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Problem 1. Cache accounting 
 
The diagram below illustrates a blocked, direct-mapped cache for a computer that uses 32-bit data words 
and 32-bit byte addresses. The block size is 4 words. 
 

 
 

(A) What are the maximum number words of data from main memory that can be stored in the cache 
at any one time? How many bits of the address are used to select which line of the cache is 
accessed? How many bits wide is the tag field? 

A total of 4 × 16 = 64 words can be present in the cache at any given time. 
4 bits of the address <8:4> are used to select the cache line, and the tag size 

 is 24 bits. 

(B) Briefly explain the purpose of the one-bit V field associated with each cache line. 

The V bit indicates that the corresponding cache line contains valid data.  

(C) Assume that memory location 0x3328C was present in the cache.  Using the row and column 
labels from the figure, in what cache location(s) could we find  the data from that memory 
location?   What would the value(s) of the tag field(s) have to be for the cache row(s) in which the 
data appears?  

Location 0x3328C would be found in block 3 (Data -11) of line 8, and the tag field would 
contain 0x000332. 

(D) Can data from locations 0x12368 and 0x322F68 be present in the cache at the same time?  What 
about data from locations 0x2536038 and 0x10F4?  Explain. 

The locations 0x12368 and 0x322f68 map to the same cache line, 6, and therefore 
could not be in the cache simultaneously. Locations 0x2536038 and 0x000010f4 could 
be in cache simultaneously since they map to different lines, (3 and F respectively) 

(E) When an access causes a cache miss, how many words need to be fetched from memory to fill the 
appropriate cache location(s) and satisfy the request?  

 
On a cache miss 4 sequential words need to be fetched to fill the line. 
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Problem 2. Where are the Bits? 

AMD’s Sempron processor is advertised as having a total on-chip cache size of 384 Kbytes. It is broken 
down into 128Kbytes of Level 1 (L1) cache and 256Kbytes of Level 2 (L2) cache. The first level cache is 
composed of separate instruction and data caches, each with 64 Kbytes. All caches use a common block 
size of 64 bytes (16, 32-bit words). The L1 instruction and data caches are both 2-way set associative, and 
the unified (used for both instructions and data) L2 cache is 16-way associative. Both L1 caches employ 
an LRU replacement strategy, while the L2 cache uses RANDOM replacement. The L1 data cache uses 
one dirty bit for each group of 4 words in a line (4 for each line). None of the caches, employ a valid bit, 
instead a fault handler is responsible for executing reads from a reserved region of memory to initialize 
the cache’s contents.  
 

(A) Determine which bits of a 32-bit address are used as tags, cache indices, and block selection for 
each of the three caches.  

The block size for all caches is 64-bytes or 16 words thus the lower 4 + 2 address bits 
are used as block offsets. Each L1 caches is 64 Kbytes divided over a 2-way sets, making 
only 32K bytes addressable. This means that 15 – (6) = 9 bits are needed as the cache 
index, leaving the upper 17 bits as a cache tag. 

 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Tag Value Cache Index Block offset  

 
The L2 cache is 256 Kbytes divided over 16-way sets, making 16 Kbytes addressable, 
which leads once again to a 14 – 6 = 8 bit index and 18 bit tag. 

 
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Tag Value Cache Index Block offset  

 
(B) Compute how many actual bits are needed each cache, accounting for tags, data, replacement, 

dirty, and any other overhead.  
 

The L1 instruction cache has:  
    512 * (1 LRU bit + 2 * (17 bits/tag + (64 * 8) bits/block)) = 542208 bits 
The L1 data cache has:  
    512 * (1 LRU bit + 2 * (4 dirty bits + 17 bits/tag + (64 * 8) bits/block)) = 546304 bits 
The L2 cache has: 
    256 * (16 * (4 dirty bits + 18 bits/tag + (64 * 8) bits/block)) = 2187264 bits 

 
Both L1 caches have a 3-cycle access latency, the L2 cache requires 5 additional cycles (after an L1 
miss), and main memory requires 20-cycles to load a line. A popular benchmark suite reports that this 
cache design achieves an instruction cache hit rate of 95%, and a data cache hit rate of 80%. A hit rate of 
98% has been reported for the L2 cache for the same benchmarks.  

(C) What is the average effective access time for instruction fetches in this cache architecture (in 
cycles)? What is the average effective access time for data fetches (loads and stores) in this cache 
architecture (in cycles)? If you assume that about 20% of executed instructions access memory, 
what is the overall effective access time? 
 
For instruction fetches,  

0.95*3 + (1-0.95)*(0.98*(3+5) + (1-0.98)*(3+5+20)) = 3.27 cycles 
 
For data access, 
0.80*3 + (1-0.80)*(0.98*(3+5) + (1-0.98)*(3+5+20)) = 4.08 cycles 
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Overall effective access time, 

Instruction*100/120 + data access * 20/120 = 3.405 cycles 
 
(D) AMD also sells a version of the chip with a L2 cache that is half the size (128 Kbytes). In that 

chip the L2 hit rate is only 92% for the same benchmark, what is its overall effective access time 
in cycles? 

 
For instruction fetches,  

0.95*3 + (1-0.95)*(0.92*(3+5) + (1-0.92)*(3+5+20)) = 3.33 cycles 
 
For data access, 
0.80*3 + (1-0.80)*(0.92*(3+5) + (1-0.92)*(3+5+20)) = 4.32 cycles 
 
Overall effective access time, 
Instruction*100/120 + data access * 20/120 = 3.495 cycles 

 
(E) Assuming that your on-chip memory budget is fixed at 384 Kbytes, what might you suggest to 

improve the performance of this cache architecture?  
 

The performance is largely dictated by the instruction access time, as seen by its contribution 
to the average access time. Therefore, the first place to start is to improve the L1 instruction 
cache. Since the total cache size is fixed, to increase the hit ratio, we need to either increase 
associativity (we’d need to be careful because doing so might require more LRU bits) or increase 
the blocksize (which would save us of tag bits). Increasing the blocksize for the instruction cache 
is particularly attractive, since loading large blocks effectively prefetches instructions that are 
likely to be needed soon. The best choice is probably a combination of these two modifications. 
 
One last note, notice that the I-cache hit rate is already quite high, meaning that we may have 
already have reached a point of diminishing returns. Thus, making a small change to the D-cache 
might, in the end, provide a greater overall improvement. The only way to really know is to apply 
analysis based on instruction traces from the same benchmarks or applications. 
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Problem 3. Trip Around the Old Block 

Lee Hart is assigned the task of designing the cache architecture for an upcoming processor. He is given 
the following design constraints. Cache accesses, for both hits and misses, require 1 clock cycle.  On 
cache misses, an entire cache block (multiple words) is fetched from main memory.  Main memory 
accesses are not initiated until after the cache is inspected.  A main-memory access consists of 2 cycles to 
send the address, 3 cycles of idle time for main-memory access, and then 1 cycle to transfer word to the 
cache. Moreover, the processor will stall until the last word of the block has arrived.  Thus, if the block 
size is B words (32 bits), a cache miss will cost 1 + 2 + 3 + B cycles.  The following table gives the 
average cache miss rates of a 1 Mbyte cache for various block sizes: 

Block size (B) Miss ratio (m), % 
1 3.2 
4 1.6 

16 0.8 
64 0.4 

256 0.3 

(A) Write an expression for the average memory access time for a 1-Mbyte cache and a B-word block 
size (in terms of the miss ratio m and B). (5 pts) 

(1-m)*1 + m*(1+2+3+B) = 1 + 5m + Bm 

(B) What block size yields the best average memory access time? (5 pts) 

4 

(C) If main memory bus width is expanded to 128 bits (4 words), reducing the number of cycles for 
accessing the block proportionately, what is the optimal block size? (5 pts) 

The expression becomes 1 + 5m + Bm/4, and the best blocksize becomes 16. 

(D) Suppose that expanding the memory bus to 128 bits increases the main memory access latency by 
6 clocks (for a total of 12 cycles of overhead before the first access); what then is the optimal 
block size? (5 pts) 

The expression becomes (1-m)*1 + m*(1+2+9+B/4), and the best blocksize becomes 64. 

Problem 4. Approximate LRU Replacement 

Immediately after the cache-replacement-algorithm lecture in Comp 411, Lori Acan has an epiphany. It 
dawns on her that it is possible to approximate LRU replacement in a 4-way set with only 3 bits per set, 2 
less than an exact LRU implementation and only 1 bit more than the FIFO algorithm.  Her scheme works 
as follows. She partitions the 4-way set into two halves and treats each half as a 2-way set, thus, allotting 
one replacement bit for computing the LRU line in each half. This requires 2 bits, one for each half. The 
third bit is used to keep track of the most recently used half of the cache. On a cache miss, the least 
recently used line in the least recently used half of the cache is replaced.    

(A) Simulate the behavior of this replacement algorithm on a 4-word fully associate cache using the 
instruction sequence given in lecture and repeated below where $t3 = 0x4000. Assume the initial 
values of the replacement bits are 0-00. Estimate the miss rate for this code sequence in the 
steady state while noting of the values of the 3 replacement bits on each cache access. 

      Address          Instruction 
 400:    lw   $t0,0($t3) 
 404:    addi $t3,$t3,4 
 408:    bne  $t0,$0,400 
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 The miss ratio is ¼.  

(B) Explain how Lori’s approximate LRU algorithm can be used for any N-way set where N=2k. 
How many bits are required per set in these cases? 
Half the lines step by step until there are only two lines in each small group. The first bit is used 
to indicate which half is most recently used, the second is used to indicate which ¼ among the 
half is used most recently, and so on. The last bit is used to indicate which line is least recently 
used in the pair of lines. There are totally log(N) levels, the number of bits needed is  
                                                       1 + 2 + 4 + … + N/2 = N-1 

(C) Give a memory reference string for which Lori’s 4-way LRU replacement algorithm differs from 
an exact LRU replacement. 

If the replacement bits are (0,00), line pair (2, 3) is accessed less recently than pair (0, 1), and 
2 is accessed before 3 while 0 is accessed before 1. There are three possible access pattern 
which are (2, 3, 0, 1), (2, 0, 3, 1), and (0, 2, 3, 1). If the true access order is (0, 2, 3, 1), then the 
second least recently accessed line 2 is more likely to be replaced than line 0. 

 
 
 
 
 
 
 
 
 
 

 

When the last miss happens, line 2 is least recently used, but in Lori’s algorithm, the second 
least used line 1 will be replaced.  

 

Addr Line # Miss? Replacement bits 
  100 2 M 1.01 
1000 0 M 0,11 
  101 3 M 1,10 
  102 1 M 0,00 
  100 2  1,01 
1001 0 M 0,11 
  101 3  1,10 
  102 1  0,00 
  100 2  1,01 
1002 0 M 0,11 
  101 3  1,10 
  102 1  0,00 
  100 2  1,01 
1003 0 M 0,11 
  101 3  1,10 
  102 1  0,00 

Addr Line # Miss? Replacement bits 
100 2 M 1,01 
101 0 M 0,11 
102 3 M 1,10 
103 1 M 0,00 
101 0  0,11 
102 3  1,10 
104 1 M 0,00 
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(D) In the worse case, what will be the highest element in an ordered list of recent accesses that 
Lori’s approximate LRU replacement algorithm would throw out? 

 
The case given above is the worst case. The third least recently used value will either be the most 
recently used element in the “other” least recently used half, or it will be the least recently used 
element in the current, most recently used “half”. In neither case can it be thrown out. 

 


