Welcome to Comp 411!

I thought this course was called
"Computer Organization"

1) Course Mechanics
2) Course Objectives 3) Information

Course Mechanics

Grading:

Best 5 of 6 problem sets
Best 9 of 10 Labs
2 Quizzes
Final Exam

25\%
25\%
30\%
20\%

You will have at least two weeks to complete each problem set. Late problem sets will not be accepted, but the lowest problem-set score will be dropped.

Lab (COMP 590-411) is mandatory, and will meet on most Fridays, grade is based on completing a "lab check list."

Quizzes are multiple choice and will be given during the
 lab period.

I will attempt to make Lecture Notes, Problem Sets, and other course materials available on the web before class on the day they are given.

Comp 411: Course Website

001001111011110111111111111101000
0x27bdffe8 addlu $\$ 5 p_{p}$ \$sp, -2
0101111101111110000000000010000

oxafbfoolo sw \$ra, $16($ (Sp)

-24
(Homp 411 - Computer Organization
00001100000000000000000000000000
1001111101111110000000000010000
00000011111000000000000000001000
0000000 P
ra, $16(\$ p p)$
$0 \times 03 \mathrm{e00008} \mathrm{jr}$ \$re

Home

Research
Courses
Publications

Announcements

- The first lecture will be held on January 9, 2012.

Announcements, corrections, etc. On-line copies of all handouts
Course Description Download Problem Sets

Comp 411, Computer Organization, explores the topic of how computers work, in terms of both software and hardware. It covers a wide range of topics including what a bitis, and why bits are the atoms in the universe of computation. We also discuss how information is represented and processed in hardware, and arrive to the conclusion that, to a computer, everything is data, including the instructions that underly software.

Cnmn 411 alen envors the wide ranne of lannulanes and lavare nf tranclatinn used fne enmnuitatinn--
http://www.cs.unc.edu/~mcmillan/Comp411S12

Goal 1: Demystify Computers

Strangely, most people (even some computer scientists I know) are afraid of computers.

We are only afraid of things we do not understand!

I do not fear computers. I fear the lack of them.

- Isaac Asimov (1920-1992)

Fear is the main source of superstition, and one of the main sources of cruelty. To conquer fear is the beginning of wisdom.

- Bertrand Russell (1872-1970)

Goal 2: Power of Abstraction

Define a function, develop a robust implementation, and then put a box around it.

Abstraction enables us to create unfathomable systems (including computer hardware and software).

Why do we need ABSTRACTION...

> Imagine a billion --- 1,000,000,000

The key to building systems with $>1 G$ components

What do we See in a Computer?

- Structure
- hierarchical design:
- limited complexity at each level
- reusable building blocks
- Interfaces
- Key elements of system engineering; typically outlive the technologies they interface
- Isolate technologies, allow evolution
- Major abstraction mechanism
- What makes a good system design?
- "Bang for the buck":
 minimal mechanism, maximal function
- reliable in a wide range of environments
- accommodates future technical improvements

Computational Structures

What are the fundamental elements of computation?
Can we define computation independent of implementation or the substrate that it is built upon)?

Edward Hardebeck helps to assemble the Tinkertoy computer

Our Plan of Attack...

- Understand how things work, by alternating between low-level (bottom-up) and high level (top-down) concepts
- Encapsulate our understanding using appropriate abstractions
- Study organizational principles: hierarchy, interfaces, APIs.
- Roll up our sleeves and design at each level of hierarchy
- Learn engineering tricks
- from a historical perspective
- using systematic design approaches
- diagnose, fix, and avoid bugs

What is "Computation"?

Computation is about "processing information"

- Transforming information from one form
to another
- Deriving new information from old
- Finding information associated with a given input
- "Computation" describes the motion of information through time
- "Communication" describes the motion of information through space

What is "Information"?

information, n. Knowledge communicated or received concerning a particular fact or circumstance.

Tarheels won!

Are you sure? It's not still football season... is it?
δ

A Computer Scientist's Definition:

Information resolves uncertainty.
Information is simply that which cannot be predicted. The less predictable a message is, the more information it conveys!

Real-World Information

Why do unexpected messages get allocated the biggest headlines?

... because they carry the most information.

What Does A Computer Process?

- Toasters processes bread and bagels
- Blenders processes smoothies and margaritas
- What does a computer process?
- 2 allowable answers:
- Information

- Bits
- How does information relate to bits?

Quantifying Information

(Claude Shannon, 1948)

Suppose you're faced with N equally probable choices, and I give you a fact that narrows it down to M choices. Then you've been given:

Information is measured in bits (binary digits) =

$\log _{2}(N / M)$ bits of information

Examples:

- information in one coin flip: $\log _{2}(2 / 1)=1$ bit
- roll of a single die: $\log _{2}(6 / 1)=\sim 2.6$ bits
number of 0/1's required to encode choice(s)

- outcome of a Football game: 1 bit
(well, actually, "they won" may convey more information if they were "expected" to lose...)

Example: Sum of 2 dice

The average information provided by the sum of 2 dice:

$$
i_{\text {ave }}=\sum_{i=2}^{12} \frac{M_{1}}{N} \log _{2}\left(\frac{N}{M}\right)=-\sum_{i} p_{i} \log _{2}\left(p_{i}\right)=3.274 \text { bits }
$$

Show Me the Bits!

Can the sum of two dice REALLY be represented using 3.274 bits? If so, how?

The fact is, the average information content is a strict *lower-bound* on how small of a representation that we can achieve.

In practice, it is difficult to reach this bound. But, we can come very close.

Variable-Length Encoding

- Of course we can use differing numbers of "bits" to represent each item of data
- This is particularly useful if all items are *not* equally likely
- Equally likely items lead to fixed length encodings:
- Ex: Encode a "particular" roll of 5?
- $\{(1,4),(2,3),(3,2),(4,1)\}$ which are equally likely if we use fair dice
- Entropy $=-\sum_{i=1}^{4} p($ roll \mid roll $=5) \log _{2}\left(p\left(\right.\right.$ roll $l_{i} \mid$ roll $\left.\left.=5\right)\right)=-\sum_{i=1}^{4} \frac{1}{4} \log _{2}\left(\frac{1}{4}\right)=2$ bits
- OO-(1,4), O1-(2,3), 10 - (3,2), 11 - (4,1)
- Back to the original problem. Let's use this encoding:

$2-10011$	$3-0101$	$4-011$	$5-001$
$6-111$	$7-101$	$8-110$	$9-000$
$10-1000$	$11-0100$	$12-10010$	

Variable-Length Encoding

- Taking a closer look

$$
\begin{array}{|l|l|l}
\hline 2-10011 & 3-0101 & 4-011 \\
\hline 6-111 & 7-101 & 8-110 \\
\hline 10-1000 & 11-0100 & 12-10010 \\
\hline
\end{array}
$$

Unlikely rolls are encoded using more bits
More likely rolls use fewer bits

- Decoding

Huffman Coding

- A simple *greedy* algorithm for approximating an entropy efficient encoding

1. Find the 2 items with the smallest probabilities
2. Join them into a new *meta* item whose probability is their sum
3. Remove the two items and insert the new meta item
4. Repeat from step 1 until there is only one item

Converting Tree to Encoding

Once the *tree* is constructed, label its edges consistently and follow the paths from the largest *meta* item to each of the real item to find the encoding.

$2-10011$	$3-0101$	$4-011$	$5-001$
$6-111$	$7-101$	$8-110$	$9-000$
$10-1000$	$11-0100$	$12-10010$	

Encoding Efficiency

How does this encoding strategy compare to the information content of the roll?

$$
\begin{gathered}
b_{\text {ave }}=\frac{1}{36} 5+\frac{2}{36} 4+\frac{3}{36} 3+\frac{4}{36} 3+\frac{5}{36} 3+\frac{6}{36} 3 \\
+\frac{5}{36} 3+\frac{4}{36} 3+\frac{3}{36} 4+\frac{2}{36} 4+\frac{1}{36} 5 \\
b_{\text {ave }}=3.306
\end{gathered}
$$

Pretty close. Recall that the lower bound was 3.274 bits. However, an efficient encoding (as defined by having an average code size close to the information content) is not always what we want!

Encoding Considerations

- Encoding schemes that attempt to match the information content of a data stream remove redundancy. They are data compression techniques.
- However, sometimes our goal in encoding information is increase redundancy, rather than remove it. Why?
- Make the information easier to manipulate (fixed-sized encodings)

- Make the data stream resilient to noise (error detecting and correcting codes)
-Data compression allows us to store our entire music and video collections in a pocketable device
-Data redundancy enables us to store that*same* information *reliably* on a hard drive

Error detection using parity

Sometimes we add extra redundancy so that we can detect errors. For instance, this encoding detects any single-bit error:

Property 1: Parity

The sum of the bits in each symbol is even. (this is how errors are detected)

$$
\begin{aligned}
& 2-1111000=1+1+1+1+0+0+0=4 \\
& 3-1111101=1+1+1+1+1+0+1=6 \\
& 4-0011=0+0+1+1=2 \\
& 5-0101=0+1+0+1=2 \\
& 6-0110=0+1+1+0=2 \\
& 7-0000=0+0+0+0=0 \\
& 8-1001=1+0+0+1=2 \\
& 9-1010=1+0+1+0=2 \\
& 10-1100=1+1+0+0=2 \\
& 11-1111110=1+1+1+1+1+1+0=6 \\
& 12-1111011=1+1+1+1+0+1+1=6
\end{aligned}
$$

Property 2: Separation

Each encoding differs from all others by at least
two bits in their overlapping parts

Error correcting codes

We can actually correct 1 -bit errors in encodings separated by a Hamming distance of three. This is possible because the sets of bit patterns located a Hamming distance of 1 from our encodings are distinct.

However, attempting error correction with such a small separation is dangerous. Suppose, we have a 2-bit error. Our error correction scheme will then misinterpret the encoding. Misinterpretations also occurred when we had 2-bit errors in our 1-bit-error-detection (parity) schemes.

A safe 1-bit error correction scheme would correct all 1-bit errors and detect all 2-bit errors. What Hamming distance is needed between encodings to accomplish this?

An alternate error correcting code

We can generalize the notion of parity in order to construct error correcting codes. Instead of computing a single parity bit for an entire encoding we can allow multiple parity bits over different subsets of bits. Consider the following technique for encoding 25 bits.

0	1	1	1	1	0
1	1	1	0	0	1
0	1	0	1	0	0
1	0	1	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0

Include a parity bit for each row and column. This approach is easy to implement, but it is not optimal in terms of the number of bits used. Note that we also include one more parity bit for the row and column parity bits (shown in purple). Thus, to detect and correct a single bit error among 25 bits we have added $5+5+1=11$ bits of redundancy.

An alternate error correcting code

We can generalize the notion of parity in order to construct error correcting codes. Instead of computing a single parity bit for an entire encoding we can allow multiple parity bits over different subsets of bits. Consider the following technique for encoding 25 bits.

0	1	1	1	1	0
1	1	1	0	0	1
0	1	0	0	0	0
1	0	1	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0

0	1	1	1	1	0
1	1	1	0	0	1
0	1	0	1	0	0
1	0	1	0	0	0
0	1	0	0	0	1
0	0	0	0	1	0

1-bit errors will cause both a row and column parity error, whose intersection uniquely identifying the errant bit for correction. The errant bit is shown in red above, and the associated, and now incorrect, parity bits are shown in gray. This even works for errors in the parity bits! as shown in the example on the right, where the intersection of errant parity bits is itself a parity bit.

An alternate error correcting code

We can generalize the notion of parity in order to construct error correcting codes. Instead of computing a single parity bit for an entire encoding we can allow multiple parity bits over different subsets of bits. Consider the following technique for encoding 25 bits.

0	1	1	1	1	0
1	0	1	0	0	1
0	1	0	1	0	0
1	0	1	1	0	0
0	1	0	0	0	1
0	0	1	0	1	0

0	1	1	1	1	0
1	1	1	1	0	1
0	1	0	1	0	0
1	1	1	0	0	0
0	1	0	0	0	1
0	0	1	0	1	0

However, 2-bit errors are generally ambiguous. It they happen in the same row/column, then you can't even figure out which row/column the errors occurred in. As a result, we consider such a block parity systems to be "1-bit error correcting and 2-bit error detecting".

Summary

Information resolves uncertainty

- Choices equally probable:
- N choices narrowed down to $\mathrm{M} \rightarrow$
$\log _{2}(N / M)$ bits of information
- Choices not equally probable:
- choice ${ }_{i}$ with probability $p_{i} \rightarrow$

$$
\log _{2}\left(1 / p_{i}\right) \text { bits of information }
$$

- average number of bits $=\Sigma p_{i} \log _{2}\left(1 / p_{\mathrm{i}}\right)$
- variable-length encodings

Next time:

- How to encode thing we care about using bits, such as numbers, characters, etc...
- Bit's cousins, bytes, nibbles, and words

