
L08 – Transistors and Logic 1 Comp 411 – Spring 2012 2/13/12

Transistors and Logic

A

B

1)  The digital contract
2)  Encoding bits with voltages
3)  Processing bits with transistors
4)  Gates
5)  Large fanout gates
6)  Truth-table SOP Realizations
7)  Multiplexer Logic

L08 – Transistors and Logic 2 Comp 411 – Spring 2012 2/13/12

Where Are We?
Things we know so far -

 1) Computers process information
 2) Information is measured in bits
 3) Data can be represented as groups of bits
 4) Computer instructions are encoded as bits
 5) Computer instructions are just data

 6) We, humans, don’t want to deal with bits…
 So we invent ASSEMBLY Language
 even that is too low-level so we invent
 COMPILERs, and they are too rigid so …

But, what PROCESSES all these bits?

L08 – Transistors and Logic 3 Comp 411 – Spring 2012 2/13/12

A Substrate for Computation
We can build devices for processing and representing bits

 using almost any physical phenomenon
neutrino flux
trained elephants
engraved stone tablets
orbits of planets
sequences of amino acids
polarization of a photon

Wait! Those last ones
might have potential...

1 0 1 0 0

1 1 0 1 0
0 1

L08 – Transistors and Logic 4 Comp 411 – Spring 2012 2/13/12

Using Electromagnetic Phenomena

Things like:
 voltages phase
 currents frequency

For today let’s discuss using voltages to encode information.
 Voltage pros:

 easy generation, detection
 voltage changes can be very fast
 lots of engineering knowledge

 Voltage cons:
 easily affected by environment
 DC connectivity required?
 R & C effects slow things down

L08 – Transistors and Logic 5 Comp 411 – Spring 2012 2/13/12

Representing Information with Voltage

Representation of each point (x, y) on a B&W Picture:

 0 volts: BLACK
 1 volt: WHITE
 0.37 volts: 37% Gray
 etc.

Representation of a picture:
 Scan points in some prescribed
 raster order… generate voltage
 waveform

How much information
at each point?

L08 – Transistors and Logic 6 Comp 411 – Spring 2012 2/13/12

Information Processing = Computation

First, let’s introduce some processing blocks:

v Copy v

INV v 1-v

L08 – Transistors and Logic 7 Comp 411 – Spring 2012 2/13/12

Let’s build a system!

?

Copy INV

Copy INV

Copy INV

Copy INV

output

(In Theory) (Reality)
input

L08 – Transistors and Logic 8 Comp 411 – Spring 2012 2/13/12

Why Did Our System Fail?
Why doesn’t reality match theory?

1. COPY Operator doesn’t work right
2. INVERSION Operator doesn’t work right
3. Theory is imperfect
4. Reality is imperfect

5. Our system architecture stinks

ANSWER: all of the above!
 Noise and inaccuracy are inevitable; we can’t reliably
 reproduce infinite information-- we must design our
 system to tolerate some amount of error if it is to
 process information reliably.

L08 – Transistors and Logic 9 Comp 411 – Spring 2012 2/13/12

The Key to System Design
A SYSTEM is a structure that is guaranteed to exhibit a

 specified behavior, assuming all of its components obey
 their specified behaviors.

How is this achieved? Contracts
Every system component will have clear obligations and
responsibilities. If these are maintained we have every
right to expect the system to behave as planned. If
contracts are violated all bets are off.

L08 – Transistors and Logic 10 Comp 411 – Spring 2012 2/13/12

The Digital Panacea ...
Why DIGITAL?

 … because it keeps the contracts SIMPLE!

The price we pay for this robustness?

 All the information that we transfer
 between components is only 1 crummy bit!

But, in exchange, we get a guarantee
 of a reliable system.

0 or 1

L08 – Transistors and Logic 11 Comp 411 – Spring 2012 2/13/12

The Digital Abstraction

Real World

“Ideal”
Abstract World

Volts or
Electrons or
Ergs or Gallons

Bits

0/1

Keep in mind, the world is not digital, we engineer it to behave that way.
We must use real physical phenomena to implement digital designs!

Noise
Manufacturing

Variations

L08 – Transistors and Logic 12 Comp 411 – Spring 2012 2/13/12

A Digital Processing Element
•  A combinational device is a circuit element that has

–  one or more digital inputs
–  one or more digital outputs
–  a functional specification that details the value of each

 output for every possible combination of valid input
 values

–  a timing specification consisting (at minimum) of an
 upper bound tpd on the required time for the device to
 compute the specified output values from an arbitrary
 set of stable, valid input values

Static
Discipline

Output a “1” if at
least 2 out of 3 of
my inputs are a “1”.

Otherwise, output “0”.
I will generate a valid
output in no more than

2 minutes after
seeing valid inputs

input A
input B
input C

output Y

L08 – Transistors and Logic 13 Comp 411 – Spring 2012 2/13/12

A Combinational Digital System
•  A system of interconnected elements is

 combinational if
–  each circuit element is combinational
–  every input is connected to exactly one output

or directly to a source of 0’s or 1’s
–  the circuit contains no directed cycles

•  But, in order to realize digital processing
elements we have one more requirement!

No feedback (yet!)

L08 – Transistors and Logic 14 Comp 411 – Spring 2012 2/13/12

Noise Margins
  Key idea:

Don’t allow “0” to be mistaken for a “1” or vice versa
  Use the same “uniform representation convention”, for

 every component in our digital system
  To implement devices with high reliability, we outlaw

 “close calls” via a representation convention which
 forbids a range of voltages between “0” and “1”.

volts
Forbidden Zone

Valid
“0”

Valid
“1”

Invalid

CONSEQUENCE:
 Notion of “VALID” and “INVALID” logic levels

Min Voltage Max Voltage

L08 – Transistors and Logic 15 Comp 411 – Spring 2012 2/13/12

AND

Digital Processing Elements
Some digital processing elements occur so frequently

 that we give them special names and symbols

A Y

I will only output
a ‘1’ if all my
inputs are ‘1’

A

B
Y OR

I will output a
‘1’ if any of my
inputs are ‘1’

A
B

Y

A Y

A
B

Y XOR
I will only output a
‘1’ if an odd number
of my inputs are ‘1’

buffer inverter
I will output the
complement of

my input

I will copy and
restore my input

to my output

L08 – Transistors and Logic 16 Comp 411 – Spring 2012 2/13/12

AND

Digital Processing Elements
Some digital processing elements occur so frequently

 that we give them special names and symbols

A Y

A

B
Y OR A

B
Y

A Y

A
B

Y XOR

buffer inverter

In honor of the richest
man in the world we will
henceforth refer to
digital processing
elements as “GATES”

L08 – Transistors and Logic 17 Comp 411 – Spring 2012 2/13/12

From What Do We Make Digital Devices?

•  Recall the common thread
 between all digital systems
 mentioned in Lecture 3…

•  A controllable switch is the
common link of all computing
technologies

•  How do you control voltages
with a switch?

•  By creating and opening
paths between higher and
lower potentials

Load

This symbol
 indicates a
 “low” or
 ground
 potential

This symbol
 indicates a “high”
 potential, or the
 voltage of the
 power supply

L08 – Transistors and Logic 18 Comp 411 – Spring 2012 2/13/12

N-Channel Field-Effect Transistors (NFETs)

D

G

S

D

G

S

+

+

- -
VGS

VDS ≥ 0

Operating regions:

 cut-off:
 VGS < VTH

 linear:
 VGS ≥ VTH
 VDS < VDsat

 saturation:
 VGS ≥ VTH
 VDS ≥ VDsat

S D

VGS - VTH

0.8V

S D

S D “ “

IDS

VDS

VGS

linear saturation

When the gate
 voltage is high,
 the switch
 closes. Good
 at pulling
 things “low”.

L08 – Transistors and Logic 19 Comp 411 – Spring 2012 2/13/12

P-Channel Field-Effect Transistors (PFETs)

D

G

S

D

G

S

+

-

- +
VGS

VDS ≤ 0

Operating regions:

 cut-off:
 VGS > VTH

 linear:
 VGS ≤ VTH
 VDS > VDsat

 saturation:
 VGS ≤ VTH
 VDS ≤ VDsat

S D

VGS - VTH

–0.8V

S D

S D “ “

-IDS

-VDS

-VGS

linear saturation

When the gate
 voltage is low,
 the switch
 closes. Good
 at pulling
 things “high”.

L08 – Transistors and Logic 20 Comp 411 – Spring 2012 2/13/12

Finally… Using Transistors to
 Build Logic Gates!

VDD

VIN VOUT

pullup: make this connection
when VIN is near 0 so that VOUT = VDD

Logic Gate recipe:

pulldown: make this connection
when VIN is near VDD so that VOUT = 0

We’ll use
PFETs here

and, NFETs
here

L08 – Transistors and Logic 21 Comp 411 – Spring 2012 2/13/12

CMOS Inverter

Vin Vout

Vin

Vout

A Y
inverter

only a narrow range
of input voltages
 result in “invalid”
 output values.
(this diagram is
 greatly
 exaggerated)

Valid “1”

Valid “0”

Invalid

“1” “0”

“0” “1”

L08 – Transistors and Logic 22 Comp 411 – Spring 2012 2/13/12

Complementary Pullups and Pulldowns

We design components with complementary pullup and
 pulldown logic (i.e., the pulldown should be “on” when the
 pullup is “off” and vice versa).

pullup pulldown F(A1,…,An)
on off driven “1”
off on driven “0”
on on driven “X”
off off no connection

This is what the “C”
in CMOS stands for!

Since there’s plenty of capacitance on output nodes, so when the
 output becomes disconnected it tends to “remember” its previous
 voltage– at least for a while. The “memory” is the load capacitor’s
 charge. Leakage currents will cause eventual decay of the charge
 (that’s why DRAMs need to be refreshed!).

L08 – Transistors and Logic 23 Comp 411 – Spring 2012 2/13/12

CMOS Complements
What a nice
VOH you have...

Thanks. It runs
in the family...

conducts when A is high conducts when A is low

conducts when A is high
and B is high: A.B

A

B
A B

conducts when A is low
or B is low: A+B = A.B

conducts when A is high
or B is high: A+B

A

B
A B

conducts when A is low
and B is low: A.B = A+B

A A

Series N connections:

Parallel N connections:

Parallel P connections:

Series P connections:

L08 – Transistors and Logic 24 Comp 411 – Spring 2012 2/13/12

A Two Input Logic Gate

A

B

What function does
this gate compute?

A B C

0 0
0 1
1 0
1 1

L08 – Transistors and Logic 25 Comp 411 – Spring 2012 2/13/12

Here’s Another…

What function does
this gate compute?

A B C

0 0
0 1
1 0
1 1

A

B

L08 – Transistors and Logic 26 Comp 411 – Spring 2012 2/13/12

General CMOS Gate Recipe

Step 1. Figure out pulldown network that
 does what you want (i.e the set of
 conditions where the output is ‘0’)
 e.g., F = A*(B+C)

A

B C

Step 2. Walk the hierarchy replacing nfets
 with pfets, series subnets with parallel
 subnets, and parallel subnets with series
 subnets

A
B

C

Step 3. Combine pfet pullup network
 from Step 2 with nfet pulldown
network from Step 1 to form fully
-complementary CMOS gate.

But isn’t it
hard to wire
it all up?

A
B

C

A

B C

L08 – Transistors and Logic 27 Comp 411 – Spring 2012 2/13/12

One Last Exercise

Lets construct a gate to compute:
 F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network

F
A B

C

Step 2: The complementary pull-up
 network

Vdd A

B C

L08 – Transistors and Logic 28 Comp 411 – Spring 2012 2/13/12

One Last Exercise

Lets construct a gate to compute:
 F = A+BC = NOT(OR(A,AND(B,C)))

Step 1: The pull-down network

F
A B

C

Step 2: The complementary pull-up
 network

Vdd A

B C

Step 3: Combine and Verify

A B C F

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

OBSERVATION: CMOS gates tend
 to be inverting! Precisely, one or
 more “0” inputs are necessary to
 generate a “1” output, and one or
 more “1” inputs are necessary to
 generate a “0” output. Why?

1
1
1
0
0
0
0
0

L08 – Transistors and Logic 29 Comp 411 – Spring 2012 2/13/12

Now We’re Ready to Design Stuff!
We need to start somewhere -- usually it’s the functional

 specification

A
B Y If C is 1 then

copy B to Y,
otherwise copy

A to Y C

If you are like most engineers you’d rather
 see a table, or formula than parse a logic
 puzzle. The fact is, any combinational
 function can be expressed as a table.

These “truth tables” are a concise
 description of the combinational system’s
 function. Conversely, any computation
 performed by a combinational system can
 expressed as a truth table.

Argh… I’m tired of word games

Truth Table

L08 – Transistors and Logic 30 Comp 411 – Spring 2012 2/13/12

Where Do We Start?
We have a bag of gates.

 We want to
 build a computer.
 What do we do?
 Did I mention we

 have gates?

We need
… a systematic approach for designing logic

A

B

Logic
 Gates

L08 – Transistors and Logic 31 Comp 411 – Spring 2012 2/13/12

A Slight Diversion
Are we sure we have all the gates we need?

 How many two-input gates are there?

Hum… all of these have 2-inputs (no surprise)
 … 2 inputs have 4 permutations, giving 22 output cases

How many permutations of 4 outputs are there? ___

AND OR NAND NOR

SU
RG

E

24

Generalizing, there are 2 , N-input gates!
2N

L08 – Transistors and Logic 32 Comp 411 – Spring 2012 2/13/12

There Are Only So Many Gates

There are only 16 possible 2-input gates
 … some we know already, others are just silly

Do we need all of these gates?
Nope. After all, we describe them all using AND, OR, and NOT.

How many of
 these gates
 can be
 implemented
 using a single
 CMOS gate?

L08 – Transistors and Logic 33 Comp 411 – Spring 2012 2/13/12

We Can Make Most Gates Out of Others

How many different gates do we really need?

B>A

A
B

y

XOR
A
B

Y

A
B Y

L08 – Transistors and Logic 34 Comp 411 – Spring 2012 2/13/12

One Will Do!
NANDs and NORs are universal

Ah!, but what if we want more than 2-inputs

=

=

=

=

=

=

L08 – Transistors and Logic 35 Comp 411 – Spring 2012 2/13/12

Stupid Gate Tricks

Suppose we have some 2-input XOR gates:

And we want an N-input XOR:

A
0
0
1
1

B
0
1
0
1

C
0
1
1
0

tpd = 1

tpd = O(___) -- WORST CASE.

 output = 1
 iff number of 1s
 input is ODD
 (“PARITY”)

Can we compute N-input XOR faster?

N

L08 – Transistors and Logic 36 Comp 411 – Spring 2012 2/13/12

I Think That I Shall Never See
a Gate Lovely as a ...

N-input TREE has O(______) levels...

Signal propagation takes O(_______) gate delays.

Question: Can EVERY N-Input Boolean function be
 implemented as a tree of 2-input gates?

log N
log N

21 22 2 log2N

L08 – Transistors and Logic 37 Comp 411 – Spring 2012 2/13/12

Here’s a Design Approach
1) Write out our functional spec as a

 truth table
2) Write down a Boolean expression for

 every ‘1’ in the output

3) Wire up the gates, call it a day, and
 go home!

 This approach will always give us logic
 expressions in a particular form:
 SUM-OF-PRODUCTS

Truth Table

-it’s systematic!
-it works!
-it’s easy!
-we get to go home!

€

Y = C B A +C BA +CBA +CBA

L08 – Transistors and Logic 38 Comp 411 – Spring 2012 2/13/12

Straightforward Synthesis
We can implement

 SUM-OF-PRODUCTS
with just three levels of
logic.

INVERTERS/AND/OR

A
B
C
A
B
C
A
B
C
A
B
C

Y

L08 – Transistors and Logic 39 Comp 411 – Spring 2012 2/13/12

AB=A+B

Useful Gate Structures
NAND-NAND

NOR-NOR

C

A

B
Y

C

A

B
Y

≡
C

A

B
Y

€

xyz = x + y + z

≡
C

A

B
Y

€

x + y = x y

C

A

B
Y

C

A

B
Y

AB=A+B “Pushing Bubbles”

DeMorgan’s Laws

L08 – Transistors and Logic 40 Comp 411 – Spring 2012 2/13/12

More Useful Gate Structures
AOI (AND-OR-INVERT)

OAI (OR-AND-INVERT)

Vdd

Vdd

≡

≡

A
B
C
D

A
B
C
D

Y

Y

Y

Y

A

C

D
B

A

B

C
D

AOI and OAI
 structures can
 be realized using
 a single CMOS
 gate. However,
 their function is
 equivalent to 3
 levels of logic.

A
B
C
D

Y

An OAI’s DeMorgan
 equivalent is usually
 easier to think about.

L08 – Transistors and Logic 41 Comp 411 – Spring 2012 2/13/12

An Interesting 3-Input Gate
 Based on C, select the A or B input to be
 copied to the output Y. Truth Table

A

B
Y

C

If C is 1 then
copy B to Y,

otherwise copy
A to Y

2-input Multiplexer

B
C
A

Y

schematic

A

B

C

0

1
Gate

symbol

L08 – Transistors and Logic 42 Comp 411 – Spring 2012 2/13/12

MUX Shortcuts

0
1
0
1S

0
1
0
1S

0
1
0
1S

I0
I1

I2
I3

Y

S0 S1

A 4-input Mux
(implemented as

a tree)

0
1
0
1S

0
1
0
1S

A2
B2

A3
B3

Y0

S

0
1
0
1S

0
1
0
1S

A0
B0

A1
B1

Y1

Y2

Y3

A 4-bit wide Mux

A
B
C
D
S

0
1
2
3

Y
A0-3
B0-3

S

Y0-3

L08 – Transistors and Logic 43 Comp 411 – Spring 2012 2/13/12

Mux Logic Synthesis

Consider implementation of some arbitrary
 Boolean function, F(A,B)

 ... using a MULTIPLEXER
as the only circuit element:

Full-Adder
Carry Out Logic

0
1
2
3
4
5
6
7

A,B,Cin

Cout

0
0
0
1
0
1
1
1

L08 – Transistors and Logic 44 Comp 411 – Spring 2012 2/13/12

Small Improvements
We can also apply certain optimizations to MUX Logic

 - Largely by
 inspection or
 exhaustive search

 - N-input gate
 with N-1
 input MUX &
 one inverter

Full-Adder
Carry Out Logic

0
1
2
3

0
Cin
Cin
1

A,B

Cout

There’s
something
interesting

going on
in those
MUXs

