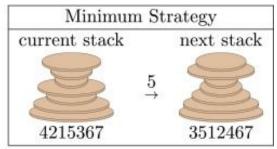
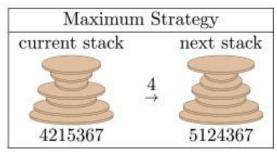
Comp 555 - BioAlgorithms - Spring 2021





- PROBLEM SET #6
 IS DUE ON THURSDAY
- FINAL EXAM STUDY SESSION?

Genome Rearrangements - Continued

In search of Approximation Ratios


```
def <u>GreedyReversalSort(pi)</u>:
    for i in range(len(pi)-1):
        j = pi.index(min(pi[i:]))
        if (j != i):
            pi = pi[:i]
            + [v for v in reversed(pi[i:j+1])]
            + pi[j+1:]
        return pi
```

```
A(П)

Step 0: 6 1 2 3 4 5

Step 1: 1 6 2 3 4 5

Step 2: 1 2 6 3 4 5

Step 3: 1 2 3 6 4 5

Step 4: 1 2 3 4 6 5

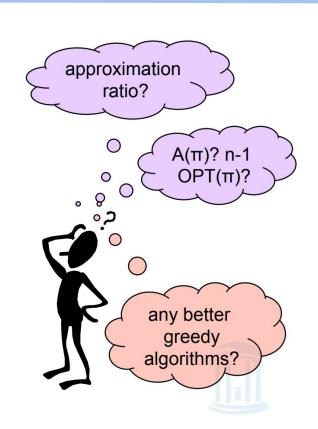
Step 5: 1 2 3 4 5 6
```

```
OPT(П)?

Step 0: 6 1 2 3 4 5

Step 1: 5 4 3 2 1 6

Step 2: 1 2 3 4 5 6
```



New Idea: Adjacencies

- Adjacencies are locally sorted runs.
- Assume a permutation:

$$\Pi = \pi_1, \pi_2, \pi_3, \dots \pi_{n-1}, \pi_n$$

• A pair of neighboring elements π_i and π_{i+1} are adjacent if:

$$\pi_{i+1} = \pi_i \pm 1$$

For example:

$$\Pi = 1, 9, \underline{3, 4}, \underline{7, 8}, 2, \underline{6, 5}$$

• (3,4) and (7,8) and (6,5) are adjacencies.

Adjacencies and Breakpoints

• Breakpoints occur between neighboring non-adjacent elements

$$\Pi = 1, |9, |3, 4, |7, 8, |2, |6, 5$$

- There are 5 breakpoints in our permutation between pairs (1,9), (9,3), (4,7), (8,2) and (2,5)
- We define $b(\Pi)$ as the number of breakpoints in permutation Π

Extending Permutations

• One can place two special elements, $\pi_0 = 0$ and $\pi_{n+1} = n+1$ at the beginning and end of Π respectively

$$1, |9, |3, 4, |7, 8, |2, |6, 5$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Pi = 0 1, |9, |3, 4, |7, 8, |2, |6, 5, |10$$

- An additional breakpoint was created after extending
- An extended permutation of length n can have at most (n+1) breakpoints
- (n-1) between the original elements plus 2 for the extending elements

How Reversals Effect Breakpoints

- Breakpoints are the targets for sorting by reversals.
- Once they are removed, the permutation is sorted.
- Each "useful" reversal eliminates at least 1, and at most 2 breakpoints.
- Consider the following application of GreedyReversalSort(Extend(Π))

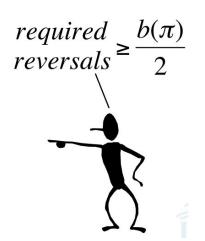
$$\Pi = 2, 3, 1, 4, 6, 5$$

$$0 \mid 2, 3 \mid 1 \mid 4 \mid 6, 5 \mid 7 \qquad b(\Pi) = 5$$

$$0, 1 \mid 3, 2 \mid 4 \mid 6, 5 \mid 7 \qquad b(\Pi) = 4$$

$$0, 1, 2, 3, 4 \mid 6, 5 \mid 7 \qquad b(\Pi) = 2$$

$$0, 1, 2, 3, 4, \overline{5, 6}, 7 \qquad b(\Pi) = 0$$



Sorting-by-Reversals: A second Greedy Algorithm

BreakpointReversalSort(π):

- 1. while $b(\pi) > 0$:
- 2. Among all possible reversals, choose reversal ρ minimizing $b(\pi)$
- 3. $\Pi \leftarrow \Pi \cdot \rho(i,j)$
- 4. output Π
- 5. return

The "greedy" concept here is to reduce as many breakpoints as possible at each step.

Does it always terminate?

What if no reversal reduces the number of breakpoints?

Yet Another New Idea: Strips

Strip: an interval between two consecutive breakpoints in a permutation

- Decreasing strip: strip of elements in decreasing order (e.g. 6 5 and 3 2).
- Increasing strip: strip of elements in increasing order (e.g. 7 8)
- A single-element strip can be declared either increasing or decreasing.
- We will choose to declare them as *decreasing* with exception of extension strips (with 0 and n+1)

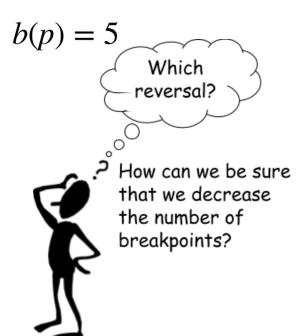
$$\overrightarrow{0}$$
, $\overrightarrow{1}$, $\overrightarrow{9}$, $\overrightarrow{4}$, $\overrightarrow{3}$, $\overrightarrow{7}$, $\overrightarrow{8}$, $\overrightarrow{2}$, $\overrightarrow{5}$, $\overrightarrow{6}$, $\overrightarrow{10}$

Reducing the Number of Breakpoints

• Consider $\Pi = 1,4,6,5,7,8,3,2$

$$\overrightarrow{0,1}, \overrightarrow{4}, \overrightarrow{6,5}, \overrightarrow{7,8}, \overrightarrow{3,2}, \overrightarrow{9}$$

If permutation p contains at least one decreasing strip, then there exists a reversal r which decreases the number of breakpoints (i.e. $b(p \cdot r) < b(p)$).



• Consider $\Pi = 1,4,6,5,7,8,3,2$

$$\overrightarrow{0,1}, \overrightarrow{4}, \overrightarrow{6,5}, \overrightarrow{7,8}, \overrightarrow{3,2}, \overrightarrow{9}$$

$$b(p) = 5$$

- Choose the decreasing strip with the smallest element k in Π
 - It'll always be the right-most element of that strip

- Find k-1 in the permutation
 - it'll always be flanked by a breakpoint
- Reverse the segment between k and k-1

• Consider $\Pi = 1,4,6,5,7,8,3,2$

$$\overrightarrow{0}, 1, 2, \overrightarrow{3}, | \overrightarrow{8}, 7, | \overrightarrow{5}, \overrightarrow{6}, | \overrightarrow{4}, | \overrightarrow{9}$$

$$b(p) = 4$$

- Choose the decreasing strip with the smallest element k in Π
 - It'll always be the right-most element of that strip

- Find k-1 in the permutation
 - it'll always be flanked by a breakpoint
- Reverse the segment between k and k-1

• Consider $\Pi = 1,4,6,5,7,8,3,2$

$$0, 1, 2, 3, 4, 16, 5, 17, 8, 9$$
 $b(p) = 2$

- Choose the decreasing strip with the smallest element k in Π
 - It'll always be the right-most element of that strip

3

- Find k-1 in the permutation
 - it'll always be flanked by a breakpoint
- Reverse the segment between k and k-1

• Consider $\Pi = 1,4,6,5,7,8,3,2$

$$b(p) = 0$$

- Choose the decreasing strip with the smallest element k in Π
 - It'll always be the right-most element of that strip

- Find k-1 in the permutation
 - it'll always be flanked by a breakpoint
- Reverse the segment between k and k-1

• Consider $\Pi = 1,4,6,5,7,8,3,2$

$$\frac{0,1,|4,|6,5,|7,8,|3,2,|9}{0,1,2,3,|8,7,|5,6,|4,|9}$$

$$\frac{0,1,2,3,|8,7,|5,6,|4,|9}{0,1,2,3,4,|6,5,|7,8,9}$$

$$\frac{0,1,2,3,4,5,6,7,8,9}{0,1,2,3,4,5,6,7,8,9}$$

$$b(p) = 5$$

$$b(p) = 4$$

$$b(p) = 2$$

$$b(p) = 0$$

$$d(\Pi) = 3$$

Does it work for any permutation?

Any other way?

• Reconsider $\Pi = 1,4,6,5,7,8,3,2$

$$b(p) = 5$$

$$b(p) = 3$$

$$b(p) = 2$$

$$b(p) = 0$$

What is the most possible breakpoints that can be removed in a single reversal?

What is fewest number of reversals that could reduce 5 breakpoints to 0?

How many breakpoints are eliminated in the last reversal?

Potential Gotcha

$$\overrightarrow{0}, 1, 2, |\overrightarrow{5}, 6, \overrightarrow{7}, |\overrightarrow{3}, 4, |\overrightarrow{8}, \overrightarrow{9}|$$
 $b(p) = 3$

- If there is no decreasing strip, there may be no strip-reversal ρ that reduces the number of breakpoints (i.e. $b(\Pi^{\cdot}\rho(i,j)) \geq b(\Pi)$ for any reversal ρ).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.

Create no decreasing strips!

Potential Gotcha

$$0, 1, 2, |5, 6, 7, |3, 4, |8, 9$$

$$b(p) = 3$$

$$0, 1, 2, |7, 6, 5, |3, 4, |8, 9$$

$$b(p) = 3$$

- If there is no decreasing strip, there may be no strip-reversal ρρ that reduces the number of breakpoints (i.e. b(Π'ρ(i,j)) ≥ b(Π) for any reversal ρ).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.

Putting it all together

- 1. With each reversal, one can remove at most 2 breakpoints
- 2. If there is any decreasing strip there exists a reversal that will remove at least one breakpoint
- 3. If breakpoints remain and there is no *decreasing* strip one can be created by reserving *any* remaining strip

$$\begin{array}{lll}
\overrightarrow{0,1,2,|5,6,7,|3,4,|8,9} & b(p) = 3 & \rho(3,5) \\
\overrightarrow{0,1,2,|7,6,5,|3,4,|8,9} & b(p) = 3 & \rho(6,7) \\
\overrightarrow{0,1,2,|7,6,5,4,3,|8,9} & b(p) = 2 & \rho(3,7) \\
\overrightarrow{0,1,2,3,4,5,6,7,8,9} & b(p) = 0 & Done!
\end{array}$$

An optimal algorithm would remove 2 breakpoints at every step. The last reversal always removes 2 breakpoints, thus if the number of breakpoints is odd, even the optimal algorithm must make at least one reversal that removes only 1 breakpoint.

An Improved Breakpoint Reversal Sort

ImprovedBreakpointReversalSort(π)

```
1. while b(\pi) > 0

2. if \pi has a decreasing strip

3. Among all possible reversals, choose reversal \rho that minimizes b(\pi \cdot \rho)

4. else

5. Choose a reversal \rho that flips an increasing strip in \pi

6. \pi \leftarrow \pi \cdot \rho

7. output \pi

8. return
```


Comp 555 - Spring 2021

Breakpoints and Strips


```
In [11]: def hasBreakpoints(seg):
             """ returns True if sequences is not strictly increasing by 1 """
             for i in range(1, len(seg)):
                 if (seq[i] != seq[i-1] + 1):
                     return True
             return False
         def getStrips(seq):
             """ find contained intervals where sequence is ordered, and return intervals
             in as lists, increasing and decreasing. Single elements are considered
             decreasing. "Contained" excludes the first and last interval. """
             deltas = [seq[i+1] - seq[i] for i in range(len(seq)-1)]
             increasing = list()
             decreasing = list()
             start = 0
             for i, diff in enumerate(deltas):
                 if (abs(diff) == 1) and (diff == deltas[start]):
                     continue
                 if (start > 0):
                     if deltas[start] == 1:
                         increasing.append((start, i+1))
                     else:
                         decreasing.append((start, i+1))
                 start = i+1
             return increasing, decreasing
```

Handle Reversals


```
In [15]: def pickReversal(seq, strips):
             """ test each decreasing interval to see if it leads to a reversal that
             removes two breakpoints, otherwise, return a reversal that removes only one """
             for i, j in strips:
                 k = seq.index(seq[j-1]-1)
                 if (seq[k+1] + 1 == seq[i]):
                     # removes 2 breakpoints
                     return 2, (\min(k+1, j), \max(k+1, j))
             # In the worst case we remove only one, but avoid the length "1" strips
             for i, j in strips:
                 k = seq.index(seq[j-1]-1)
                 if (j - i > 1):
                     break
             return 1, (\min(k+1, j), \max(k+1, j))
         def doReversal(seq,reversal):
             i, j = reversal
             return seq[:i] + [element for element in reversed(seq[i:j])] + seq[j:]
```

Let's do it!


```
In [13]: def improvedBreakpointReversalSort(seg, verbose=True):
             seq = [0] + seq + [max(seq)+1]
                                                                         # Extend sequence
             N = 0
             while hasBreakpoints(seq):
                 increasing, decreasing = getStrips(seg)
                 if len(decreasing) > 0:
                                                                         # pick a reversal that removes a decreasing strip
                     removed, reversal = pickReversal(seg, decreasing)
                 else:
                     removed, reversal = 0, increasing[0]
                                                                        # No breakpoints can be removed
                 if verbose:
                     print("Strips:", increasing, decreasing)
                     print("%d: %s rho%s" % (removed, seq, reversal))
                     input("Press Enter:")
                 seq = doReversal(seq, reversal)
                 N += 1
             if verbose:
                 print(seq, "Sorted")
             return N
         # Also try: [1,9,3,4,7,8,2,6,5]
         print(improvedBreakpointReversalSort([3,4,1,2,5,6,7,10,9,8], verbose=True))
         Strips: [(1, 3), (3, 5), (5, 8)] [(8, 11)]
         2: [0, 3, 4, 1, 2, 5, 6, 7, 10, 9, 8, 11] rho(8, 11)
         Press Enter:
         Strips: [(1, 3), (3, 5)] []
         0: [0, 3, 4, 1, 2, 5, 6, 7, 8, 9, 10, 11] rho(1, 3)
         Press Enter:
         Strips: [(3, 5)] [(1, 3)]
         1: [0, 4, 3, 1, 2, 5, 6, 7, 8, 9, 10, 11] rho(3, 5)
         Press Enter:
         Strips: [] [(1, 5)]
         2: [0, 4, 3, 2, 1, 5, 6, 7, 8, 9, 10, 11] rho(1, 5)
         Press Enter:
         [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] Sorted
```

Performance

- ImprovedBreakPointReversalSort is a greedy algorithm with a performance guarantee of no worse than 4 compared to an optimal algorithm
 - It eliminates at least one breakpoint in every two steps (flip an increasing then remove 1)
 - \circ That's at most: $2b(\Pi)$ steps
 - \circ An optimal algorithm could *at most* remove 2 breakpoints in every step, thus requiring b(Π)/2 steps
 - The approximation ratio is:

$$\frac{\mathcal{A}(\Pi)}{OPT(\Pi)} = \frac{2b(\Pi)}{\frac{b(\Pi)}{2}} = 4$$

But there is a solution with far fewer flips

A Better Approximation Ratio

- If there is a decreasing strip, the next reversal reduces $b(\pi)$ by at least one.
- The only bad case is when there is no decreasing strip. Then we do a reversal that does not reduce $b(\pi)$.
- If we always choose a reversal reducing $b(\pi)$ and, at the same time, select a permutation such that the result has at least one decreasing strip, the bad case would never occur.
- If all possible reversals that reduce $b(\pi)$ create a permutation without decreasing strips, then there exists a reversal that reduces $b(\pi)$ by 2 (Proof not given)!
- When the algorithm creates a permutation without a decreasing strip, the previous reversal must have reduced $b(\pi)$ by two.
- At most $b(\pi)$ reversals are needed.
- The improved Approximation ratio:

$$\frac{\mathcal{A}_{new}(\Pi)}{OPT(\Pi)} = \frac{b(\Pi)}{\frac{b(\Pi)}{2}} = 2$$

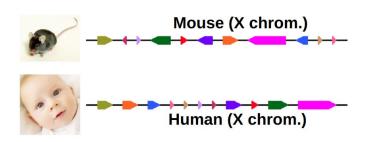
Comparing Greedy Algorithms

SimpleReversalSort

- Attempts to extend the prefix(π) at each step
- Approximation ratio (n−1)/(b(Π)/2) can be large

Improved Break point Reversal Sort

- Attempts to reduce the number of breakpoints at each step
- Approximation ratio $b(\Pi)/(b(\Pi)/2) = 2x$



Next Time

Randomized Algorithms

