Transistors and Logic

1) The digital contract
2) Encoding bits with voltages
3) Processing bits with transistors
4) Gates
5) Large fanout gates
6) Truth-table SOP Realizations
7) Multiplexer Logic

Where Are We?

Things we know so far -

1) Computers process information
2) Information is measured in bits

3) Data can be represented as groups of bits
4) Computer instructions are encoded as bits
5) Computer instructions are just data
6) We, humans, don't want to deal with bits... So we invent ASSEMBLY Language even that is too low-level so we invent COMPILERs, and they are too rigid so ...

But, what PROCESSES all these bits?

A Substrate for Computation

We can build devices for processing and representing bits using almost any physical phenomenon

Wait! Those last ones might have potential...
 trained elephants -engraved stone tablets -orbits of planets -sequences of amino acids polarization of a photon

Using Electromagnetic Phenomena

Things like:
voltages
currents
phase
frequency

For today let's discuss using voltages to encode information.
Voltage pros:
easy generation, detection voltage changes can be very fast lots of engineering knowledge
Voltage cons:
easily affected by environment
DC connectivity required?
R \& C effects slow things down

Representing Information with Voltage

Representation of each point (x, y) on a B\&W Picture:

O volts:	BLACK
1 volt:	WHITE
0.37 volts:	37% Gray
etc.	

Representation of a picture:
Scan points in some prescribed raster order... generate voltage
 waveform

How much information at each point?

Information Processing = Computation

First, let's introduce some processing blocks:

Let's build a system!

(Reality)

output

Why Did Our System Fail?

Why doesn't reality match theory?

1. COPY Operator doesn't work right
2. INVERSION Operator doesn't work right
3. Theory is imperfect
4. Reality is imperfect
5. Our system architecture stinks

ANSWER: all of the above!

Noise and inaccuracy are inevitable; we can't reliably reproduce infinite information-- we must design our system to tolerate some amount of error if it is to process information reliably.

The Key to System Design

A SYSTEM is a structure that is guaranteed to exhibit a specified behavior, assuming all of its components obey their specified behaviors.

How is this achieved?Contracts
Every system component will have clear obligations and responsibilities. If these are maintained we have every right to expect the system to behave as planned. If contracts are violated all bets are off.

The Digital Panacea

Why DIGITAL?

... because it keeps the contracts SIMPLE!

The price we pay for this robustness?

All the information that we transfer between components is only 1 crummy bit!

But, in exchange, we get a guarantee of a reliable system.

The Digital Abstraction

Keep in mind, the world is not digital, we engineer it to behave that way. We must use real physical phenomena to implement digital designs!

A Digital Processing Element

A Combinational Digital System

- A system of interconnected elements is
 combinational if
- each circuit element is combinational
- every input is connected to exactly one output or directly to a source of O's or 1's
- the circuit contains no directed cycles

No feedback (yet!)

- But, in order to realize digital processing elements we have one more requirement!

Noise Margins

- Key idea:

Don't allow " 0 " to be mistaken for a " 1 " or vice versa

- Use the same "uniform representation convention", for every component in our digital system
- To implement devices with high reliability, we outlaw "close calls" via a representation convention which । forbids a range of voltages between " 0 " and " 1 ".,

CONSEQUENCE:
Notion of "VALID" and "INVALID" logic levels

Digital Processing Elements

Some digital processing elements occur so frequently that we give them special names and symbols

A $-\begin{gathered}\text { I will only output a } \\ \text { '1 if an odd number } \\ \text { of my inputs are ' } 1\end{gathered}$

Digital Processing Elements

Some digital processing elements occur so frequently that we give them special names and symbols

In honor of the richest man in the world we will henceforth refer to digital processing elements as "GATES"

From What Do We Make Digital Devices?

- Recall the common thread between all digital systems mentioned in Lecture 3...
- A controllable switch is the common link of all computing technologies
- How do you control voltages with a switch?
- By creating and opening paths between higher and lower potentials

N-Channel Field-Effect Transistors (NFETs)

Operating regions:

When the gate voltage is high, the switch closes. Good at pulling things "low".

P-Channel Field-Effect Transistors (PFETs)

Operating regions:

Finally... Using Transistors to Build Logic Gates!

CMOS Inverter

Complementary Pullups and Pulldowns

This is what the "C" in CMOS stands for!
We design components with complementary pullup and pulldown logic (i.e., the pulldown should be "on" when the pullup is "off" and vice versa).

pullup	pulldown	$F\left(A_{1}, \ldots, A n\right)$
on	off	driven " ""
off	on	driven " 0 "
on	on	driven " x "
off	off	no connection

Since there's plenty of capacitance on output nodes, so when the output becomes disconnected it tends to "remember" its previous voltage- at least for a while. The "memory" is the load capacitor's charge. Leakage currents will cause eventual decay of the charge (that's why DRAMs need to be refreshed!).

What a nice

Thanks. It runs in the family...

CMOS Complements

conducts when A is high

conducts when A is high or B is high: $A+B$
conducts when A is low and B is low: $\bar{A} \cdot \bar{B}=\overline{A+B}$

A Two Input Logic Gate

What function does
this gate compute?

Here's Another...

What function does
this gate compute?

General CMOS Gate Recipe

Step 1. Figure out pulldown network that does what you want (i.e the set of conditions where the output is ' 0 ')

$$
\text { e.g., } F=\overline{A^{*}(B+C)}
$$

Step 2. Walk the hierarchy replacing nfets with pfets, series subnets with parallel subnets, and parallel subnets with series subnets

Step 3. Combine pfet pullup network from Step 2 with nfet pulldown network from Step 1 to form fully -complementary CMOS gate.

But isn't it
 hard to wire it all up?

One Last Exercise

Lets construct a gate to compute:

$$
F=\overline{A+B C}=\operatorname{NOT}(O R(A, A N D(B, C)))
$$

Step 1: The pull-down network Step 2: The complementary pull-up network

One Last Exercise

Lets construct a gate to compute:

$$
F=\overline{A+B C}=\operatorname{NOT}(O R(A, A N D(B, C)))
$$

A	B	C	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Step 1: The pull-down network Step 2: The complementary pull-up B network
Step 3: Combine and Verify

OBSERVATION: CMOS gates tend

to be inverting! Precisely, one or more " O " inputs are necessary to
 generate a "1" output, and one or more " 1 " inputs are necessary to generate a " O " output. Why?

Now We're Ready to Design Stuff!

We need to start somewhere -- usually it's the functional
specification

If you are like most engineers you'd rather see a table, or formula than parse a logic puzzle. The fact is, any combinational function can be expressed as a table.

These "truth tables" are a concise description of the combinational system's function. Conversely, any computation performed by a combinational system can expressed as a truth table.

Argh... I'm tired of word games

Truth Table

C	B	A	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Where Do We Start?

We have a bag of gates.

We need

We want to
build a computer. What do we do?
Did I mention we have gates?
... a systematic approach for designing logic

A Slight Diversion

Are we sure we have all the gates we need?

How many two-input gates are there?
$A N D$
$A B$
A
00
0

Hum... all of these have 2 -inputs (no surprise)
... 2 inputs have 4 permutations, giving 2^{2} output cases How many permutations of 4 outputs are there? 2^{4}

Generalizing, there are $2^{2^{N}}, \mathrm{~N}$-input gates!

There Are Only So Many Gates

How many of these gates can be implemented using a single CMOS gate?
... some we know already, others are just silly

There are only 16 possible 2 -input gates

Do we need all of these gates?
Nope. After all, we describe them all using AND, OR, and NOT.

We Can Make Most Gates Out of Others

$B>A$		XOR	
$A B$	Y	AB	Y
00	0	00	0
01	1	01	1
10	0	10	1
11	0	11	0

How many different gates do we really need?

One Will Do!

NANDs and NORs are universal

Ah!, but what if we want more than 2-inputs

Stupid Gate Tricks

Suppose we have some 2 -input XOR gates:

And we want an N -input XOR:

A	B	C
0	0	0
0	1	1
1	0	1
1	1	0

output $=1$ iff number of 1 s input is ODD ("PARITY")

$$
t_{p d}=O(\underline{N})-- \text { WORST CASE. }
$$

Can we compute N -input XOR faster?

I Think That I Shall Never See a Gate Lovely as a ...

N-input TREE has $O(\underline{\log N})$ levels...
Signal propagation takes $O(\underline{\log N})$ gate delays.
Question: Can EVERY N-Input Boolean function be implemented as a tree of 2 -input gates?

Here's a Design Approach

Truth Table

C	B	A	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

-it's systematic!
-it works!
-it's easy!
-we get to go home!

1) Write out our functional spec as a truth table
2) Write down a Boolean expression for every ' 1 ' in the output
$Y=\overline{C B} A+\bar{C} B A+C B \bar{A}+C B A$
3) Wire up the gates, call it a day, and go home!

This approach will always give us logic expressions in a particular form: SUM-OF-PRODUCTS

Straightforward Synthesis

We can implement
SUM-OF-PRODUCTS with just three levels of logic.

INVERTERS/ANDIOR

Useful Gate Structures

More Useful Gate Structures

AOI (AND-OR-INVERT)

OAI (OR-AND-INVERT) equivalent is usually easier to think about.

AOI and OA structures can be realized using a single CMOS gate. However, their function is equivalent to 3 levels of logic.

An Interesting 3-Input Gate

Based on C, select the A or B input to be copied to the output Y.

2-input Multiplexer

Truth Table

C	B	A	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

MUX Shortcuts

A 4-bit wide Mux

s

Mux Logic Synthesis

Consider implementation of some arbitrary Boolean function, $F(A, B)$

Full-Adder
Carry Out Logic
... using a MULTIPLEXER as the only circuit element:

Small Improvements

We can also apply certain optimizations to MUX Logic

