
L23 – Parallel Processing 1 Comp 411 – Spring 2012 4/23/12

Multi-Core & Parallel Processing

Chapter 7

I’m going to study with 9
 friends... we’ll be done in

 an hour.

I’ve gotta spend at least
 10 hours studying for

 the Comp 411 final!

L23 – Parallel Processing 2 Comp 411 – Spring 2012 4/23/12

TIPs Anyone?

 Mega – 106 Giga – 109 Tera – 1012 Peta – 1015

Light travels about 1 ft / 10-9 secs in free space.
A Tera-Hertz uniprocessor could have no clock-to-clock
 path longer than 300 microns (thickness of a hair)…

We already know of problems that require greater than a TIP
 (Simulations of weather, weapons, brains)

MIPS =
Clock Frequency (in MHz)

Clocks per Instruction
I guess that means
 that there are 1012

 microphones in a
 Megaphone?

L23 – Parallel Processing 3 Comp 411 – Spring 2012 4/23/12

Driving Down the Denominator
Techniques for increasing parallelism:

 Pipelining – reasonable for a small number of stages
(5-10), after that bypassing and stalls become
 unmanageable.

 Superscalar – replicate data paths and design control
 logic to discover parallelism in traditional programs.

 Explicit parallelism – must learn how to write programs
 that run on multiple CPUs.

L23 – Parallel Processing 4 Comp 411 – Spring 2012 4/23/12

Superscalar Parallelism
-  Multiple Functional Units (ALUs, Addr units, etc)
-  Multiple instruction dispatch
-  Dynamic Pipeline Scheduling
-  Speculative execution

Reservation
 Station

Reservation
 Station

Reservation
 Station

Reserv. Stn

Popular 5-10 years ago
– but the end is near!

L23 – Parallel Processing 5 Comp 411 – Spring 2012 4/23/12

Explicit Parallelism
Three key aspects of Parallel computing:

Control, Communications, and types of processing elements

Decoding the Parallel Processor Alphabet Soup:
SIMD - Single-Instruction-Multiple-Data

 Unified control, Homogeneous processing elements
VLIW - Very-Long-Instruction-Word

 Unified control, Hetrogeneous processing elements
MIMD - Multiple-Instruction-Multiple-Data

Distributed control, Message Passing
SMP – Symmetric Multi-Processor

 Distributed control, Shared memory, Homogenous PEs

L23 – Parallel Processing 6 Comp 411 – Spring 2012 4/23/12

SIMD Processing

Each datapath has its own local data (Register File)
All data paths execute the same instruction
Conditional branching is difficult…

(What if only one CPU has R1 == $0?)
Conditional operations are more common in SIMD machines

if (flag1) Rc = Ra <op> Rb
Global ANDing or ORing of flag registers are used for

high-level control

Reg File

ALU

PC

+1 or Branch

Reg File

ALU

Reg File

ALU

Reg File

ALU

Data
Memory

Instruction
Memory

addr

addr

data

data

Addressing
Unit

Control

This sort of
construct is
also becoming
popular on
modern
uniprocessors

L23 – Parallel Processing 7 Comp 411 – Spring 2012 4/23/12

SIMD Coprocessing Units

SIMD data path added to a traditional CPU core
Register-only operands
Core CPU handles memory traffic
Partitionable Datapaths for variable-sized

 “PACKED OPERANDS”

Reg File

64-bit ALU

64

64

64

Intel “MMX”
Multimedia
Extensions

L23 – Parallel Processing 8 Comp 411 – Spring 2012 4/23/12

SIMD Coprocessing Units

SIMD data path added to a traditional CPU core
Register-only operands
Core CPU handles memory traffic
Partitionable Datapaths for variable-sized

 “PACKED OPERANDS”

Reg File

32-bit ALU

64

64

64

32-bit ALU Two
32-bit ALUs

FA
a b

s
co ci

FA
a b

s
co ci

A32 B32 A31 B31

S32 S31

... ...

Intel “MMX”
Multimedia
Extensions

L23 – Parallel Processing 9 Comp 411 – Spring 2012 4/23/12

SIMD Coprocessing Units

SIMD data path added to a traditional CPU core
Register-only operands
Core CPU manages memory traffic
Partitionable Datapaths for variable-sized

 “PACKED OPERANDS”

Reg File

16-bit ALU

64

64

64

16-bit ALU
16-bit ALU

16-bit ALU Four
16-bit ALUs

Nice data size for:
 Graphics,
 Signal Processing,
 Multimedia Apps,
 etc.

Intel “MMX”
Multimedia
Extensions

L23 – Parallel Processing 10 Comp 411 – Spring 2012 4/23/12

SIMD Coprocessing Units

SIMD data path added to a traditional CPU core
Register-only operands
Core CPU manages memory traffic
Partitionable Datapaths for variable-sized

 “PACKED OPERANDS”

Reg File
64

64

64

Eight
8-bit ALUs

8-bit ALU 8-bit ALU
8-bit ALU 8-bit ALU 8-bit ALU 8-bit ALU 8-bit ALU 8-bit ALU

MMX instructions:
 PADDB - add bytes
 PADDW - add 16-bit words
 PADDD - add 32-bit words
 (unsigned & w/saturation)
 PSUB{B,W,D} – subtract
 PMULTLW – multiply low
 PMULTHW – multiply high
 PMADDW – multiply & add
 PACK –
 UNPACK –
 PAND –
 POR -

Intel “MMX”
Multimedia
Extensions

L23 – Parallel Processing 11 Comp 411 – Spring 2012 4/23/12

VLIW Variant of SIMD Parallelism
A single-WIDE instruction controls multiple heterogeneous

 datapaths.
Exposes parallelism to compiler (S/W vs. H/W)

Register File

Integer ALU #1

Floating Point
Adder

Integer ALU #2

Floating Point
Multiplier

FP Regs
Instr. Fetch

& Branch
Prediction

Load
Store
Unit

Instr

$

Data

$

M
em

ory Interface

IOP1 RC1 RA1 RB1 IOP2 RC2 RA2 RB2 FOP FD1 FA1 FB1 FD2 FA2 FB2 MemOP

L23 – Parallel Processing 12 Comp 411 – Spring 2012 4/23/12

MIMD: Multi-CPU Architecture
•  Reaction to Superscalar Approach

–  Diminishing returns for H/W to find instruction-level parallelism
–  Improving Superscalar H/W becomes more and more complex
–  Give up, and let the S/W folks figure it out

•  Multiple CPUs (each with its own a PC/program)
•  H/W focuses on communication

–  Crossbars
(switches to share
multiple buses)

–  Meshes
(point-to-point
store-and-forward
communication)

–  Shared Caches and
memory interfaces
(further taxing a
known bottleneck)

•  S/W focuses on
partitioning of
data & algorithms

mini
MIPS

L1$

link

link
mini
MIPS

L1$

link

link
mini
MIPS

L1$

link

link
mini
MIPS

L1$

link

link

mini
MIPS

L1$

link

link
mini
MIPS

L1$

link

link
mini
MIPS

L1$

link

link
mini
MIPS

L1$

link

link

Shared
L2$

Shared
Memory
Interface

L23 – Parallel Processing 13 Comp 411 – Spring 2012 4/23/12

SMP – Symmetric Multiprocessors
All processors are identical and share a common main memory
Leverages existing CPU architectures / designs
Easy to migrate “Processes” to “Processors”
Share data and program
Communicate through

shared memory
Easy upgrades (more CPUs)
Problems:

Scalability
Synchronization

mini
MIPS

mini
MIPS

mini
MIPS

mini
MIPS

M\mini
MIPS

MIMD Example - Shared memory

$ $ $ $ $

Main Memory

L23 – Parallel Processing 14 Comp 411 – Spring 2012 4/23/12

Symmetric Multiprocessor Fantasies
If one processor is good, N processors are GREAT:

P1 P2 PN

Shared Main Memory

IDEA:

• Run N processes, each on its OWN processor!

• Processors compete for bus mastership, memory access

• Bus SERIALIZES memory operations (via arbitration for mastership)

PROBLEM:

 The Bus quickly becomes the BOTTLENECK

L23 – Parallel Processing 15 Comp 411 – Spring 2012 4/23/12

Multiprocessor with Caches
But, we’ve seen this problem before. The solution, add CACHES.

P1

$1: x = 1
 y = 2

Shared Memory, x = 1, y = 2

P2

$2: x = 1
 y = 2

Program A
x = 3;
print(y);

Program B
y = 4;
print(x);

Consider the following trivial processes running on P1 and P2:

L23 – Parallel Processing 16 Comp 411 – Spring 2012 4/23/12

What are the Possible Outcomes?

SEQUENCE A prints B prints
x=3; print(y); y=4; print(x); 2 1
x=3; y=4; print(y); print(x); 2 1
x=3; y=4; print(x); print(y); 2 1
y=4; x=3; print(x); print(y); 2 1
y=4; x=3; print(y); print(x); 2 1
y=4; print(x); x=3; print(y); 2 1

All plausible interleaved execution sequences:

Processor A
x = 3;
print(y);

Processor B
y = 4;
print(x);

$A: x = 1
 y = 2

$B: x = 1
 y = 2

Simulation of two processors, each with a write-back cache

Modifications
 made by one
 CPU aren’t seen
 by the others
 until the
 corresponding
 cache line is
 replaced.

L23 – Parallel Processing 17 Comp 411 – Spring 2012 4/23/12

Compare to Uniprocessor Outcome
But, what are the possible outcomes if we ran Process A and Process B

 on our single “timed-shared” processor from last lecture?

SEQUENCE A prints B prints
x=3; print(y); y=4; print(x); 2 3
x=3; y=4; print(y); print(x); 4 3
x=3; y=4; print(x); print(y); 4 3
y=4; x=3; print(x); print(y); 4 3
y=4; x=3; print(y); print(x); 4 3
y=4; print(x); x=3; print(y); 4 1

Plausible Uniprocessor execution sequences:

“Process” A
x = 3;
print(y);

“Process” B
y = 4;
print(x);

Notice that the
 2 processor
 outcome “2, 1”
 does not even
 appear in our
 list!

L23 – Parallel Processing 18 Comp 411 – Spring 2012 4/23/12

Parallel Sequential Consistency
Semantic constraint:

Result of executing N parallel programs should correspond to some
 interleaved execution on a single processor.

Possible printed values: 2, 3; 4, 3; 4, 1.
(each corresponds to at least one interleaved execution)

IMPOSSIBLE printed values: 2, 1
(corresponds to NO valid interleaved execution).

Process A
x = 3;
print(y);

Process B
y = 4;
print(x);

Shared Memory
int x=1, y=2;

Weren’t
 caches
 supposed
 to be
 invisible to
 programs?

L23 – Parallel Processing 19 Comp 411 – Spring 2012 4/23/12

Cache Incoherence

PROBLEM: “stale” values in cache ...

Process B
y = 4;
print(x);

Process A
x = 3;
print(y);

Q: How does B know that A has changed the value of x?

P1

$1: x=3
 y=2

Shared Memory

P2

$2: x=1
 y=4

 x=3, y=4

Does
WRITE-THRU

help?
_______! NO

 The problem is
 not that
 memory has
 stale values,
 but that other
 caches may!

L23 – Parallel Processing 20 Comp 411 – Spring 2012 4/23/12

Cache Coherence Solutions

Problem: A writes data into shared memory;
 B still sees “stale” cached value.

Solutions:
 1. Don’t cache shared Read/Write pages.
 COST: Longer access time to shared memory.

 2. Attach cache to shared memory, not to processors...
 ... share the cache as well as the memory!

 COSTS: 1. ___________________

 2. ___________________

 3. Make caches talk to each other, maintain a consistent story.

Shared Memory

P1 P2

$

Adds Bus Contention
Reduces Locality

L23 – Parallel Processing 21 Comp 411 – Spring 2012 4/23/12

“Snoopy” Caches

P1

$1: x=1
 y=2

Shared Memory

P2

$2: x=1
 y=2

 x=1, y=2

IDEA:

• P1 writes 3 into x; write-thru cache causes bus transaction.

• P2, snooping, sees transaction on bus and either INVALIDATES or
 UPDATES its cached copy of x.

MUST WE use a write-thru strategy? (slows down everyone on writes)

Presume
WRITE-THRU

caches!

L23 – Parallel Processing 22 Comp 411 – Spring 2012 4/23/12

Coherency w/ Write Back
P1

Shared Memory

P2

 x=1, y=2

S addr data

IDEA:
• Various caches can have

• Multiple SHARED read-only copies; OR
• One UNSHARED exclusive-access read-write copy.

• Keep STATE of each cache line in extra “tag-like” bits (i.e. Valid, Dirty)
• Add bus protocols -- “messages” -- to allow caches to maintain

 consistent state

S addr data

L23 – Parallel Processing 23 Comp 411 – Spring 2012 4/23/12

Coherent Cache States
Two-bit STATE in cache line encodes one of M, E, S, I states (“MESI” cache):

INVALID: cache line unused.

SHARED ACCESS: read-only, valid, not dirty. Shared with other read
-only copies elsewhere. Must invalidate other copies before writing.

EXCLUSIVE: exclusive copy, not dirty. On write becomes modified.

MODIFIED: exclusive access; read-write, valid, dirty. Must be written
 back to memory eventually; meanwhile, can be written or read by local
 processor.

4-state
FSM for

 each
cache line!

(FREE!!: Can redefine
 VALID and DIRTY

 bits)

L23 – Parallel Processing 24 Comp 411 – Spring 2012 4/23/12

MESI Examples

External Snoop READ hits cache line in Modified
 state:

• Write back cache line
• Change to Shared state

Local WRITE request hits cache line in Shared state:
• Send INVALIDATE message forcing other caches to I states
• Change to Modified state, proceed with write.

P1

$1:
 S/0xc411/1

P2

$2:
 S/0xc411/1 M

P1

$1:
 M/0xc411/3

P2

$2:
 I/0xc411/1

I

Mem[0xc411] = 3

Print(Mem[0xc411])

S 3 S

L23 – Parallel Processing 25 Comp 411 – Spring 2012 4/23/12

Sequential Inconsistency

Plausible sequence of events:
• A writes 3 into x, sends INVALIDATE message.
• B writes 4 into y, sends INVALIDATE message.
• A reads 2 from y, prints it...
• B reads 1 from y, prints it...
• A, B each receive respective INVALIDATE messages.

FIX: Wait for INVALIDATE messages to be acknowledged before proceeding
 with a subsequent reads.

COST: Loss of performance (writes stall reads)…
must provide for fast invalidates

Process A
x = 3;
print(y);

Process B
y = 4;
print(x);

Shared Memory
int x=1, y=2;

L23 – Parallel Processing 26 Comp 411 – Spring 2012 4/23/12

Who Needs Parallel Sequential
Consistency, Anyway?

ALTERNATIVE MEMORY SEMANTICS:
 “WEAK” consistency

EASIER GOAL: Memory operations from each processor appear to be
 performed in order issued by that processor;

Memory operations from different processors may overlap in arbitrary
 ways (not necessarily consistent with any interleaving).

COMMON APPROACH:
• Weak consistency, by default;

• MEMORY BARRIER instructions: stalls processor until all previous
 memory operations have completed.

L23 – Parallel Processing 27 Comp 411 – Spring 2012 4/23/12

“Dusty Deck” Problem
How do we make our old sequential programs run on parallel

 machines? After all, what’s easier, designing new H/W or
 rewriting all our S/W?

Programs have inertia. Familiar languages, S/W engineering
 practice reinforce “Sequential Programming Semantics”

By treating PROCESSES or THREADS as a programming
 constructs… and by assigning each process to a
 separate processor… we can take advantage of some
 parallelism.

L23 – Parallel Processing 28 Comp 411 – Spring 2012 4/23/12

Programming the Beast

Comp 411 (circa 2012):

int factorial(int n) {
 if (n > 0)
 return n*fact(n-1);
 else
 return 1;
}

Calls factorial() only n times

Runs in O(N) time

After camping out in the rain Saturday
 night to get Obama tickets, then

 staying up all Sunday night to finish his
 last 411 problem set, Lee Hart fell into a

 deep sleep only to reawake 10 years
 later… Comp 411 (circa 2022):

int factorial(int n) {
 return facthelp(1, n);
}

parallel int facthelp(int from, int to) {
 int mid;
 if (from >= to) return from;
 mid = (from + to)/2;
 return (facthelp(from,mid)*facthelp(mid+1,to));
}

 {1, 2, 3, 4, 5, 6, 7, 8}

Calls facthelp() 2n – 1 times
 (nodes in a binary tree with n leafs).
Runs in O(log2(N)) time
 (on N processors)

L23 – Parallel Processing 29 Comp 411 – Spring 2012 4/23/12

Parallel Processing Summary
Prospects for future CPU architectures:

 Pipelining - Well understood, but mined-out
Superscalar - Nearing its practical limits
SIMD - Limited use for special applications
VLIW - Returns controls to S/W. The future?

Prospects for future Computer System architectures:
SMP - Limited scalability. Harder than it appears.
MIMD/message-passing - It’s been the future for
 over 20 years now. How to program?

WHAT ABOUT THE FUTURE?
 New BOUNDARIES, New PROBLEMs

