Binary Multipliers

The key trick of multiplication is memorizing a digit-to-digit table... Everything else was just adding

×	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	10	12	14	16	18
3	0	3	6	9	12	15	18	21	24	27
4	0	4	8	12	16	20	24	28	32	36
5	0	5	10	15	20	25	30	35	40	45
6	0	6	12	18	24	30	36	42	48	54
7	0	7	14	21	28	35	42	49	56	63
8	0	8	16	24	32	40	48	56	64	72
9	0	9	18	27	36	45	54	63	72	81

You've got to be kidding... It can't be that easy

Reading: Study Chapter 3.

Have We Forgotten Something?

Our ALU can add, subtract, shift, and perform Boolean functions. But, even rabbits know how to multiply...

But, it is a huge step in terms of logic... Including a multiplier unit in an ALU doubles the number of gates used.

A good (compact and high performance) multiplier can also be tricky to design. Here we will give an overview of some of the tricks used.

Binary Multiplication

Multiplying N-digit number by M-digit number gives (N+M)-digit result

Easy part: forming partial products (just an AND gate since B₁ is either O or 1) Hard part: adding M, N-bit partial products

Sequential Multiplier

Assume the multiplicand (A) has N bits and the multiplier (B) has M bits. If we only want to invest in a single N-bit adder, we can build a sequential circuit that processes a single partial product at a time and then cycle the circuit M times:

Init: P←O, load A&B

```
Repeat M times {

P \leftarrow P + (B_{LSB} = = 1?A:O)

shift P/B right one bit

}
```

Done: (N+M)-bit result in P/B

Simple Combinational Multiplier

Carry-Save Combinational Multiplier

Higher-Radix Multiplication

Idea: If we could use, say, 2 bits of the multiplier in generating each partial product we would halve the number of columns and halve the latency of the multiplier!

Booth Recoding

current bit p	pair	•	t	rom previous bit	<mark>; pair</mark> Each bit can be
	B _{2K+1}	B _{2K}	В _{2К-1}	action	considered to have the followina
-89 =10100111.0	0	0	0	add O	weights:
$= -1 * 2^{0}$ (-1)	0	0	1	add A	W(B) = 2
$+2^{*}2^{2}$ (8)	0	1	0	add A	$VV(D_{2K+1}) = -2$
$(-2) * 2^4 (-32)$	0	1	1	add 2*A	$W(B_{2K}) = 1$
+(2) 2 (02)	1	0	0	sub 2*A	$W(B_{2K-1}) = 1$
+(-1) 2° (-04)	1	0	1	sub A	← -2*A+A
.2 -89 Hey, isn't	1	1	0	sub A	
that a R	1	1	1	add O	← -A+A
number?			1		
A "1'	' in this	bit me	eans the	e previous stage	needed

A "1" in this bit means the previous stage needed to add 4*A. Since this stage is shifted by 2 bits with respect to the previous stage, adding 4*A in the previous stage is like adding A in this stage!

Booth Recoding

Logic surrounding each basic adder:

- Control lines (x2, Sub, Zero) are shared across each row
- Must handle the "+1" when Sub is 1 (extra half adders in a carry save array)

NOTE:

- Booth recoding can be used to implement signed multiplications

Bigger Multipliers

- Using the approaches described we can construct multipliers of arbitrary sizes, by considering every adder at the "bit" level
- We can also, build bigger multipliers using smaller ones

 Considering this problem at a higher-level leads to more "non-obvious" optimizations

Can We Multiply With Less?

- How many operations are needed to multiply 2, 2-digit numbers?
- 4 multipliers 4 Adders
- This technique generalizes
 - You can build an 8-bit multiplier using
 4 4-bit multipliers and 4 8-bit adders
 - $O(N^2 + N) = O(N^2)$

An $O(N^2)$ Multiplier In Logic

The functional blocks would look like

A Trick

- The two middle partial products can be computed using a single multiplier and other partial products
- DA + CB = (C + D)(A + B) (CA + DB)• 3 multipliers 8 adders A B X CE
- This can be applied recursively (i.e. applied within each partial product)
- Leads to O(N^{1.58}) adders
- This trick is becoming more popular as N grows. However, it is less regular, and the overhead of the extra adders is high for small N

	AΒ
<u>X</u>	CD
	DB
	DA
	СВ
C	A

Let's Try it By Hand

1) Choose 2, 2 digit numbers to multiply ab × cd

42 x 37 2) Multiply $p_1 = a \times c$, $p_2 = b \times d$, $p_3 = (c + d)(a + b)$ $p_1 = 4 \times 3 = 12$, $p_2 = 2 \times 7 = 14$, $p_3 = (4+2)(3+7) = 60$ 3) Find partial subtracted sum, $SS = p_3 - (p_1 + p_2)$ 55 = 60 - (12 + 14) = 34

42 x 37 = ?

An $O(N^{1.58})$ Multiplier In Logic

The functional blocks would look like

Binary Division

- Division merely reverses the process
 - Rather than adding successively larger partial products, subtract successively smaller divisors
 - When multiplying, we knew which partial products to actually add (based on the whether the corresponding bit was a O or a 1)
 - In division, we have to try *both ways*

Restoring Division

Division Example

Division Example (cont)

Next Time

• We dive into floating point arithmetic

