
8/29/13 1 Comp 555 Fall 2013

8/29/13 2

• An algorithm is a sequence of instructions that
one must perform in order to solve a well-
formulated problem.

problem

input

output

algorithm Algorithm: Correctness
Complexity

Problem: Complexity

Comp 555 Fall 2013

8/29/13 3

Algorithm #1:
1.  Go to the bookstore at

the student union.
2.  Find the shelf with the

tag “COMP 555”.
3.  Take a copy of the book.
4.  Go to the register.
5.  Check out using credit

card.
6.  Walk out with book

Algorithm #2:
1.  Go to Amazon.com
2.  Search for the book entitled

“An Introduction to
Bioinformatics Algorithms”.

3.  Click “Add to shopping cart”.
4.  Click “Proceed to checkout”.
5.  Sign in your account.
6.  Fill the shipping information.
7.  Fill in the credit card and

billing information.
8.  Place the order.
9.  Wait 5-10 days for book to

arrive

Comp 555 Fall 2013

8/29/13 4

• Given a problem, there may be many correct
algorithms.
–  They give identical outputs for the same inputs
–  They give the expected outputs for any valid input

•  The costs to perform different algorithms may
be different.
–  Some are faster (i.e. get the book

immediately, or you wait for a week)
–  Some are less expensive

Comp 555 Fall 2013

8/29/13 5

• An algorithm is correct only if it produces
correct result for all input instances.
–  If the algorithm gives an incorrect answer for one or

more input instances, it is an incorrect algorithm.

•  Coin change problem
–  Input: an amount of money M in cents
–  Output: the smallest number of coins

• US coin change problem

Comp 555 Fall 2013

8/29/13 6

US Coin Change

72 cents

Two quarters, 22 cents left

Two dimes, 2 cents left

Two pennies Is it
 correct?

Can we
generalize

 it?

Classic
 Algorithm

Comp 555 Fall 2013

8/29/13 7

•  Input:
–  an amount of money M
–  an array of denominations c = (c1, c2, …,cd)

in order of decreasing value

• Output: the smallest number of coins

n M
c = (c1, c2, …,cd)

Is it
 correct?

M = 40
c = (25, 20, 10, 5, 1)

? 3 The correct answer
 should be 2.

Incorrect
 algorithm!

€

r← M
n← 0
for k← 1 to d

ik← r /ck
n← n + ik
r← r − ck × ik

return n

To show an algorithm was
 incorrect we showed an input
 for which it produced the
 wrong result. How do
we show that an
algorithm is correct?

Comp 555 Fall 2013

8/29/13 8

•  Complexity — the cost of an algorithm can be
measured in either time and space
–  Correct algorithms may have different complexities.

• How do we assign “cost” for time?
•  The cost to perform an instruction may vary

dramatically.
–  An instruction may be an algorithm itself.
–  The complexity of an algorithm is NOT equivalent to

the number of instructions.

• How to analyze an algorithm’s complexity
–  An aside: Algorithm “Styles”

Comp 555 Fall 2013

8/29/13 9

•  Recursion is a technique for describing functions
in terms of themselves.
–  These recursive calls are to simpler versions of the

original function.
–  The simplest versions, called base cases, are merely

declared.

–  Easy to analyze

•  Thinking recursively…

Recursive definition:

Base case:

Comp 555 Fall 2013

8/29/13 10

•  There are three pegs and a number of disks with
decreasing radii (smaller ones on top of larger
ones) stacked on Peg 1.

• Goal: move all disks to Peg 3.
•  Rules:

–  When a disk is moved from one
peg it must be placed on another
peg.

–  Only one disk may be moved at a
time, and it must be the top disk
on a tower.

–  A larger disk may never be placed
upon a smaller disk.

Comp 555 Fall 2013

8/29/13 11

1 2 3

Comp 555 Fall 2013

8/29/13 12

1 2 3

Comp 555 Fall 2013

8/29/13 13

1 2 3

Comp 555 Fall 2013

8/29/13 14

1 2 3

Comp 555 Fall 2013

8/29/13 15

1 2 3

Comp 555 Fall 2013

8/29/13 16

1 2 3

Comp 555 Fall 2013

8/29/13 17

1 2 3

Comp 555 Fall 2013

8/29/13 18

1 2 3

Comp 555 Fall 2013

8/29/13 19

1 2 3

Comp 555 Fall 2013

8/29/13 20

1 2 3

Comp 555 Fall 2013

8/29/13 21

1 2 3

Comp 555 Fall 2013

8/29/13 22

1 2 3

Comp 555 Fall 2013

8/29/13 23

1 2 3

Comp 555 Fall 2013

8/29/13 24

1 2 3

Comp 555 Fall 2013

8/29/13 25

•  Step 1. Move the top 2 disks from 1 to 2 using 3 as
intermediate

1 2 3

Comp 555 Fall 2013

8/29/13 26

•  Step 2. Move the remaining disk from 1 to 3

1 2 3

Comp 555 Fall 2013

8/29/13 27

•  Step 3. Move 2 disks from 2 to 3 using 1 as intermediate

1 2 3

Comp 555 Fall 2013

8/29/13 28

1 2 3

Comp 555 Fall 2013

8/29/13 29

• A base case of a one-disk move.
• A recursive step for moving n-1 disks.

•  To move n disks from Peg 1 to Peg 3, we need to
–  Move (n-1) disks from Peg 1 to Peg 2
–  Move the nth disk from Peg 1 to Peg 3
–  Move (n-1) disks from Peg 2 to Peg 3
–  The number of disk moves is

Exponential algorithm

We move
 the n-1
 stack twice

Comp 555 Fall 2013

8/29/13 30

•  If you play HanoiTowers with . . . it takes . . .
–  1 disk … 1 move
–  2 disks … 3 moves
–  3 disks … 7 moves
–  4 disks … 15 moves
–  5 disks … 31 moves
–  .
–  .
–  .
–  20 disks . . . 1,048,575 moves
–  32 disks . . . 4,294,967,295 moves

Comp 555 Fall 2013

8/29/13 31

• A very common problem is to arrange data into
either ascending or descending order
–  Viewing, printing
–  Faster to search, find min/max,

compute median/mode, etc.
•  Lots of sorting algorithms

–  From the simple to very complex
–  Some optimized for certain

situations (lots of duplicates,
almost sorted, etc.)

Comp 555 Fall 2013

27 12 3 18 11 7

8/29/13 32

Find the smallest element and
swap it with the first:

3 7 11 12 18 27 Completely sorted:

“In-place” sort

3 12 27 18 11 7
Find the next smallest element
and swap it with the second:

3 7 27 18 11 12 Do the same for the third element:

11 3 7 18 27 12 And the fourth:

3 7 11 12 27 18 Finally, the fifth:

Comp 555 Fall 2013

8/29/13 33

def selectionSortRecursive(a,first,last):
 if (first < last):

 index = indexOfMin(a,first,last)
 temp = a[index]
 a[index] = a[first]
 a[first] = temp
 a = selectionSortRecursive(a,first+1,last)

 return a

def indexOfMin(arr,first,last):
 index = first
 for k in xrange(index+1,last):

 if (arr[k] < arr[index]):
 index = k

 return index

comparisons

(n -1) swaps

Quadratic in time

Comp 555 Fall 2013

8/29/13 34

• He asked the following question:
–  How many pairs of rabbits are

produced from a single pair in one
year if every year each pair of
rabbits more than 1 year old
produces a new pair?

–  Here we assume that each pair has one male and one
female, and each pair lives long enough to have two
litters, and initially we have one pair

–  f(n): the number of “breeding” pairs present at the
beginning of year n

Comp 555 Fall 2013

8/29/13 35

1

1

2

3

5

Comp 555 Fall 2013

8/29/13 36

•  Clearly, we have:
–  f(1) = 1 (the first pair we have)
–  f(2) = 1 (still only the first pair we have because they

are just 1 month old. They need to be more than one
month old to reproduce)

–  f(n) = f(n-1) + f(n-2) because f(n) is the sum of the old
rabbits from last month (f(n-1)) and the new rabbits
reproduced from those f(n-2) rabbits who are now old
enough to reproduce.

–  f: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, …
–  The solution for this recurrence is:

Comp 555 Fall 2013

8/29/13 37

def fibonacciRecursive(n):
 if (n <= 2):

 return 1
else:

 a = fibonacciRecursive(n-1)
 b = fibonacciRecursive(n-2)
 return a+b

Recursive
 Algorithm

Exponential time!

n

n - 1 n - 2

n - 3

n - 4 n - 5

n - 2

n - 3 n - 4 n - 5 n - 4 n - 5 n - 6

n - 3 n - 4

Comp 555 Fall 2013

8/29/13 38

def fibonacci(n):
 f0, f1 = 0, 1
 for i in xrange(n):
 f0, f1 =f1, f0 + f1
 return f0

Iterative
Algorithm

Linear time!

n

n - 1 n - 2

n - 3

n - 4 n - 5

n - 2

n - 3 n - 4 n - 5 n - 4 n - 5 n - 6

n - 3 n - 4

Comp 555 Fall 2013

8/29/13 39

•  10^1
•  10^2 Number of students in computer science department
•  10^3 Number of students in the college of art and science
•  10^4 Number of students enrolled at UNC
•  …
•  …
•  10^10 Number of stars in the galaxy
•  10^20 Total number of all stars in the universe
•  10^80 Total number of particles in the universe
•  10^100 << Number of moves needed for 400 disks in the Towers

of Hanoi puzzle

•  Towers of Hanoi puzzle is computable but it is NOT feasible.

Comp 555 Fall 2013

8/29/13 40

• Growth of functions

Comp 555 Fall 2013

8/29/13 41

• Order of growth is the interesting measure:
–  Highest-order term is what counts

• As the input size grows larger it is the high order term that
dominates

• Θ notation: Θ(n2) = “this function grows
similarly to n2”.

•  Big-O notation: O (n2) = “this function grows at
least as slowly as n2”.
–  Describes an upper bound.

Comp 555 Fall 2013

8/29/13 42

• What does it mean?
–  If f(n) = O(n2), then:

•  f(n) can be larger than n2 sometimes, but…
• We can choose some constant c and some value n0 such that

for every value of n larger than n0 : f(n) < cn2

• That is, for values larger than n0, f(n) is never more than a
constant multiplier greater than n2

• Or, in other words, f(n) does not grow more than a constant
factor faster than n2.

Comp 555 Fall 2013

8/29/13 43

n0

cg(n)

f(n)

Comp 555 Fall 2013

8/29/13 44 Comp 555 Fall 2013

8/29/13 45

•  Prove that:
•  Let c = 21 and n0 = 4
•  21n2 > 20n2 + 2n + 5 for all n > 4

 n2 > 2n + 5 for all n > 4
 TRUE

Comp 555 Fall 2013

8/29/13 46

•  Big-O is not a tight upper bound. In other
words n = O(n2)

• Θ provides a tight bound

•  n = O(n2) ≠ Θ(n2)
•  200n2 = O(n2) = Θ(n2)
•  n2.5 ≠ O(n2) ≠ Θ(n2)

Comp 555 Fall 2013

8/29/13 47

n0

c2g(n)

f(n)

c1g(n)

Comp 555 Fall 2013

8/29/13 48

•  Little o – A non-tight asymptotic upper bound
–  n = o(n2), n = O(n2)
–  3n2 ≠ o(n2), 3n2 = O(n2)

• Ω – A lower bound

–  n2 = Ω(n)

•  ω – A non-tight asymptotic lower bound

•  f(n) = Θ(n) ⇔ f(n) = O(n) and f(n) = Ω(n)

The difference between “big-O” and “little-o” is
 subtle. For f(n) = O(g(n)) the bound 0 ≤ f(n) ≤ c g(n),
 n > n0 holds for any c. For f(n) = o(g(n)) the bound
0 ≤ f(n) < c g(n), n > n0 holds for all c.

Comp 555 Fall 2013

8/29/13 49
n0

O(f(n))

f(n)

Ω(f(n))

ω(f(n))

o(f(n))

Θ(f(n))

Comp 555 Fall 2013

8/29/13 50

€

f n() =O g n()() ≈ f ≤ g

f n() =Ω g n()() ≈ f ≥ g

f n() =Θ g n()() ≈ f = g

f n() = o g n()() ≈ f < g

f n() =ω g n()() ≈ f > g

Comp 555 Fall 2013

8/29/13 51

•  Best case
–  Super-fast in some limited situation is not very valuable

information
•  Worst case

–  Good upper-bound on behavior
–  Never gets worse than this

•  Average case
–  Averaged over all possible inputs
–  Most useful information about overall performance
–  Can be hard to compute precisely

Comp 555 Fall 2013

8/29/13 52

•  Time complexity is not necessarily the same as
the space complexity

•  Space Complexity: how much space an
algorithm needs (as a function of n)

•  Time vs. space

Comp 555 Fall 2013

8/29/13 53

• Algorithm “Styles” and design techniques
–  Exhaustive search
–  Greedy algorithms
–  Branch and bound algorithms
–  Dynamic programming
–  Divide and conquer algorithms
–  Randomized algorithms

•  Tractable vs intractable algorithms

Comp 555 Fall 2013

