
L01 - Introduction   1 Comp411 – Spring 2012 1/9/12 

Welcome to Comp 411! 

I thought this course was called 
“Computer Organization” 

David Macaulay 

1) Course Mechanics 
2) Course Objectives 
3) Information 



L01 - Introduction   2 Comp411 – Spring 2012 1/9/12 

Meet the Crew… 

Lectures:  Leonard McMillan (SN-311) 
           Office Hours Th 2-3 

TA:   David Wilkie (SN-008)   
Book:   Patterson & Hennessy 

       Computer Organization & Design 
       4rd Edition, ISBN: 1-55860-604-1 

           (However, you won’t need it until  
                     next week) 



L01 - Introduction   3 Comp411 – Spring 2012 1/9/12 

You will have at least two weeks to complete each problem set.  
Late problem sets will not be accepted, but the lowest  
problem-set score will be dropped. 

Lab (COMP 590-411) is mandatory, and will meet on  
most Fridays, grade is based on completing a  
“lab check list.” 

Quizzes are multiple choice and will be given during the  
lab period. 

I will attempt to make Lecture Notes, Problem Sets, and other course 
materials available on the web before class on the day they are given.  

Course Mechanics 
Grading: 

 Best 5 of 6 problem sets  25% 
  Best 9 of 10 Labs              25% 

 2 Quizzes    30% 
 Final Exam    20% 



L01 - Introduction   4 Comp411 – Spring 2012 1/9/12 

Comp 411: Course Website 

Announcements, corrections, etc. 
On-line copies of all handouts 

http://www.cs.unc.edu/~mcmillan/Comp411S12 

Download Problem Sets 



L01 - Introduction   5 Comp411 – Spring 2012 1/9/12 

Goal 1: Demystify Computers 
Strangely, most people (even some computer scientists I know) are afraid  
of computers. 

We are only afraid of things we do not understand! 

 I do not fear computers. I fear the lack of them.  
    - Isaac Asimov (1920 - 1992) 

 Fear is the main source of superstition, and one of the main  
sources of cruelty. To conquer fear is the beginning of wisdom.  

    - Bertrand Russell (1872 – 1970) 



L01 - Introduction   6 Comp411 – Spring 2012 1/9/12 

Goal 2: Power of Abstraction 

Define a function, develop a robust implementation, and
 then put a box around it. 

Abstraction enables us to create unfathomable systems
 (including computer hardware and software).  

 Why do we need ABSTRACTION… 
   

Imagine a billion --- 1,000,000,000 



L01 - Introduction   7 Comp411 – Spring 2012 1/9/12 

The key to building systems with >1G components 

Personal Computer: 
Hardware & Software 

Circuit Board: 
≈8 / system 
1-2G devices  

Integrated Circuit: 
≈8-16 / PCB 

.25M-16M devices  
Module: 
≈8-16 / IC 

100K devices  

Cell: 
≈1K-10K / Module 

16-64 devices  Gate: 
≈2-16 / Cell 
8 devices  

Scheme for  
representing 
 information 

MOSFET 



L01 - Introduction   8 Comp411 – Spring 2012 1/9/12 

What do we See in a Computer? 
•  Structure 

–  hierarchical design:  
–  limited complexity at each level 
–  reusable building blocks 

•  What makes a good system design? 
–  “Bang for the buck”:  

minimal mechanism, maximal function 
–  reliable in a wide range of environments 
–  accommodates future technical improvements 

•  Interfaces 
–  Key elements of system engineering;  

typically outlive the technologies they
 interface 

–  Isolate technologies, allow evolution 
–  Major abstraction mechanism 

Wait! I think 
I see a bug in 
the DIV logic. 

Got that 
one off 
the web.  

Sure hope 
it works. 



L01 - Introduction   9 Comp411 – Spring 2012 1/9/12 

Computational Structures 

What are the fundamental elements of computation? 
Can we define computation independent of implementation

 or the substrate that it is built upon)? 



L01 - Introduction   10 Comp411 – Spring 2012 1/9/12 

Our Plan of Attack… 
 Understand how things work, by

 alternating between low-level (bottom-up)
 and high level (top-down) concepts 

 Encapsulate our understanding 
using appropriate abstractions 

  Study organizational principles:  
hierarchy, interfaces, APIs. 

 Roll up our sleeves and design  
   at each level of hierarchy 
 Learn engineering tricks 

 - from a historical perspective 
 - using systematic design approaches 
 - diagnose, fix, and avoid bugs 



L01 - Introduction   11 Comp411 – Spring 2012 1/9/12 

What is “Computation”? 

Computation is about “processing information” 
  - Transforming information from one form   

 to another 
  - Deriving new information from old 
 -  Finding information associated with a 
  given input 
  - “Computation” describes the motion of 

 information through time 
  - “Communication” describes the motion of
  information through space 



L01 - Introduction   12 Comp411 – Spring 2012 1/9/12 

What is “Information”? 

information, n.  Knowledge
 communicated or received
 concerning a particular
 fact or circumstance. 

Information resolves uncertainty. 
Information is simply that which 
cannot be predicted. The less 
predictable a message is, the more 
information it conveys! 

Tarheels won! 
Are you sure? It’s 
not still football
 season… is it? 

“ 10 Problem sets, 2
 quizzes, and a
 final!” 

A Computer Scientist’s Definition: 



L01 - Introduction   13 Comp411 – Spring 2012 1/9/12 

Real-World Information 

Why do unexpected messages
 get allocated the biggest
 headlines? 

… because they carry the
 most information. 



L01 - Introduction   14 Comp411 – Spring 2012 1/9/12 

What Does A Computer Process?  

•  Toasters processes bread and bagels 
•  Blenders processes smoothies 

and margaritas 
•  What does a computer process? 
•  2 allowable answers: 

–  Information 
– Bits 

•  How does information 
relate to bits? 



L01 - Introduction   15 Comp411 – Spring 2012 1/9/12 

Quantifying Information 
(Claude Shannon, 1948) 

 Suppose you’re faced with N equally probable choices, and
 I give you a fact that narrows it down to M choices. Then 
 you’ve been given: 

  log2(N/M) bits of information 

Examples: 
  information in one coin flip: log2(2/1) = 1 bit 
  roll of a single die: log2(6/1) = ~2.6 bits 
 outcome of a Football game: 1 bit 

 ( well, actually, “they won” may convey more  
   information if they were “expected” to lose…) 

Information is measured
 in bits (binary digits) =

 number of 0/1’s required
 to encode choice(s) 



L01 - Introduction   16 Comp411 – Spring 2012 1/9/12 

Example: Sum of 2 dice 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

i2 = log2(36/1) = 5.170 bits 
i3 = log2(36/2) = 4.170 bits 
i4 = log2(36/3) = 3.585 bits 
i5 = log2(36/4) = 3.170 bits 
i6 = log2(36/5) = 2.848 bits 
i7 = log2(36/6) = 2.585 bits 
i8 = log2(36/5) = 2.848 bits 
i9 = log2(36/4) = 3.170 bits 
i10 = log2(36/3) = 3.585 bits 
i11 = log2(36/2) = 4.170 bits 
i12 = log2(36/1) = 5.170 bits 

The average information provided by the sum of 2 dice:  Entropy 



L01 - Introduction   17 Comp411 – Spring 2012 1/9/12 

Show Me the Bits! 
 Can the sum of two dice REALLY be represented 
 using 3.274 bits? If so, how? 

 The fact is, the average 
 information content is a 
 strict *lower-bound* on how 
 small of a representation 
 that we can achieve. 

 In practice, it is difficult 
to reach this bound. But, 
we can come very close. 



L01 - Introduction   18 Comp411 – Spring 2012 1/9/12 

Variable-Length Encoding 

•  Of course we can use differing numbers of “bits” to
 represent each item of data 

•  This is particularly useful if all items are *not* equally
 likely 

•  Equally likely items lead to fixed length encodings: 
–  Ex: Encode a “particular” roll of 5? 
–  {(1,4), (2,3), (3,2), (4,1)} which are equally likely if we use fair dice 
–  Entropy =                                                                                     

 bits 
–  00 – (1,4),  01 – (2,3),  10 – (3,2), 11 – (4,1) 

•  Back to the original problem. Let’s use this encoding: 
2 - 10011  3 - 0101  4 - 011  5 - 001 
6 - 111  7 - 101  8 - 110  9 - 000 
10 - 1000  11 - 0100  12 - 10010 



L01 - Introduction   19 Comp411 – Spring 2012 1/9/12 

Variable-Length Encoding 

•  Taking a closer look 

•  Decoding 

2 - 10011  3 - 0101  4 - 011  5 - 001 
6 - 111  7 - 101  8 - 110  9 - 000 
10 - 1000  11 - 0100  12 - 10010 

Unlikely rolls are encoded using more bits 

More likely rolls use fewer bits 

2 5 3 6 5 8 3 
Example Stream: 1001100101011110011100101 



L01 - Introduction   20 Comp411 – Spring 2012 1/9/12 

Huffman Coding 

•  A simple *greedy* algorithm for approximating an
 entropy efficient encoding 
1.  Find the 2 items with the smallest probabilities 
2.  Join them into a new *meta* item whose probability is their sum 
3.  Remove the two items and insert the new meta item 
4.  Repeat from step 1 until there is only one item 

36/36 

11 
2/36 3 

2/36 

4/36 4 
3/36 

7/36 

9 
4/36 5 

4/36 

8/36 
15/36 

12 
1/36 2 

1/36 

2/36 

7 
6/36 

11/36 

8 
5/36 6 

5/36 

10/36 
21/36 

10 
3/36 

5/36 

Huffman decoding 
tree 



L01 - Introduction   21 Comp411 – Spring 2012 1/9/12 

Converting Tree to Encoding 

36/36 

4 
3/36 

11 
2/36 3 

2/36 

4/36 

7/36 

9 
4/36 5 

4/36 

8/36 
15/36 

7 
6/36 

10 
3/36 

12 
1/36 2 

1/36 

2/36 

5/36 

11/36 

8 
5/36 6 

5/36 

10/36 
21/36 

0 

0 

0 

0 
0 0 

0 

0 

0 

0 
1 

1 
1 

1 

1 
1 

1 

1 

1 

1 

Huffman decoding 
tree 

Once the *tree* is constructed, label its edges consistently
 and follow the paths from the largest *meta* item to
 each of the real item to find the encoding. 
2 - 10011  3 - 0101  4 - 011   5 - 001 
6 – 111  7 – 101  8 - 110   9 - 000 
10 - 1000  11 - 0100  12 - 10010 



L01 - Introduction   22 Comp411 – Spring 2012 1/9/12 

Encoding Efficiency 
 How does this encoding strategy compare to the
 information content of the roll? 

 Pretty close. Recall that the lower bound was 3.274 bits.
 However, an efficient encoding (as defined by having an
 average code size close to the information content) is
 not always what we want! 



L01 - Introduction   23 Comp411 – Spring 2012 1/9/12 

Encoding Considerations 

-  Encoding schemes that attempt to match the
 information content of a data stream remove
 redundancy. They are data compression techniques. 

-  However, sometimes our goal in encoding information
 is increase redundancy, rather than remove it. Why? 

 -  Make the information easier to manipulate 
  (fixed-sized encodings) 
 -  Make the data stream resilient to noise 
  (error detecting and correcting codes) 

-Data compression allows us to
 store our entire music and video
 collections in a pocketable device  

-Data redundancy
 enables us to store
 that *same*
 information
 *reliably* on 
 a hard drive 



L01 - Introduction   24 Comp411 – Spring 2012 1/9/12 

4 

Error detection using parity 
 Sometimes we add extra redundancy so that we can detect 
errors. For instance, this encoding detects any single-bit 
error: 

2-1111000 
3-1111101 
4-0011 
5-0101 
6-0110 
7-0000 
8-1001 
9-1010 
10-1100 
11-1111110 
12-1111011 

      4       2*       5 
4:  001111100000101 

      4    10*   7 
3:  001111100000101 

      4     9*    7 
2:  001111100000101 

      4     6*    7 
1:  001111100000101 

There’s something 
peculiar about 
those codings 

Same bitstream –  
w/4 possible interpretations 
if we allow for only one error 

ex:  001111100000101 



L01 - Introduction   25 Comp411 – Spring 2012 1/9/12 

Property 1: Parity 
The sum of the bits in each symbol is even. 

(this is how errors are detected) 

2-1111000 = 1 + 1 + 1+ 1 + 0 + 0 + 0 = 4 
3-1111101  = 1 + 1 + 1 + 1 + 1 + 0 + 1 = 6 
4-0011  = 0 + 0 + 1 + 1 = 2 
5-0101  = 0 + 1 + 0 + 1 = 2 
6-0110  = 0 + 1 + 1 + 0 = 2 
7-0000  = 0 + 0 + 0 + 0 = 0 
8-1001  = 1 + 0 + 0 + 1 = 2 
9-1010  = 1 + 0 + 1 + 0 = 2 
10-1100  = 1 + 1 + 0 + 0 = 2 
11-1111110  = 1 + 1 + 1 + 1 + 1 + 1 + 0 = 6 
12-1111011 = 1 + 1 + 1 + 1 + 0 + 1 + 1 = 6 

How much 
information 
is in the 
 last bit? 



L01 - Introduction   26 Comp411 – Spring 2012 1/9/12 

Property 2: Separation 
 Each encoding differs from all others by at least
 two bits in their overlapping parts 

      
      

This difference is called 
the “Hamming distance” 

“A Hamming distance of one-bit 
is needed to provide unique 
encodings for every item” 



L01 - Introduction   27 Comp411 – Spring 2012 1/9/12 

Error correcting codes 
  We can actually correct 1-bit errors in encodings separated by a

 Hamming distance of three. This is possible because the sets of
 bit patterns located a Hamming distance of 1 from our encodings
 are distinct. 

 However, attempting error correction 
with such a small separation is dangerous. 
Suppose, we have a 2-bit error. Our error 
correction scheme will then misinterpret 
the encoding. Misinterpretations also 
occurred when we had 2-bit errors in our 
1-bit-error-detection (parity) schemes. 

 A safe 1-bit error correction scheme 
would correct all 1-bit errors and detect 
all 2-bit errors. What Hamming distance 
is needed between encodings to 
accomplish this? 

000 001 

010 

100 

011 
111 

101 

110 

This is just 
a voting 
scheme 



L01 - Introduction   28 Comp411 – Spring 2012 1/9/12 

An alternate error correcting code 
 We can generalize the notion of parity in order to construct error correcting
 codes. Instead of computing a single parity bit for an entire encoding we can
 allow multiple parity bits over different subsets of bits. Consider the following
 technique for encoding 25 bits. 

 Include a parity bit for each row and column. This approach is easy to
 implement, but it is not optimal in terms of the number of bits used. 
Note that we also include one more parity bit for the row and column  
parity bits (shown in purple). Thus, to detect and correct a single bit error 
among 25 bits we have added 5 + 5 + 1 = 11 bits of redundancy. 

0 1 1 1 1 
1 1 1 0 0 
0 1 0 1 0 
1 0 1 0 0 
0 1 0 0 0 
0 0 1 0 1 

0 
1 
0 
0 
1 
0 

0 1 1 1 1 
1 1 1 0 0 
0 1 0 1 0 
1 0 1 0 0 
0 1 0 0 0 
0 0 1 0 1 

0 
1 
0 
0 
1 
0 



L01 - Introduction   29 Comp411 – Spring 2012 1/9/12 

An alternate error correcting code 
 We can generalize the notion of parity in order to construct error correcting
 codes. Instead of computing a single parity bit for an entire encoding we can
 allow multiple parity bits over different subsets of bits. Consider the following
 technique for encoding 25 bits. 

 1-bit errors will cause both a row and column parity error, whose intersection 
uniquely identifying the errant bit for correction. The errant bit is shown in red 
above, and the associated, and now incorrect, parity bits are shown in gray. 
This even works for errors in the parity bits! as shown in the example on the 
right, where the intersection of errant parity bits is itself a parity bit. 

0 1 1 1 1 
1 1 1 0 0 
0 1 0 1 0 
1 0 1 0 0 
0 1 0 0 0 
0 0 1 0 1 

0 
1 
0 
0 
1 
0 

0 1 1 1 1 
1 1 1 0 0 
0 1 0 1 0 
1 0 1 0 0 
0 1 0 0 0 
0 0 1 0 1 

0 
1 
0 
0 
1 
0 0 0 

0 0 

0 



L01 - Introduction   30 Comp411 – Spring 2012 1/9/12 

An alternate error correcting code 
 We can generalize the notion of parity in order to construct error correcting
 codes. Instead of computing a single parity bit for an entire encoding we can
 allow multiple parity bits over different subsets of bits. Consider the following
 technique for encoding 25 bits. 

 However, 2-bit errors are generally ambiguous. It they happen in the same 
row/column, then you can’t even figure out which row/column the errors 
occurred in. As a result, we consider such a block parity systems to be  
“1-bit error correcting and 2-bit error detecting”. 

0 1 1 1 1 
1 0 1 0 0 
0 1 0 1 0 
1 0 1 1 0 
0 1 0 0 0 
0 0 1 0 1 

0 
1 
0 
0 
1 
0 

0 1 1 1 1 
1 1 1 1 0 
0 1 0 1 0 
1 1 1 0 0 
0 1 0 0 0 
0 0 1 0 1 

0 
1 
0 
0 
1 
0 



L01 - Introduction   31 Comp411 – Spring 2012 1/9/12 

Summary 
Information resolves uncertainty 

•  Choices equally probable: 
•  N choices narrowed down to M →  

  log2(N/M) bits of information 
•  Choices not equally probable: 

•  choicei with probability pi →  
  log2(1/pi) bits of information 

•  average number of bits = Σpilog2(1/pi)  
•  variable-length encodings 

Next time: 
•  How to encode thing we care about using bits,
 such as numbers, characters, etc… 
•  Bit’s cousins, bytes, nibbles, and words 


