# Comp 555 - BioAlgorithms - Spring 2021



- PROBLEM SET #4 15 DUE TONIGHT
- PROBLEM SET #5 IS DUE ONE WEEK FROM TODAY

#### Inferring Ancestry using HMMs

#### **Decoding Problem Solution**



• The *Decoding Problem* is equivalent to finding a longest path in the directed acyclic graph (DAG), where "longest" is defined as the maximum product of the probabilities along the path.



#### Viterbi Decoding Algorithm



- Since the *longest path* is a product of edge weights, if we use the **log** of the weights we can make it a sum again!
- The value of the product can become extremely small, which leads to underflow.
- Many common probability distributions have an exponential form. Taking their log simplifies these distributions.
- Improves numerical accurracy and stability.

$$s_{k,i+1} = \log(e_l(x_{i+1})) + \max_{k \in Q} \{s_{k,i} + \log(a_{kl})\}$$

#### Viterbi Decoding Algorithm (cont)



- Every path in the graph has the probability  $P(x|\pi)$ .
- The Viterbi decoding algorithm finds the path that maximizes  $P(x|\pi)$  among all possible paths.
- The Viterbi decoding algorithm runs in *O*(*n*/*Q*/<sup>2</sup>) time (length of sequence times number of states squared).
- The Viterbi decoding algorithm can be efficiently implemented as a dynamic program

Dynamic Program's Recursion:

$$s_{l,i+1} = \max_{k \in Q} \{s_{k,i} \cdot \text{weight of edge between } (k,i) \text{ and } (l,i+1)\}$$
$$= \max_{k \in Q} \{s_{k,i} \cdot a_{kl} \cdot e_l(x_{i+1})\}$$
$$= e_l(x_{i+1}) \cdot \max_{k \in Q} \{s_{k,i} \cdot a_{kl}\}$$

#### Viterbi Example



- Solves all subproblems implied by observed sequence
- How likely is this path? 0.006
- What is it? **BBBBBB**



#### How likely is "most likely?



- The "most likely path" may not be a lot more likely than a 2nd or 3rd most likely paths (even more so in more realistic cases than this one).
- Actual probability of the "most likely path" is not that high.

| Р      | π      | Р      | π      | Р      | π      | Р      | π      |                      |
|--------|--------|--------|--------|--------|--------|--------|--------|----------------------|
| 0.0058 | BBBBBB | 0.0001 | BBBFFB | 0.0000 | FFFBFF | 0.0000 | FBBFBF |                      |
| 0.0046 | FFFFF  | 0.0001 | FFFFBF | 0.0000 | FFBFBB | 0.0000 | BFBBFF | ( " <b>FFFF</b> " :- |
| 0.0013 | FBBBBB | 0.0001 | FFBFFF | 0.0000 | FBFFBB | 0.0000 | BFFBBF | <b>FFFFF</b> IS      |
| 0.0012 | FFFFBB | 0.0001 | FBFFFF | 0.0000 | FBBFFB | 0.0000 | BBFBFF | nearly as good       |
| 0.0009 | FFBBBB | 0.0001 | FFBBBF | 0.0000 | FFBFFB | 0.0000 | FFBFBF | as " <b>BBBBBB</b> " |
| 0.0008 | FFFFB  | 0.0001 | BFFFBB | 0.0000 | FBFFFB | 0.0000 | FBFFBF |                      |
| 0.0006 | FFFBBB | 0.0001 | FBBBFF | 0.0000 | FBFBBB | 0.0000 | BFFBFF | C,                   |
| 0.0006 | BBBFFF | 0.0001 | BBFFFB | 0.0000 | FBBBFB | 0.0000 | BFBFBB |                      |
| 0.0004 | BBBBBF | 0.0000 | BFBBBB | 0.0000 | BBBFBF | 0.0000 | FBFBBF |                      |
| 0.0004 | BBFFFF | 0.0000 | BBBBFB | 0.0000 | FFBBFB | 0.0000 | BFBFFB |                      |
| 0.0003 | BBBBFF | 0.0000 | BBFBBB | 0.0000 | BBFFBF | 0.0000 | FBFBFF |                      |
| 0.0003 | BFFFFF | 0.0000 | BFFFFB | 0.0000 | BFFFBF | 0.0000 | BFBBFB | Π                    |
| 0.0001 | BBBFBB | 0.0000 | FFFBBF | 0.0000 | BFBFFF | 0.0000 | BBFBFB | 11                   |
| 0.0001 | FBBFFF | 0.0000 | FFBBFF | 0.0000 | FFFBFB | 0.0000 | BFFBFB |                      |
| 0.0001 | FBBBBF | 0.0000 | FBBFBB | 0.0000 | BFBBBF | 0.0000 | FBFBFB | -                    |
| 0.0001 | BBFFBB | 0.0000 | BFFBBB | 0.0000 | BBFBBF | 0.0000 | BFBFBF |                      |

# HMMs in Biology

- Inferring ancestral contributions of a descendant
- Collaborative Cross project
- Maintained at UNC since 2006

#### Objective:

Create new reproducible mouse strains by randomly combining the genomes of eight diverse mice strains

Problem:

Given an extant strain, which parts of its genome came from which founder?



#### **Mixing Genome**

- A randomized breeding scheme was used to
  - Mix the genomes by recombination
  - Fix the genomes by inbreeding
- A breeding funnel 8 genomes go in a mosaic comes out
- Process was repeated 100s of times to generate independent mosaic lines
- Genotyping was used to track founder contributions





# Instead of "Birds and Bees," Mice and Flies



- Recombination mixes the genomes of the two chromosomes
- Sib-mating causes the genomes to fix



#### Comp 555 - Spring 2021

# A Genome Mosaic

- A Hidden Markov Model is used to infer the "hidden" state of which of the 8 founders contributed to what parts of the genome
- A Viterbi Solution finds the most likely mosaic given a set of "genotypes"

- Coin Flips are "variants"
- Hidden State is which "founder"





#### Comp 555 - Spring 2021

#### Genotyping Microarrays

 DNA probes to query the state of specific "known" and "informative" Single Nucleotide Polymorphisms (SNPs)

Bases in the genome that vary within a population

- Each probe distinguishes 4 cases ("Ref", "Alt", "H", "N")
- From these observations we infer the founder at every marker







#### **Example Genotypes**

- Genotypes for a chromosome
- 1000s of probes with positions of variant
- Alleles are indicated by the nucleotide
- Rarely can a single maker resolve the founder
- Which strain would you guess?

| Probe info |             |     | Founder Genotypes |             |            |           |          | Targ    |         |            |
|------------|-------------|-----|-------------------|-------------|------------|-----------|----------|---------|---------|------------|
|            | <u> </u>    | Г   |                   |             |            |           |          |         |         | ¥          |
| chromosome | positionB38 | C/A | C57BL/6J          | 129S1/SvImJ | NOD/ShiltJ | NZO/H1LtJ | CAST/EiJ | PWK/PhJ | WSB/EiJ | OR3199m266 |
| 2          | 3176721     | G   | Т                 | G           | Т          | G         | G        | Т       | Т       | Т          |
| 2          | 3180256     | G   | G                 | G           | G          | G         | Α        | A       | G       | G          |
| 2          | 3182308     | А   | G                 | А           | G          | А         | G        | G       | А       | A          |
| 2          | 3183784     | Т   | G                 | Т           | G          | Т         | G        | G       | т       | Т          |
| 2          | 3233750     | G   | G                 | G           | G          | G         | A        | G       | G       | G          |
| 2          | 3350920     | Α   | A                 | A           | A          | A         | G        | G       | A       | A          |
| 2          | 3353380     | Т   | Т                 | С           | Т          | С         | С        | С       | С       | С          |
| 2          | 3362696     | Т   | Т                 | Т           | Т          | Т         | Т        | C       | Т       | Т          |
| 2          | 3420272     | С   | C                 | Т           | С          | т         | т        | т       | С       | С          |
| 2          | 3433708     | G   | G                 | G           | G          | G         | A        | A       | G       | G          |
| 2          | 3438642     | С   | C                 | Т           | С          | т         | С        | Т       | С       | C          |
| 2          | 3456515     | С   | С                 | С           | С          | С         | Т        | С       | С       | С          |
| 2          | 3503822     | Т   | Т                 | Т           | Т          | С         | Т        | С       | т       | Т          |
| 2          | 3557793     | Α   | A                 | A           | A          | A         | G        | G       | A       | A          |
| 2          | 3595443     | Т   | Т                 | G           | Т          | G         | G        | G       | Т       | Т          |
| 2          | 3613854     | Α   | A                 | A           | A          | G         | G        | G       | A       | A          |
| 2          | 3663247     | Т   | Т                 | Т           | Т          | Т         | C        | C       | т       | Т          |
| 2          | 3666094     | G   | G                 | G           | G          | G         | G        | Т       | Т       | Т          |
| 2          | 3681891     | G   | G                 | G           | G          | G         | A        | G       | G       | G          |
| 2          | 3715097     | G   | G                 | G           | G          | G         | Т        | Т       | G       | G          |

#### Genotype Noise



- One last issue, between 1% and 5% of genotypes are simply wrong
- Source of errors
  - A probe didn't glow bright enough
  - A section of the array was damaged (fingerprints, cracks, hair, etc.)
  - Mess ups when fabricating a probe's sequence
  - DNA itself was contaminated
- Error types:
  - "No" calls (observation is uninformative)
  - A possible, but incorrect call

#### **Reading Genotypes**



```
In [1]: fp = open("CCGenotypes.csv", 'r')
                              # break file into lines
      data = fp.read().split('\n')
      fp.close()
      header = data.pop(0).split(',')  # First line is header
      while (len(data[-1].strip()) < 1): # remove extra lines</pre>
        data.pop()
      for i, line in enumerate(data):
                              # make a list from each row
        field = line.split(',')
        field[1] = int(field[1])
                            # convert position to integer
        data[i] = field
      fp.close()
     print(header)
      print("Number of probes", len(data))
      for i in range(100,110):
        print("data[%d] = %s" % (i, data[i]))
      ['Chromosome', 'Position', 'A/J', 'C57BL/6J', '129S1/SvImJ', 'NOD/ShiLtJ', 'NZO/HlLtJ', 'CAST/EiJ', 'PWK/PhJ', 'WSB/
     EiJ', 'CC004/TauUnc']
     Number of probes 419
     data[101] = ['1', 59995627, 'A', 'A', 'A', 'C',
                                       'C', 'C', 'C', 'C',
                                                     'C']
                                   'G',
                                       'G',
                                             'A',
     data[102] = ['1', 60400655, 'A', 'A', 'A',
                                                 'G',
                                          'G',
     data[103] = ['1', 60761817, 'G', 'G', 'G',
                                   'A',
                                       'A',
                                          'A',
                                              'G',
                                                 'G',
                                                     'G'1
                                   'C', 'C', 'C',
                                             'T', 'C', 'C']
     data[104] = ['1', 61312969, 'C', 'C', 'C',
```

Comp 555 - Spring 2021

# **Emission Probabilities based on Genotypes**



Each probe has its own emission probabilities

```
In [2]: i = int(input("Enter locus [0, %d] to see its Emission probability:" % len(data)))
       print(data[i])
       Nstates = 8
       ErrorRate = 0.05
       # Count expected genotypes
       count = dict([(call, data[i][2:2+Nstates].count(call)) for call in "ACGTHN"])
                        ", ', '.join(["%8s" % v[0:8] for v in header[2:2+Nstates]]))
       print("
       for base in count.keys():
           # Compute emission probability, assuming 5% error rate
           if (count[base] == 0):
               emission = [1.0/Nstates for j in range(2,2+Nstates)] # unexpected
           else:
               emission = [(1.0 - ErrorRate)/count[base] if data[i][j] == base else ErrorRate/(Nstates - count[base])
                          for j in range(2,2+Nstates)]
           emission = ["%6.4f" % v for v in emission]
           print(" %s: %2d %s" % (base, count[base], emission))
       Enter locus [0, 419] to see its Emission probability:103
       A/J, C57BL/6J, 129S1/Sv, NOD/ShiL, NZO/HlLt, CAST/EiJ, PWK/PhJ, WSB/EiJ
           A: 3 ['0.0100', '0.0100', '0.0100', '0.3167', '0.3167', '0.3167', '0.0100', '0.0100']
           C: 0 ['0.1250', '0.1250', '0.1250', '0.1250', '0.1250', '0.1250', '0.1250', '0.1250']
           G: 5 ['0.1900', '0.1900', '0.1900', '0.0167', '0.0167', '0.0167', '0.1900', '0.1900']
           T: 0 ['0.1250', '0.1250', '0.1250', '0.1250', '0.1250', '0.1250', '0.1250', '0.1250']
```

H: 0 ['0.1250', '0.1250', '0.1250', '0.1250', '0.1250', '0.1250', '0.1250', '0.1250', '0.1250'] N: 0 ['0.1250', '0.1250', '0.1250', '0.1250', '0.1250', '0.1250', '0.1250', '0.1250']

### Transition probabilities

In [8]: %matplotlib inline
 import numpy

import matplotlib.pyplot as plot



- Recombination likelihood is modeled using an exponential distribution
- Recombinations between nearby probes are unlikely
- Distant probes are more likely to be from different founders

```
fig = plot.figure(figsize = (8,6))
axes = fig.add_subplot(111)
Nstates = 8
scale = 10000000.0
x = numpy.arange(0,100000000.0,200000.0)
stay = ((Nstates - 1.0) * numpy.exp(-x/scale) + 1.0) / Nstates
switch = (1.0 - stay) / (Nstates - 1.0)
plot.plot(x, stay, x, switch)
plot.text(10000000, 0.7, r'$stay = P(s_{k,i} = s_{k,i-1})$', size="18")
plot.text(4000000, 0.05, r'$switch = P(s_{k,i} = s_{j,i-1}; k \neq j)$', size="18")
plot.xlim((0,10000000.0))
plot.ylim((0,1.0))
pos, labels = plot.xticks()
result = plot.xticks(pos, ["%5.1fM" % (p/1000000) for p in pos])
```



Comp 555 - Spring 2021

### Viterbi Algorithm as a Dynamic Program



```
In [18]: from math import exp, log10
         Nstates = 8
         prevpos = 1
         state = [[(float(len(data)),i) for i in range(Nstates)]] # (log(p), PathToHere)
         for i in range(len(data)):
             # Count expected genotypes
             count = dict([(call, data[i][2:2+Nstates].count(call)) for call in "ACGTHN"])
             # Get the target genotype at this probe
             observed = data[i][-1]
             # Compute emission probability, assuming 5% error rate
             if (count[observed] == 0):
                 emission = [1.0/Nstates for j in xrange(2,2+Nstates)] # unexpected
             else:
                 emission = [0.95/count[data[i][j]] if data[i][j] == observed else 0.05/(Nstates - count[data[i][j]])
                             for j in range(2,2+Nstates)]
             # compute transition probability
             position = data[i][1]
             delta = position - prevpos
             prevpos = position
             stay = ((Nstates - 1.0)*exp(-delta/10000000.0) + 1.0)/Nstates
             switch = (1.0 - stay)/(Nstates - 1.0)
             # update state probailities for all paths leading to the ith state
             path = [1]
             for j in range(Nstates):
                 choices = [(log10(emission[j])+(log10(stay) if (k==j) else log10(switch))+state[-1][k][0],k)
                            for k in range(Nstates)]
                 path.append(max(choices)) # choices is a list of tuples of (score[i], from_whence_I_arrived[i])
             state.append(path)
         print("Length of paths:", len(state))
```

Length of paths: 418

#### **Backtrack to find solution**

```
In [24]: # backtrack
         path = state[-1]
         maxi = 0
         maxp = path[0][0]
         for i in range(1, Nstates):
             if (path[i][0] > maxp):
                 maxp = path[i][0]
                  maxi = i
         print(maxi, path[maxi], header[2+maxi])
         for j in range(len(state)-2,-1,-1):
             data[j].append(header[2+maxi])
             maxi = state[j+1][maxi][1]
         header.append("Founder")
         fp = open("result.csv", 'w')
         fp.write(','.join(header)+'\n')
         prev = ''
         for row in data:
             line = ','.join([str(v) for v in row])
             fp.write(line+'n')
             if (row[-1] != prev):
                 print(line)
                 prev = row[-1]
         print(line)
```

fp.close() 5 (129.58171061177885, 5) CAST/EiJ 1,3409090,C,C,A,A,C,A,A,A,A,PWK/PhJ,PWK/PhJ 1,14334166,A,G,A,A,G,G,G,G,A,129S1/SVImJ,129S1/SVImJ 1,41477940,G,A,A,A,G,G,G,G,A,J,A/J 1,52869070,G,G,G,A,A,G,G,A,A,WSB/EiJ,WSB/EiJ 1,67749123,A,G,A,A,G,G,G,A,A,WSB/EiJ,WSB/EiJ 1,12786434,C,C,C,C,C,T,C,C,C,STBL/6J,C57BL/6J 1,172685919,A,G,A,A,A,G,G,G,A,A/J,A/J 1,176074355,A,G,G,G,A,G,A,A,G,CAST/EiJ,CAST/EiJ 1,194886567,G,G,T,G,T,T,CAST/EiJ,CAST/EiJ





#### A peek at the result

They are

In [23]: !head result.csv; echo '...'; tail result.csv

Chromosome, Position, A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, NZO/HlLtJ, CAST/EiJ, PWK/PhJ, WSB/EiJ, CC004/TauUnc, Founder

1, 3409090, C, C, A, A, C, A, A, A, A, PWK/PhJ 1, 3427467, A, A, A, A, A, G, G, A, G, PWK/PhJ 1, 3439034, C, C, T, T, C, C, C, T, C, PWK/PhJ 1, 3668628, A, G, G, G, G, A, A, G, A, PWK/PhJ 1, 4504223, G, G, G, G, G, A, G, A, G, PWK/PhJ 1, 4744395, T, T, T, T, T, T, G, T, G, T, PWK/PhJ 1, 5069641, A, A, A, A, A, G, A, A, A, PWK/PhJ 1, 5149169, T, G, T, G, T, G, T, T, T, PWK/PhJ 1, 7698048, A, G, A, A, A, G, G, G, G, PWK/PhJ

...

1, 193654902, G, A, A, G, A, G, G, G, G, G, CAST/EiJ 1, 193673297, G, A, A, G, A, G, G, G, G, G, CAST/EiJ 1, 193688845, A, C, C, A, C, C, A, A, C, CAST/EiJ 1, 193709621, G, A, A, A, A, A, G, G, A, CAST/EiJ 1, 193732571, T, C, C, C, C, C, T, C, C, CAST/EiJ 1, 193928056, A, G, G, A, G, A, A, A, A, CAST/EiJ 1, 194000258, C, C, C, T, C, C, C, T, C, CAST/EiJ 1, 194149219, G, A, A, G, G, G, G, G, G, CAST/EiJ 1, 194625219, C, T, T, T, C, T, T, C, T, CAST/EiJ 1, 194886567, G, G, T, G, T, T, G, T, T, CAST/EiJ





- The inferred Mosaic
- Repeat for every chromosome
- Most likely, but how likely?
- Other approaches

#### Back to the Casino with new questions



- Are there common aspects of the most likely solutions?
- Which coin was I most likely using on the 4<sup>th</sup> roll

| Р      | π      | Р      | π      | Р      | π      | Р      | π      |
|--------|--------|--------|--------|--------|--------|--------|--------|
| 0.0058 | BBBBBB | 0.0001 | BBBFFB | 0.0000 | FFFBFF | 0.0000 | FBBFBF |
| 0.0046 | FFFFFF | 0.0001 | FFFFBF | 0.0000 | FFBFBB | 0.0000 | BFBBFF |
| 0.0013 | FBBBBB | 0.0001 | FFBFFF | 0.0000 | FBFFBB | 0.0000 | BFFBBF |
| 0.0012 | FFFFBB | 0.0001 | FBFFFF | 0.0000 | FBBFFB | 0.0000 | BBFBFF |
| 0.0009 | FFBBBB | 0.0001 | FFBBBF | 0.0000 | FFBFFB | 0.0000 | FFBFBF |
| 0.0008 | FFFFB  | 0.0001 | BFFFBB | 0.0000 | FBFFFB | 0.0000 | FBFFBF |
| 0.0006 | FFFBBB | 0.0001 | FBBBFF | 0.0000 | FBFBBB | 0.0000 | BFFBFF |
| 0.0006 | BBBFFF | 0.0001 | BBFFFB | 0.0000 | FBBBFB | 0.0000 | BFBFBB |
| 0.0004 | BBBBBF | 0.0000 | BFBBBB | 0.0000 | BBBFBF | 0.0000 | FBFBBF |
| 0.0004 | BBFFFF | 0.0000 | BBBBFB | 0.0000 | FFBBFB | 0.0000 | BFBFFB |
| 0.0003 | BBBBFF | 0.0000 | BBFBBB | 0.0000 | BBFFBF | 0.0000 | FBFBFF |
| 0.0003 | BFFFFF | 0.0000 | BFFFFB | 0.0000 | BFFFBF | 0.0000 | BFBBFB |
| 0.0001 | BBBFBB | 0.0000 | FFFBBF | 0.0000 | BFBFFF | 0.0000 | BBFBFB |
| 0.0001 | FBBFFF | 0.0000 | FFBBFF | 0.0000 | FFFBFB | 0.0000 | BFFBFB |
| 0.0001 | FBBBBF | 0.0000 | FBBFBB | 0.0000 | BFBBBF | 0.0000 | FBFBFB |
| 0.0001 | BBFFBB | 0.0000 | BFFBBB | 0.0000 | BBFBBF | 0.0000 | BFBFBF |

#### **Forward-Backward Problem**



**Given:** A sequence of coin tosses generated by an HMM.



Goal: Find the most probable coin that was in use at a particular flip.

$$P(\pi_i = k | x) = \frac{P(x, \pi_i = k)}{P(x)}$$

Where  $P(x, \pi_i = k)$  is the probabilities of all paths in state *k* at *i*, and P(x) is the probability of sequence *x*. Comp 555 - Spring 2021



#### Illustrating the difference using 4 flips

| ٨                   | Notalot X =                        | тннн р                    | x = THHH p                       |                                                 |
|---------------------|------------------------------------|---------------------------|----------------------------------|-------------------------------------------------|
| и<br>†              | worse than<br>the best<br>solution | FFFF (0.0228)             | FFFF (0.0228)                    |                                                 |
| s                   |                                    | BFFF (0.0013)             | FFBF (0.0004)                    |                                                 |
|                     | н,н,н]                             | FBFF (0.0004)             | FFFB (0.0038)                    |                                                 |
|                     |                                    | BBFF (0.0019)             | FFBB (0.0057)                    |                                                 |
|                     |                                    | FFBF (0.0004)             | BFFF (0.0013)                    |                                                 |
|                     |                                    | BFBF (0.0000)             | BFBF (0.0000)                    |                                                 |
| х = [I,H,H          |                                    | FBBF (0.0006)             | BFFB (0.0002)                    |                                                 |
|                     |                                    | BBBF (0.0028)             | BFBB (0.0003)                    |                                                 |
|                     |                                    | FFFB (0.0038)             | $P(\pi_2 = F x) = 0.0345/$       | 0.0877 = 0.3936                                 |
|                     |                                    | BFFB (0.0002)             | FBFF (0.0004)                    | The ferward backward                            |
|                     |                                    | FBFB (0.0001)             | FBBF (0.0006)                    | algorithm tells us how                          |
|                     | Viterbi<br>solution, the           | BBFB (0.0003)             | FBFB (0.0001)                    | likely we were using<br>_the biased coin at the |
|                     |                                    | FFBB (0.0057)             | FBBB (0.0085)                    | Second flip.                                    |
|                     | most likely                        | BFBB (0.0003)             | BBFF (0.0019)                    | R .                                             |
|                     | states.                            | FBBB (0.0085)             | BBBF (0.0028)                    | Л                                               |
|                     | +                                  | BBBB (0.0384)             | BBFB (0.0003)                    |                                                 |
|                     | Ω                                  | P(x) = 0.0877 High probab | BBBB (0.0384)                    |                                                 |
|                     |                                    | output (>0.0              | (625) $P(\pi_2 = B x) = 0.0532/$ | 0.0877 = 0.6064                                 |
| o 555 - Spring 2021 |                                    | X                         | 2                                |                                                 |

#### Forward Algorithm



• The recurrence for the forward algorithm is:

$$f_{k,i} = e_k(x_i) \cdot \sum_{l \in Q} f_{l,i-1} \cdot A_{l,k}$$

• Similar to Viterbi solution to *i*, except all paths are multiplied together rather than taking the Max





However, forward probability is not the only factor affecting  $P(\pi_i = k | x)$ .

- The sequence of transitions and emissions that the HMM undergoes between  $\pi_i$  and  $\pi_{i+1}$  also affect  $P(\pi_i = k | x)$ .
- Backward probability  $b_{k,i} \equiv$  the probability of being in state  $\pi_i = k$  and emitting the suffix  $x_{i+1} \dots x_n$ .
- The backward algorithm's recurrence:

$$b_{k,i} = \sum_{l \in Q} e_l(x_{i+1}) \cdot b_{l,i+1} \cdot A_{k,l}$$

#### Forward-Backward Algorithm



• The probability that the dealer used a biased coin at any moment *i* is as follows:

$$P(\pi_{i} = k | x) = \frac{P(x, \pi_{i} = k)}{P(x)} = \frac{f_{k}(i) \cdot b_{k}(i)}{P(x)}$$

- So, to find  $P(\pi_i = k | x)$  for all *i*, we solve two dynamic programs
  - One from beginning to end
  - One from the end to the beginning
  - Combine the corresponding states



#### Next Time



#### **Genome Rearrangements**



Comp 555 - Spring 2021