 moves
 - 5 disks ... 31 moves

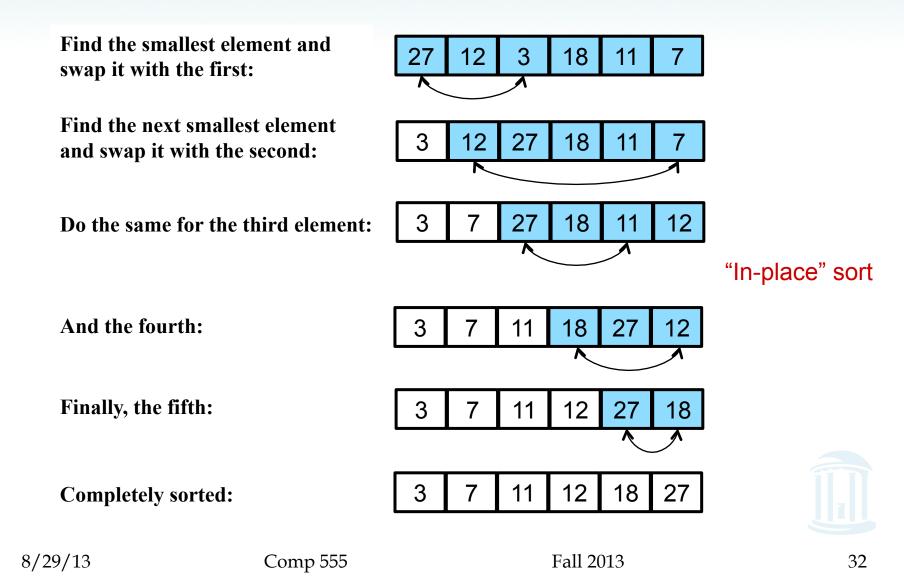
- -20 disks
- 32 disks
- • 1,048,575 moves • • • 4,294,967,295 moves

Fall 2013

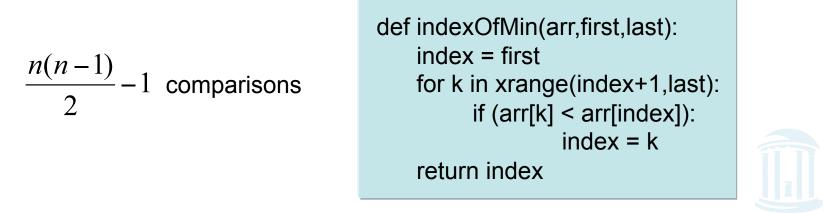
Sorting

- A very common problem is to arrange data into either ascending or descending order
 - Viewing, printing
 - Faster to search, find min/max, compute median/mode, etc.
- Lots of sorting algorithms
 - From the simple to very complex
 - Some optimized for certain situations (lots of duplicates, almost sorted, etc.)

Selection Sort



Selection sort

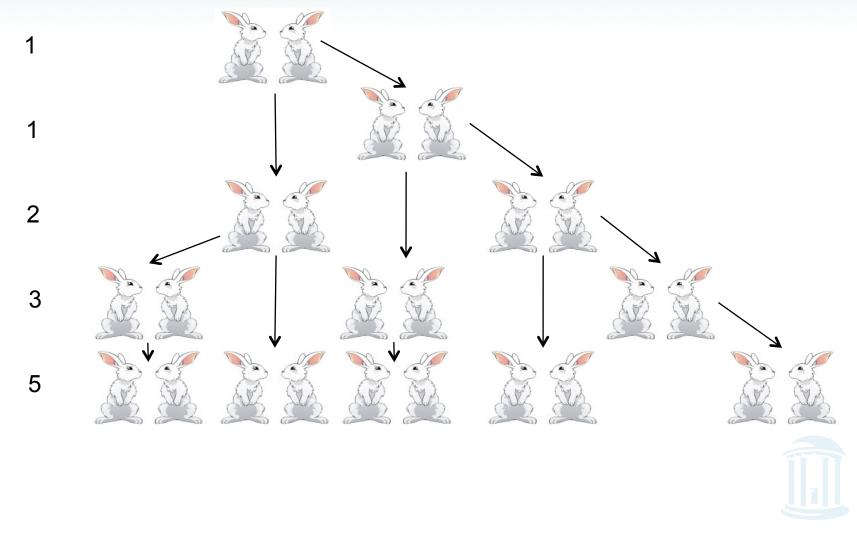


Year 1202: Leonardo Fibonacci:

- He asked the following question:
 - How many pairs of rabbits are produced from a single pair in one year if every year each pair of rabbits more than 1 year old produces a new pair?

- Here we assume that each pair has one male and one female, and each pair lives long enough to have two litters, and initially we have one pair
- f(n): the number of "breeding" pairs present at the beginning of year n

Fibonacci Number



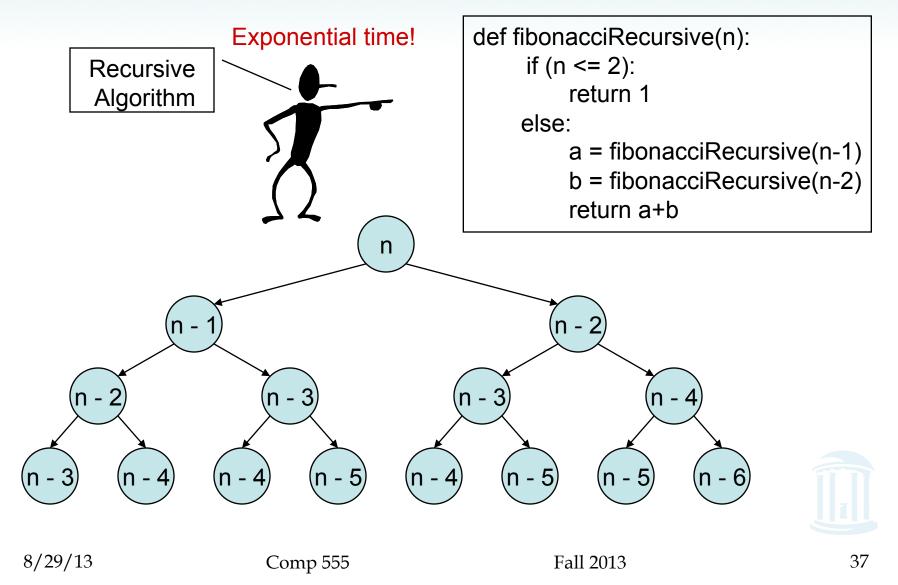
Fibonacci Number

- Clearly, we have:
 - f(1) = 1 (the first pair we have)
 - f(2) = 1 (still only the first pair we have because they are just 1 month old. They need to be more than one month old to reproduce)
 - f(n) = f(n-1) + f(n-2) because f(n) is the sum of the old rabbits from last month (f(n-1)) and the new rabbits reproduced from those f(n-2) rabbits who are now old enough to reproduce.
 - *f*: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
 - The solution for this recurrence is:

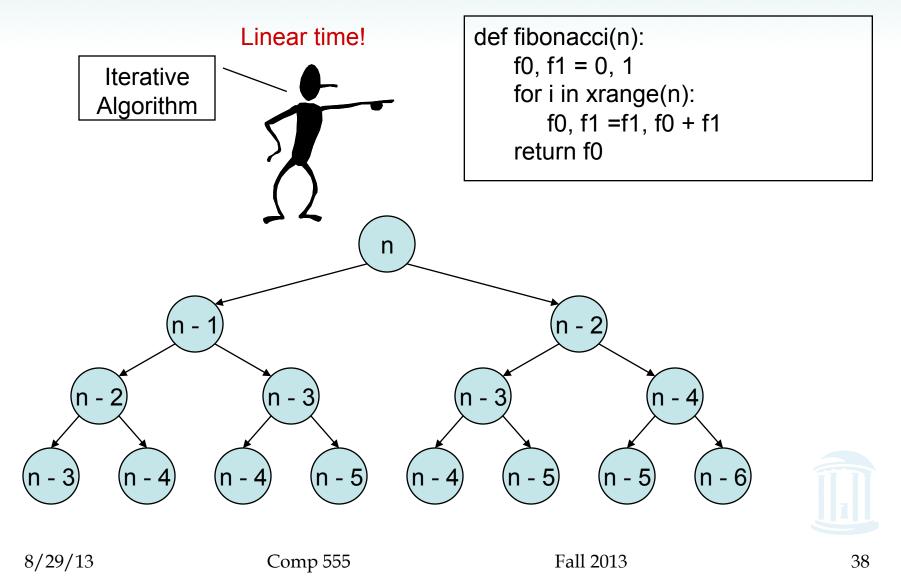
nce is:

$$f(n) = \frac{1}{\sqrt{5}} \left(\left(\frac{1 + \sqrt{5}}{2} \right)^n - \left(\frac{1 - \sqrt{5}}{2} \right)^n \right)$$

Fibonacci Number



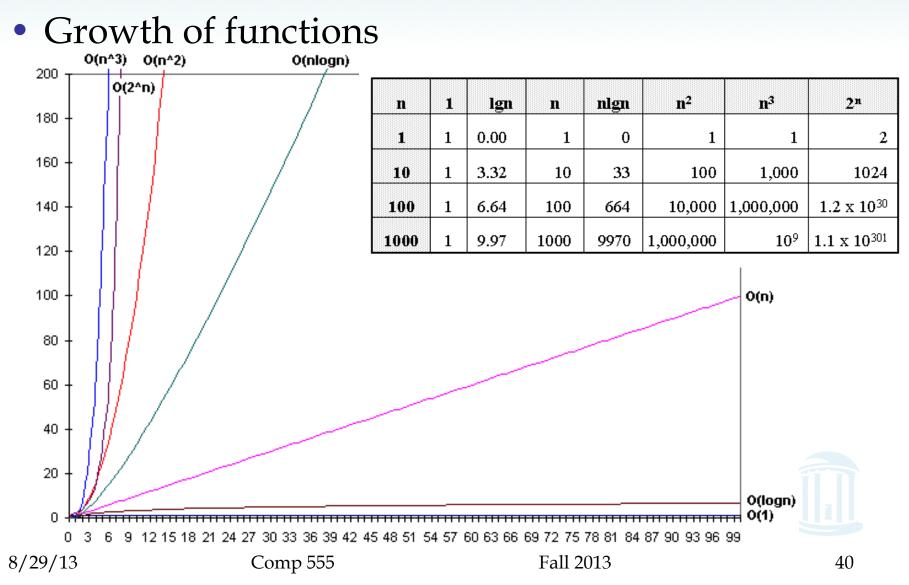
Fibonacci Number



Is there a "real difference"?

- 10^1
- 10² Number of students in computer science department
- 10^3 Number of students in the college of art and science
- 10⁴ Number of students enrolled at UNC
- ...
- . . .
- 10^10 Number of stars in the galaxy
- 10²⁰ Total number of all stars in the universe
- 10^80 Total number of particles in the universe
- 10^100 << Number of moves needed for 400 disks in the Towers of Hanoi puzzle
- Towers of Hanoi puzzle is *computable* but it is NOT feasible.

Is there a "real" difference?



Asymptotic Notation

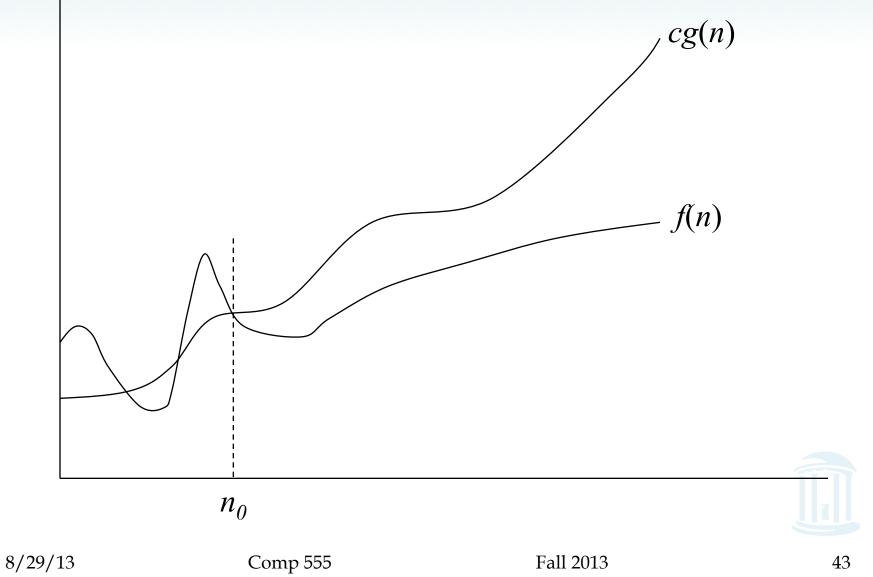
- *Order of growth* is the interesting measure:
 - Highest-order term is what counts
 - As the input size grows larger it is the high order term that dominates
- Θ notation: $\Theta(n^2) =$ "this function grows similarly to $n^{2''}$.
- Big-O notation: O (n^2) = "this function grows at least as *slowly* as $n^{2''}$.
 - Describes an *upper bound*.

Big-O Notation

f(n) = O(g(n)): there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

- What does it mean?
 - If $f(n) = O(n^2)$, then:
 - f(n) can be larger than n^2 sometimes, **but**...
 - We can choose some constant *c* and some value n_0 such that for **every** value of *n* larger than $n_0 : f(n) < cn^2$
 - That is, for values larger than n_0 , f(n) is never more than a constant multiplier greater than n^2
 - Or, in other words, f(n) does not grow more than a constant factor faster than n^2 .

Visualization of O(g(n))



Big-O Notation

$$2n^{2} = O(n^{2})$$

$$1,000,000n^{2} + 150,000 = O(n^{2})$$

$$5n^{2} - 7n + 20 = O(n^{2})$$

$$2n^{3} + 2 \neq O(n^{2})$$

$$n^{2.1} \neq O(n^{2})$$

Fall 2013

Big-O Notation

• Prove that:
$$20n^2 + 2n + 5 = O(n^2)$$

- Let c = 21 and $n_0 = 4$
- 21n² > 20n² + 2n + 5 for all n > 4
 n² > 2n + 5 for all n > 4
 TRUE

Θ-Notation

- Big-*O* is not a tight upper bound. In other words $n = O(n^2)$
- Θ provides a tight bound

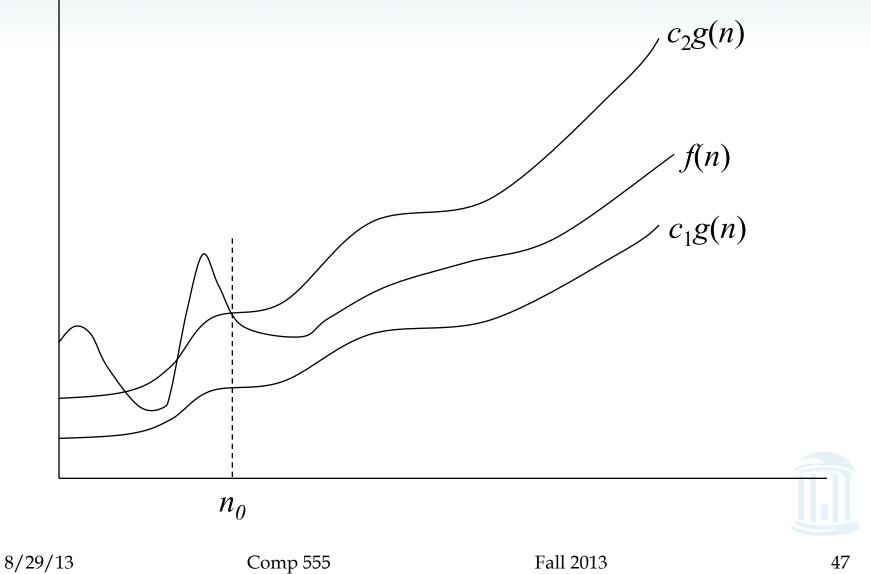
 $f(n) = \Theta(g(n))$: there exist positive constants c_1, c_2 , and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

•
$$n = O(n^2) \neq \Theta(n^2)$$

•
$$200n^2 = O(n^2) = \Theta(n^2)$$

• $n^{2.5} \neq \mathcal{O}(n^2) \neq \Theta(n^2)$

Visualization of $\Theta(g(n))$



Some Other Asymptotic Functions

• Little *o* – A **non-tight** asymptotic upper bound

$$-n = o(n^2), n = O(n^2)$$

$$-3n^2 \neq o(n^2), 3n^2 = O(n^2)$$

• Ω – A **lower** bound

The difference between "big-O" and "little-o" is subtle. For f(n) = O(g(n)) the bound $0 \le f(n) \le c g(n)$, $n > n_0$ holds for *any* c. For f(n) = o(g(n)) the bound $0 \le f(n) < c g(n)$, $n > n_0$ holds for *all* c.

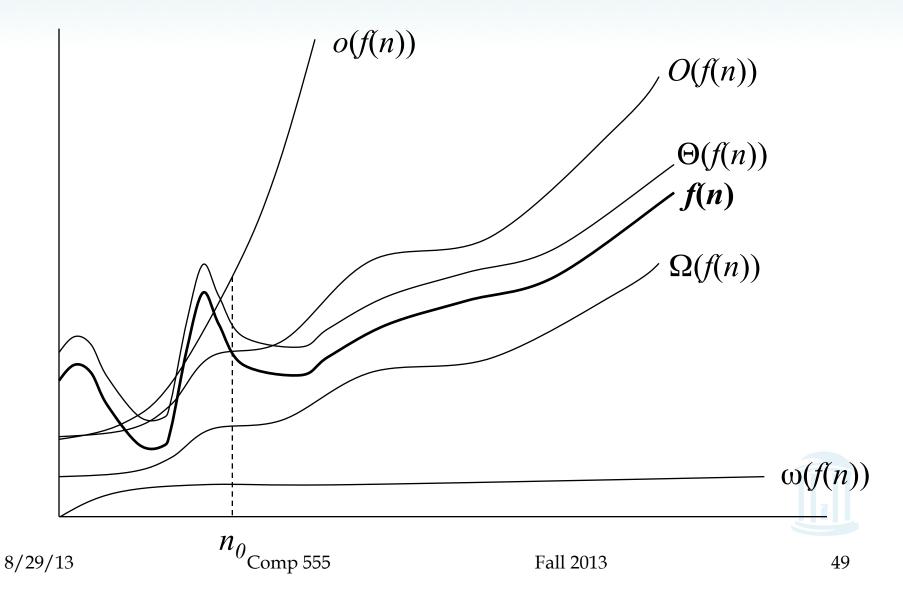
 $f(n) = \Omega(g(n))$: there exist positive constants c and n_0 such that $f(n) \ge cg(n)$ for all $n \ge n_0$

 $-n^2 = \Omega(n)$

• ω – A **non-tight** asymptotic lower bound

• $f(n) = \Theta(n) \Leftrightarrow f(n) = O(n)$ and $f(n) = \Omega(n)$

Visualization of Asymptotic Growth



Analogy to Arithmetic Operators

$$f(n) = O(g(n)) \approx f \le g$$

$$f(n) = \Omega(g(n)) \quad \approx \quad f \ge g$$

$$f(n) = \Theta(g(n)) \approx f = g$$

$$n) = o(g(n)) \approx f < g$$

$$f(n) = \omega(g(n)) \approx f > g$$

Measures of complexity

- Best case
 - Super-fast in some limited situation is not very valuable information
- Worst case
 - Good upper-bound on behavior
 - Never gets worse than this
- Average case
 - Averaged over all possible inputs
 - Most useful information about overall performance
 - Can be hard to compute precisely

Complexity

- Time complexity is not necessarily the same as the space complexity
- Space Complexity: how much space an algorithm needs (as a function of *n*)
- Time vs. space

Next Time

- Algorithm "Styles" and design techniques
 - Exhaustive search
 - Greedy algorithms
 - Branch and bound algorithms
 - Dynamic programming
 - Divide and conquer algorithms
 - Randomized algorithms
- Tractable vs intractable algorithms

