
Comp 411 – Spring 2012 - 1 - Problem Set #5

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comp 411 Computer Organization
Spring 2012

Problem Set #5 Solutions

Problem 1. “Simplified Shifts”
 Problem 2

a) Since Lori’s implementation is intended to replace the original MIPS shift instructions, only
minor changes are needed. Instead of feeding bits 25:21 into the ASEL mux, bits 10:6 would
be used. Also, the constant ’16’ no longer needs to be input to the ASEL mux. The Control
Logic would need to be slightly modified in order to correctly support the new instructions.

b) Since the variable shift instructions are separate instructions from the shamt shift instructions,
they will still work as normal. Since they use values from registers, control will set the ASEL
mux to 0 (as they were originally), while Lori’s instructions will have ASEL set to 1.

c) No, the modifications in part a) are su�cient.

d) The new lsi instruction can load the given immediate value into any part of the word. The old
lui instruction is a subset of lsi, as its functionality can be completely emulated.

e) It does not impact the data path at all, as the hardware to sign-extend the immediate value
is already present. By using a signed immediate value, the resulting values would be both
positive and negative. This could be helpful when computing memory o↵sets.

Problem 3

ALUFN
Opcode PCSEL WASEL SEXT BSEL WDSEL Sub Bool Shft Math Wr WERF ASEL

sub 0 0 - 0 1 1 - 0 1 0 1 0
xor 0 0 - 0 1 - 00 0 0 0 1 0
addi 0 1 1 1 1 0 – 0 1 0 1 0
sll 0 0 - 0 1 - 00 1 0 0 1 1

andi 0 1 0 1 1 - 00 0 0 0 1 0
lw 0 1 1 1 2 0 – 0 1 0 1 0
sw 0 1 1 1 - 0 – 0 1 1 0 0
j 2 - - - - - – - - 0 0 -

jal 2 2 - - 0 - – - - 0 1 -
lui 0 1 - 1 1 - 00 1 0 0 1 2

3

	
	
	
	
	
	
Problem	 2.	 “Out	 of	 Control”	

Problem 2

a) Since Lori’s implementation is intended to replace the original MIPS shift instructions, only
minor changes are needed. Instead of feeding bits 25:21 into the ASEL mux, bits 10:6 would
be used. Also, the constant ’16’ no longer needs to be input to the ASEL mux. The Control
Logic would need to be slightly modified in order to correctly support the new instructions.

b) Since the variable shift instructions are separate instructions from the shamt shift instructions,
they will still work as normal. Since they use values from registers, control will set the ASEL
mux to 0 (as they were originally), while Lori’s instructions will have ASEL set to 1.

c) No, the modifications in part a) are su�cient.

d) The new lsi instruction can load the given immediate value into any part of the word. The old
lui instruction is a subset of lsi, as its functionality can be completely emulated.

e) It does not impact the data path at all, as the hardware to sign-extend the immediate value
is already present. By using a signed immediate value, the resulting values would be both
positive and negative. This could be helpful when computing memory o↵sets.

Problem 3

ALUFN
Opcode PCSEL WASEL SEXT BSEL WDSEL Sub Bool Shft Math Wr WERF ASEL

sub 0 0 - 0 1 1 - 0 1 0 1 0
xor 0 0 - 0 1 - 00 0 0 0 1 0
addi 0 1 1 1 1 0 – 0 1 0 1 0
sll 0 0 - 0 1 - 00 1 0 0 1 1

andi 0 1 0 1 1 - 00 0 0 0 1 0
lw 0 1 1 1 2 0 – 0 1 0 1 0
sw 0 1 1 1 - 0 – 0 1 1 0 0
j 2 - - - - - – - - 0 0 -

jal 2 2 - - 0 - – - - 0 1 -
lui 0 1 - 1 1 - 00 1 0 0 1 2

3

subu

addiu

Comp 411 – Spring 2012 - 2 - Problem Set #5

Problem 3. Delayed Decisions

(A) What instruction format would the abnz instruction use?
It should be encoded as an I-format

(B)
PCSEL if Z 0 else 1
WASEL 1
SEXT 1
BSEL 0
WDSEL 1
ALUFN Sub = 0 / Bool =XX / Shft=0 / Math=1
Wr 0
WERF 1
ASEL 0

(C)

We cannot subtract $rs from $rt using the current datapath.
It would have to be modified to support this “reverse” subtraction.

(D)

Steps sum1 takes is (2+3N+2) while sum2 takes (3+2N+2).
For sum2 to be at least 25% faster than sum1, N must be no less than 8.

(E)

The branch decision is made at ALU stage. A straightforward implementation
requires 2 delay slots. We need an adder and a comparator to compute the early
branch decision. This implementation is complex when compared to bne and beq.
It also requires more complex (slower) logic.

(F)

standard:
 addi $t0, $t0, 0 //sum stored in $t0
 addi $t1, $t1, 0 // i = 0
 addi $t2, $0, N // N stored in $t2
 slt $t2, $t1, $t2
 beq $t2, $0, end
loop: sll $t1, $t1, 2
 lw $t3, x($t1)
 add $t0, $t0, $t3 //sum = sum + x[i]
 addi $t1, $t1, 1 // i++
 addi $t2, $0, N // N stored in $t2
 slt $t2, $t1, $t2
 bne $t2, $0, loop
 end:

abnzversion:
 addi $t0, $t0, 0 //sum stored in $t0
 addi $t1, $t1, 0 // i = 0
 addi $t2, $0, N
 beq $t2, $t1, end
loop: subi $t2, $0, N // -N stored in $t2
 sll $t1, $t1, 2
 lw $t3, x($t1)
 add $t0, $t0, $t3 //sum = sum + x[i]
 addi $t1, $t1, 1 // i++
 abnz $t1, $t2, loop
end:

Comp 411 – Spring 2012 - 3 - Problem Set #5

Problem 4. Flexible Pipes

(A)
In the original pipelined miniMIPS it will take 5 clock periods (T) to complete the
first add and then 999 T to complete the rest. Thus the total time to process
1000 adds will be 1004T. In the modified miniMIPS it will take 4T for the first
add and 999T for the rest. So the total time for this ‘improved’ version to
complete 1000 adds will be 1003T, not much improvement over the regular
pipelined miniMIPS.

(B)
One instruction per clock period T.

(C)
If an instruction that uses all 5 stages (e.g. lw/sw) is right before an instruction
which only uses 4 stages (e.g. add/sub), then the second instruction will have to be
stalled. For example:

 lw $t0, x
 add $t1, $t2, $t3

To execute this sequence correctly the pipeline diagram must look like this:

Pipe Stage t1 t2 t3 t4 t5 t6
IF lw add
RF lw add

ALU lw add add
MEM lw
WB lw add

The stall happens when the add instruction does not move to the next stage
between t4 and t5.

(D)
If all we ever executed were single 4-stage instructions such as add, then Bud’s idea
would improve performance by 20%. In reality, however, we execute programs with many
instructions. If these instructions are all 4-stage instructions, then, as shown in part
(A) the performance improvement is insignificant. If these instructions are intermixed
4-stage and 5-stage instructions, then, as part (C) showed, there isn’t going to be
any performance improvement.

Comp 411 – Spring 2012 - 4 - Problem Set #5

Problem 5. Stage Three

(A)
 addi $at, $0, offset
 lw $t0, ($at)

addi $at, $0, offset
sw $t0, ($at)

(B)
One bypass path from the output of WDSEL MUX to the input of ASEL MUX, and
WDSEL MUX to the input of BSEL MUX. The following sequence uses both two
bypass paths:

 lw $t0, ($at)
 add $t1, $t0, $t0

We need one more bypass path to support jal operation, which comes from PCREG to
the inputs of ASEL and BSEL MUXs:

jal loop
nop
add $t0, $t1, $t1

(C)
It does not require interlock because memory instruction (lw/sw) is only offset from
the next instruction by one step.

