
L5 – Addressing Modes 1 Comp 411 – Spring 2012 1/30/06

Operands and Addressing Modes

•  Where is the data?
•  Addresses as data
•  Names and Values
•  Indirection

L5 – Addressing Modes 2 Comp 411 – Spring 2012 1/30/06

Last Time - “Machine” Language

Means, to MIPS, Reg[3] = Reg[4] + Reg[2]

op = R-type Rd Rt

0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 1
Rs

0 0 0 1 0 0 0 0 0 0 0

32-bit (4-byte) ADD instruction:

But, most of us would prefer to write

a = b + c;

add $3, $4, $2
or, better yet,

(ASSEMBLER)

(C)

0
func = add

L5 – Addressing Modes 3 Comp 411 – Spring 2012 1/30/06

Revisiting Operands

•  Operands – the variables needed to perform an
 instruction’s operation

•  Three types in the MIPS ISA:
–  Register:

add $2, $3, $4 # operands are the “Contents” of a register

–  Immediate:
addi $2,$2,1 # 2nd source operand is part of the instruction

–  Register-Indirect:
lw $2, 12($28) # source operand is in memory
sw $2, 12($28) # destination operand is memory

•  Simple enough, but is it enough?

L5 – Addressing Modes 4 Comp 411 – Spring 2012 1/30/06

MIPS can do these with appropriate
 choices for Ra and const

Common “Addressing Modes”

•  Absolute (Direct): lw $8, 0x1000($0)
–  Value = Mem[constant]
–  Use: accessing static data

•  Indirect: lw $8, 0($9)
–  Value = Mem[Reg[x]]
–  Use: pointer accesses

•  Displacement: lw $8, 16($9)
–  Value = Mem[Reg[x] + constant]
–  Use: access to local variables

•  Indexed:
–  Value = Mem[Reg[x] + Reg[y]]
–  Use: array accesses (base+index)

•  Memory indirect:
–  Value = Mem[Mem[Reg[x]]]
–  Use: access thru pointer in mem

•  Autoincrement:
–  Value = Mem[Reg[x]]; Reg[x]++
–  Use: sequential pointer accesses

•  Autodecrement:
–  Value = Reg[X]--; Mem[Reg[x]]
–  Use: stack operations

•  Scaled:
–  Value = Mem[Reg[x] + c + d*Reg[y]]
–  Use: array accesses (base+index)

Argh! Is the complexity worth the cost?
Need a cost/benefit analysis!

L5 – Addressing Modes 5 Comp 411 – Spring 2012 1/30/06

Memory Operands: Usage

Usage of different memory operand modes

Fr
om

 H
en

ne
ss

y
&

Pa
tt

er
so

n

L5 – Addressing Modes 6 Comp 411 – Spring 2012 1/30/06

Absolute (Direct) Addressing

•  What we want:
–  The contents of a specific memory location

•  Examples:

•  Caveats
–  In practice $gp is often used as a base address for variables
–  Can only address the first and last 32K of memory this way
–  Sometimes generates a two instruction sequence:

“C”
int x = 10;

main() {
 x = x + 1;
}

“MIPS Assembly”
main: lw $2,x

 addi $2,$2,1
 sw $2,x
 jr $31

x: .word 10

lui $1,xhighbits
lw $2,xlowbits($1)

Allocates space for a
 single integer (4-bytes)
 and initializes its value
 to 10

L5 – Addressing Modes 7 Comp 411 – Spring 2012 1/30/06

An Aside: Let’s C

C is an ancestor to many languages commonly used today.
{Algol, Fortran, Pascal} C C++ Java

C was developed to write the operating system UNIX.
C is still widely used for “systems” programming
C’s developers were frustrated that the high-level languages

 available at the time, lacked the expressiveness and
 capabilities of assembly code necessary to write an OS.

The advantage of high-level languages is that they are
 portable (i.e. not ISA specific).

C, thus, was an attempt to create a portable blend of a high
-level language and an assembler

L5 – Addressing Modes 8 Comp 411 – Spring 2012 1/30/06

C begat Java

C++ was envisioned to add Object-Oriented (OO) concepts
on top of C

Java was envisioned to be more purely OO, and hide the
 details of Class/Method/Member implementation

For our purposes C is almost identical to JAVA except:

C has “functions”, whereas JAVA has “methods”.
C has explicit variables that contain the addresses of other

 variables or data structures in memory.
 JAVA hides them under the covers.

L5 – Addressing Modes 9 Comp 411 – Spring 2012 1/30/06

C pointers

int i; // simple integer variable
int a[10]; // array of integers (a is a pointer)
int *p; // pointer to integer(s)

*(expression) is content of address computed by expression.

a[k] ≡ *(a+k)

a is a constant of type “int *”

a[k] = a[k+1] ≡ *(a+k) = *(a+k+1)

L5 – Addressing Modes 10 Comp 411 – Spring 2012 1/30/06

Other Pointer Related Syntax

int i; // simple integer variable
int a[10]; // array of integers
int *p; // pointer to integer(s)

p = &i; // & means address of
p = a; // no need for & on a
p = &a[5]; // address of 6th element of a
*p // value of location pointed by p
*p = 1; // change value of that location
*(p+1) = 1; // change value of next location
p[1] = 1; // exactly the same as above
p++; // step pointer to the next element

L5 – Addressing Modes 11 Comp 411 – Spring 2012 1/30/06

Legal uses of Pointers
int i; // simple integer variable
int a[10]; // array of integers
int *p; // pointer to integer(s)

So what happens when
p = &i;
What is value of p[0]?
What is value of p[1]?

L5 – Addressing Modes 12 Comp 411 – Spring 2012 1/30/06

C Pointers vs. object size
int i; // simple integer variable
int a[10]; // array of integers
int *p; // pointer to integer(s)

Does “p++” really add 1 to the pointer?
NO! It adds 4. Why 4?

char *q;
...
q++; // really does add 1

L5 – Addressing Modes 13 Comp 411 – Spring 2012 1/30/06

Clear123
void clear1(int array[], int size) {
 for(int i=0; i<size; i++)
 array[i] = 0;

}

void clear2(int array[], int size) {
 for(int *p = &array[0]; p < &array[size]; p++)
 *p = 0;

}

void clear3(int *array, int size) {
 while(array < array + size)
 *array++ = 0;

}

L5 – Addressing Modes 14 Comp 411 – Spring 2012 1/30/06

Pointer summary

•  In the “C” world and in the “machine” world:
–  a pointer is just the address of an object in memory
–  size of pointer is fixed regardless of size of object
–  to get to the next object increment by the object’s size in

 bytes
–  to get the the ith object add i*sizeof(object)

•  More details:
–  int R[5] ≡ R is int* constant address of 20 bytes storage
–  R[i] ≡ *(R+i)
–  int *p = &R[3] ≡ p = (R+3) (p points 12 bytes after R)

L5 – Addressing Modes 15 Comp 411 – Spring 2012 1/30/06

Indirect Addressing

•  What we want:
–  The contents of a memory location held in a register

•  Examples:

•  Caveats
–  You must make sure that the register contains a valid address

(double, word, or short aligned as required)

“C”
int x = 10;

main() {
 int *y = &x;
 *y = 2;
}

“MIPS Assembly”

main: ori $2,$0,x
 addi $3,$0,2
 sw $3,0($2)
 jr $31

x: .word 10

Loads the “address”
of x into $2, not its
contents

L5 – Addressing Modes 16 Comp 411 – Spring 2012 1/30/06

Displacement Addressing

•  What we want:
–  The contents of a memory location relative to a register

•  Examples:

•  Caveats
–  Must multiply (shift) the “index” to be properly aligned

“C”
int a[5];

main() {
 int i = 3;
 a[i] = 2;
}

“MIPS Assembly”

main: addi $2,$0,3
 addi $3,$0,2
 sll $1,$2,2
 sw $3,a($1)
 jr $31

a: .space 5

Space for a 5 integers
 (20-bytes)

L5 – Addressing Modes 17 Comp 411 – Spring 2012 1/30/06

Displacement Addressing: Once More

•  What we want:
–  The contents of a memory location relative to a register

•  Examples:

•  Caveats
–  Constants offset to the various fields of the structure
–  Structures larger than 32K use a different approach

“C”
struct p {
 int x, y;
}

main() {
 p.x = 3;
 p.y = 2;
}

“MIPS Assembly”

main: ori $1,$0,p
 addi $2,$0,3
 sw $2,0($1)
 addi $2,$0,2
 sw $2,4($1)

 jr $31

p: .space 8

Allocates space for
 2 uninitialized
 integers (8-bytes)

L5 – Addressing Modes 18 Comp 411 – Spring 2012 1/30/06

C/Assembly Translation: Conditionals

C code:
if (expr) {
 STUFF1
} else {
 STUFF2
}

MIPS assembly:
(compute expr in $rx)
beq $rx, $0, Lelse

(compile STUFF1)
beq $0, $0, Lendif

Lelse:

(compile STUFF2)
Lendif:

C code:
if (expr) {
 STUFF
}

MIPS assembly:
(compute expr in $rx)
beq $rx, $0, Lendif

(compile STUFF)
Lendif:

There are little tricks
 that come into play
 when compiling
 conditional code
 blocks. For instance,
 the statement:

 if (y > 32) {
 x = x + 1;
 }

compiles to:
 lw $24, y
 ori $15, $0, 32
 slt $1, $15, $24
 beq $1, $0, Lendif
 lw $24, x
 addi $24, $24, 1
 sw $24, x
Lendif:

L5 – Addressing Modes 19 Comp 411 – Spring 2012 1/30/06

C/Assembly Translation: Loops

MIPS assembly:
Lwhile:

(compute expr in $rx)
beq $rX,$0,Lendw

(compile STUFF)
beq $0,$0,Lwhile

Lendw:

C code:
while (expr) {
 STUFF
}

Alternate MIPS
 assembly:
 beq $0,$0,Ltest

Lwhile:
 (compile STUFF)

Ltest:
(compute expr in $rx)
bne $rX,$0,Lwhile

Lendw:

Compilers spend a lot of time optimizing in and around loops.
 - moving all possible computations outside of loops
 - unrolling loops to reduce branching overhead
 - simplifying expressions that depend on “loop variables”

L5 – Addressing Modes 20 Comp 411 – Spring 2012 1/30/06

C/Assembly Translation: For Loops
•  Most high-level languages provide loop constructs that

 establish and update an iteration variable, which is used
 to control the loop’s behavior

MIPS assembly:
sum:
 .word 0x0
data:
 .word 0x1, 0x2, 0x3, 0x4, 0x5
 .word 0x6, 0x7, 0x8, 0x9, 0xa

 add $30,$0,$0
Lfor:
 lw $24,sum($0)
 sll $15,$30,2
 lw $15,data($15)
 addu $24,$24,$15
 sw $24,sum
 add $30,$30,1
 slt $24,$30,10
 bne $24,$0,Lfor
Lendfor:

C code:
int sum = 0;

int data[10] =
 {1,2,3,4,5,6,7,8,9,10};

int i;

for (i=0; i<10; i++) {
 sum += data[i]
}

L5 – Addressing Modes 21 Comp 411 – Spring 2012 1/30/06

Next Time

•  Pseudo instructions
• More C idioms
•  Calling procedures
•  Recursion

