
Comp 411 - Spring 2012 - 1 - Problem Set #5

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Comp 411 Computer Organization
Spring 2012

Problem Set #5

Issued Wednesday, 3/21/12; Due Wednesday, 4/9/12

Homework Information: Some of the problems are probably too long to be done the night
before the due date, so plan accordingly. Late homework will not be accepted. Feel free to get
help from others, but the work you hand in should be your own.

Problem 1. “Simplified Shifts”

Lori Acan, a budding computer architect, realized that the hardware implementation of the sll,
slr, sar, and lui instructions could be simplified, if they were encoded as follows:

op=000000 shamt rt rd 0 func=000000 sll rd, rt, shamt

op=000000 shamt rt rd 0 func=000010 srl rd, rt, shamt

op=000000 shamt rt rd 0 func=000011 sra rd, rt, shamt

op=001111 10000 rt 16-bit immediate lui rt, imm

(A) Comment on how Lori’s new encoding approach impacts the hardware implementation

(i.e. what bits fetched from the instruction memory would need to be rerouted, and to
where).

(B) Does Lori’s new encoding impact the hardware implementation of the variable shift

instructions (sllv, srav, and srlv)?

Lori has also suggested that the lui instruction be replaced with the following more general
instruction:

op=001111 shamt rt 16-bit immediate lsi rt, imm, shamt

Load the specified register, rt, with the value of the signed-immediate constant shifted left
by the unsigned instruction field, shamt.

(C) Does Lori’s proposed lsi instruction require any additional hardware modification to

the miniMIPS data path beyond those need for her new encodings?

(D) Discuss the utility of Lori’s new instruction. Specifically, what capabilities does it

provide over lui. Comment on whether lui a subset of the lsi instruction’s
functionality?

(E) Discuss the implications of Lori’s choice to treat the 16-bit immediate value as a signed

number. Does it impact the data path? How does the set of constants that can be
generated vary in comparison to an unsigned implementation?

Comp 411 - Spring 2012 - 2 - Problem Set #5

Problem 2. “Out of Control”

Fill in the entries of the Control Logic ROM, based on the given data path. Feel free to print this
page, fill in your answers, staple it to your answers for problems 1-2, and turn it in.

Opcode PCSEL WASEL
SEXT BSEL WDSEL

 ALUFN
Sub Bool Shft Math

Wr WERF ASEL

subu
xor
addiu
sll
andi
lw
sw
j
jal
lui

Comp 411 - Spring 2012 - 3 - Problem Set #5

Problem 3. Delayed Decisions
Many modern instructions set architectures include special conditional instructions designed to
avoid branch delays and to pipeline stalls related to determining a branch target. Consider the
following proposed extension to the miniMIPS ISA.

 abnz rt,rs,label

Add the contents of register rs to those of register rt, if the result is not zero
branch to label.

if (Reg[rt] + Reg[rs] != 0) {

 PC ← PC + 4 + 4*sign_extend(imm16);
}
Reg[rt] ← Reg[rt] + Reg[rs]

(A) What instruction format would the abnz instruction use?

(B) How should each miniMIPS control signal be set to implement the abnz instruction
(assume the unpipelined miniMIPS implementation) HINT: you should specify PCSEL
as a function of the ALU’s Z flag?

(C) At first glance it might seem that subtracting Reg[rs] from Reg[rt] is a more natural

instruction choice. Explain why this change would require datapath modifications.

Consider the following two implementations of the procedure int sum(int N). The first uses
only standard MIPS instructions while the second takes advantage of the abnz instruction:

sum1: addu $sp,$sp,-24 sum2: addu $sp,$sp,-24
 move $v0, $0 move $v0,$0
loop: add $v0,$v0,$a0 addi $t0,$0,-1
 addi $a0,$a0,-1 loop: add $v0,$v0,$a0
 bne $a0,$0,loop abnz $a0,$t0,loop
 addu $sp,$sp,24 addu $sp,$sp,24
 j $31 j $31

(D) For what values of the argument N is sum2 is at least 25% faster than sum1?

Despite the apparent advantages of the abnz instruction (it requires no additional H/W and it
improves the performance of some loops), there are still significant reasons for not including it.

(E) One problem with the abnz instruction is that it is difficult to pipeline. At what stage in
the miniMIPS 5-stage pipeline is the branch decision made for the abnz instruction?
How many delay slots would a straightforward implementation of it require? Describe
the additional logic that would be required to compute an early branch decision in the
Register-Fetch pipeline stage for the abnz instruction. How does the complexity, and
likely propagation delay, of the early branch-decision hardware required for the abnz
instruction compare to that of the bne and beq instructions of the standard MIPS ISA.

Comp 411 - Spring 2012 - 4 - Problem Set #5

Another difficulty associated with special-purpose branching instructions is that it is often
difficult for compilers to take advantage of them. Consider the following C-code fragment:

int sum = 0;
for (int i = 0; i < N; i = i + 1)
 sum = sum + x[i];

(F) Write a MIPS assembly language code fragment for the loop given above using the
standard MIPS branch instructions, and then recode your fragment incorporating the
abnz instruction. Comment on the coding and conceptual difficulties associated with
incorporating the abnz instruction in this loop (Note: In order to support debugging it is
required that the sum be computed in the same order as specified by the C-code).

Problem 4. Flexible Pipes

Bud LeVile has suggested a modification to the 5-stage miniMIPS pipeline discussed in class.
Having noticed that the MEM stage is only used for load and store instructions, he proposes
omitting that pipeline stage entirely whenever the memory isn’t accessed, as illustrated below:

Instruction t t+1 t+2 t+3 t+4
lw and sw IF RF ALU MEM WB
Other instructions IF RF ALU WB

Bud reasons that instructions which skip the MEM stage can complete a cycle earlier, thus,
allowing most programs will run as much as 20% faster! In your answers below assume that both
the original and the Bud-modified pipelined implementations are fully and properly bypassed.

(A) Explain briefly to Bud why decreasing the latency of a single instruction does not
necessarily have an impact on the throughput of the processor (Hint: Consider how long
it would take the original pipelined miniMIPS to complete a sequence of 1000 adds.
Then compare that with how long a Bud-modified miniMIPS would take to complete the
same sequence).

(B) Consider a sequence of alternating lw and add instructions. Assuming that the lw
instructions use different source and destination registers than the add instructions (i.e.,
there are no pipeline stalls introduced due to data dependencies), what is the instruction
completion rate of the original, unmodified 5-stage miniMIPS pipeline?

(C) Now show how the same sequence of instructions will perform on a processor modified
as Bud has suggested. Assume that the hardware will stall an instruction if it requires a
pipeline stage that is currently being used by a previous instruction. For example, if two
instructions both want to use the Write-Back pipeline stage in the same cycle, the
instruction that started later will be forced to wait a cycle. Draw a pipeline diagram
showing where the stalls need to be introduced to prevent pipe stage conflicts.

(D) Did Bud’s idea improve performance? Explain why or why not?

Comp 411 - Spring 2012 - 5 - Problem Set #5

Problem 5. Stage Three

Suppose that the behavior of the lw and sw instructions were redefined as follows:

 lw rt, (rs) Reg[rt] ← Mem[Reg[rs]]

Load register rt with the contents of the memory location specified register rs.

 sw rt, (rs) Mem[Reg[rs]] ← Reg[rt]

 Store the contents of register rt at the memory location specified register rs.

(A) Give instruction sequences that emulate the operation of the original lw and sw
instructions as pseudoinstuctions using the redefined versions. Note: Use register $as to
store any required intermediate values.

These ISA changes enable memory accesses and ALU operations to be overlapped in the same
pipeline stage (ALU/MEM). They also allow for the construction of a meaningful 3-stage
miniMIPS pipeline, whose datapath is illustrated below:

(B) Discuss where and the how many bypass paths are needed for this modified architecture.
Give an example instruction sequences that exercises each bypass path.

(C) Does this modified 3-stage pipeline architecture require pipeline interlocks on load
instructions? Explain why or why not.

