Comp 555 - BioAlgorithms - Spring 2021

Q5E940_BOVIN RLAO-HUMAN | RLAO MOUSE |
| :---: |
| RLA | RLA- Rat RLAO_CHICK

RLAO-RANSY
Q7ZUG3-BRARE RLAO_ICTPU RLAO-DROME RLAO-DICDI Q54LPO_DICDI RLAO-PLAF8 RLAO-SULAC RLAO_SULTO RLAO_SULSO RLAO-AERPE RLAO- METAE RLAO-METMA RLAO- ARCFU RLAO-METKA
RLAO RLAO-METTH RLAO-METTL RLAO METVA RLAO-METJA RLAO PYRAB
RLAO ${ }^{-1}$ PYRHO RLAO-PYRFU RLAO_PYRKO RLAO-HALMA rlao halvo rlao halsa RLAO_THEAC rla - revo ano_picto
ruler
 -MPREDRAT WKSN YFLKIIILLLDDYPKCFIVG ADNVGSKQMQQIRMS LRGK-AVVLMGKNTMMR KAIRGHLENN--PALE -MPREDRATWKSNYFLKIILLLDDYPKCFIVGADNVGSKQMQQIRMS LRGK-AVVLMGKNTMMMRKAIRGHLENN--PALE -MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMS LRGK-AVVLMGKNTMMR KAIRGHLENN--PALE -MPREDRATWKSNYFMKIIQLLDDYPKCFVVGADNVGSKQMQQIRMS LRGK-AVVLMGKNTMMR KAIRGHLENN--PALE
MPREDRAT WKSNYFLKIIOLLDDYPKCFIVGADNVGSKOMOOIRMS LRGK-AVVLMGKNTMMRKAIRGHLEN - --MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMS LRGK-AVVLMGKNTMMRKAIRGHLENN--SALE -MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQTIRLSLRGK-AVVLMGKNTMMRKAIRGHLENN--PALE -MVRENKAAWKAQYFIKVVELFDEFPKCFIVGADNVGSKQMQNIRTS LRGL-AVVLMGKNTMMRKAIRGHLENN--PQLE -MSGAG-SKRKKLFIEKATKLFTTYDKMIVAEADFVGSSOLQKIRKS IRGI-GAVLMGKKTMIRKVIRDLADSK--PELD -MSGAG-SKRKNVFIEKATKLFTTYDKMIVAEADFVGSSQLQKIRKSIRGI-GAVLMGKKTMIRKVIRDLADSK--PELD -MAKLSKQQKKQMYIEKLSSLIQQYSKILIVHVDNVGSNQMASVRKSLRGK-ATILMGKNTRIRTALKKNLQAV--PQIE -MIGLAVTTTKKIAKWKVDEVAELTEKLKTHKTIIIANTEGFPADKLHEIRKK LRGK-ADIKVTKNNLFN IALKNAG-----YDTK俭 MKRLALALKQRKVASWKLEEVKELTELIKNSNTILIGNLEGFPADKLHEIRKKLRGK-ATIKVTKNTLFKIAAKNAGMSVVSLVGQMYKRE KPIPEWKTLMLRELEELFSKHRVVLFADLTGTPTFVVQRVRKKLWKK-YPMMVAKKRIILRAMKAAGLE MMLAIGKRRYVRTRQYPARKVK IVSEATELLQKYPYVFLFDLHGLSSRILHEYRYRLRRY-GVIKIIKPTLFKIAFTKVYGG---IDAE ----MAEEERHHTEHIPQWKKDEIENIKELIQSHKVFGMVGIEGILATKMQKIRRDLKDV-AVLKVSRNTLTERALNQLGE-----ETIP ----MAVAVRGS---PPEYKVRAVEEIKRMISSKPVVAIVSFRNVPAGQMQKIRRE FRGK-AEIKVVKNTLLERAADALG-----GDYL MAVKAKGQPPSGYEPKVAEWKRREVKELKELMDE YENVGLVDLEGIPAPQLQEIRAKLRERDTIIRMSRNTLMRIALEEKLDER--PELE -----MAHVAEWKKKEVQELHDLIKGYEVVGIANLADIPARQLQKMRQTLRDS-ALIRMSKKTLIS LALEKAGREL--ENVD ------MITAESEHKIAPWKIE EVNKLKELLKNGQIVALVDMMEVPARQLQEIRDKIR-GTMTLKMSRNTLIERAIKEVAEETGNPEFA -----MIDAKSE HKIAPWKIE EVNALKELLKSANVIAL IDMMEVPAVQLQEIRDKIR-DQMTLKMSRNTLIKRAVEEVAEETGNPEFA -METKVKAHVAP WKIE EVKTLKGLIKSKPVVAIVDMMDVPAPQLQEIRDKIR-DKVKLRMSRNTLIIRALKEAAEE LNNPKL MAHVAEWKKKEVEELAKLIKSYPVIALVDVSSMPAYPLSQMRRLIRENGGLLRVSRNTLIE LAIKKAAKE LGKPELE MAHVAEWKKKE VEELANLIKS YPVVALVDVSSMPAYPLSQMRRLIRENNGLLRVSRNTLIELAIKKVAQDELGKPELE MAHVAE WKKKEVEELANIIKS YPVIALVDVAGVPAYPLSKMRDKLR-GKALLRVSRNTLIELAIKRAAQELGQPELE
MSAESERKTETIPEWKQEEVDAIVEMIESYESVGVVNIAGIPSRQLQDMRRDLHGT-AELRVSRNTLLERALDDVD
MSESEVRQTEVIPQWKRE EVDELVDFIESYESVGVVGVAGIPSRQLQSMRRE LHGS-AAVRMSRNTLVNRALDEVN-MSAEEQRTTEEVPEWKRQEVAELVDLLETYDSVGVVNVTGIPSKQLQDMRRGLHGQ-AALRMSRNTLLVRALEEAG----DGFE ----------MKEVSQQKKELVNEITORIKASRSVAIVDTAGIRTRQIQDIRGKNRGK-INLKVIKKTLLFKALENLGD----EKLS -MRKINPKKKEIVSELAQDITKSKAVAIVDIKGVRIRQMQDIRAKNRDK-VKIKVVKKILLFKALDSIND----EKLT

- PROBLEM SET \#2 15 GRADED
- Midterm grades WILL BE RELEASED NEXT TVESDAY.
- talk today after CLASS:
pel-Chen peng
https://zoom.us/j/98724499419

Comparing Sequences

Sequence Similarity

- A common problem in biology

Insulin Protein Sequence

Dog MALWMRLLPLLALLALWAPAPTRAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREVEDLQVRDVELAGAPGEGGLQPLALEGALQKRGIVEQCCTSICSLYQLENYCN
Cat MAPWTRLLPLLALLSLWIPAPTRAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAEDLQGKDAELGEAPGAGGLQPSALEAPLQKRGIVEQCCASVCSLYQLEHYCN
Pig MALWTRLLPLLALLALWAPAPAQAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAENPQAGAVELGGGLGGLQALALEGPPQKRGIVEQCCTSICSLYQLENYCN

- All similar, but how similar?
- How do you measure similarity?
- Does Hamming distance work here?
- Uses
- To establish a phylogeny
- To identify functional or conserved components of the sequence

Hand Alignments

- Not that long ago, many alignments were done by hand

Human : MALWMRLLPLLALLALWGPdPAaAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQ
 GSLQPLALEGs_LQKRGIVEQCCTSICSLYQLENYCN

Dog : MALWMRLLPLLALLALWAPAPtRAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREvEDLQvrDVELaG_APGeGGLQPLALEGA_LQKRGIVEQCCTSICSLYQLENYCN

Cat : MApWtRLLPLLALLsLWiPAPtRAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAEDLQgkDaEL_GeAPGaGGLQPsALE_APLQKRGIVEQCCaSvCSLYQLEHYCN

Pig : MALWtRLLPLLALLAIWAPAPAqAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAEnpQagaVEL_Gggl__GGLQaLALEGpP_QKRGIVEQCCTSICSLYQLENYCN AFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAE

QKRGIVEQCC SICSLYQLENYCN

- Long conserved regions are shown below
- Solution strategy?
- Is this a well defined problem?
- Is there an optimal or best solution?
- Did we find it?
- By the way, this is an easy case. Within vertebrates, the amino acid sequence of insulin is strongly conserved.

The Alignment Game

Let's consider only 2 sequences, and establish "alignment" rules as if it were a game.

- Rules:
- You must remove all characters from both sequences
- There are 3 possible moves at any point in the game.
- Each move removes at least one character from one of the two given strings
- Pressing [Match] removes one left-most character from both sequences
- You get 1 point if the characters match, otherwise you get 0 points
- Pressing [Del] removes the left-most character from the top sequence
- You lose 1 point
- Pressing [Ins] removes the left-most character from the bottom sequence
- You lose 1 point
- Your point total is allowed to go negative
- Objective: Get the most points

How do you get the highest possible score?

- The solution may not be unique
- How many presses?
- Minimum moves = Max(len(top), len(bot))
- Maximum moves = len(top) + len(bot)
- How many possible moves?
- Less than $3^{\operatorname{len}(t o p)+\operatorname{len}(b o t)}$
- How big for our problem instance?
- $\operatorname{len}($ Human $)=98, \operatorname{len}($ dog $)=110$
- $3^{208} \approx 1.73 \times 10^{90}$, almost a googol (not a google)
- What algorithm solves this problem?
- Make each move by considering only a short horizon following the current aligment thus far

There is an efficient solution

- It relies on a rather surprising idea
- The best score can be found for the len(top) and len(bot) strings by finding the best score for every pair of substrings len(top[0:n]) and len(bot[0:m]) for all values of n up to len(top) and m up to len(bot)
- Finding this solution requires only O(len(top)len(bot)) steps
- It also requires a table of size Max(len(top),len(bot))
- But before we solve this problem, let's look at another related related problem

Finding a best city tour on a Manhattan grid

Manhattan Tourist Problem (MTP)

Imagine seeking a path from a given source to given destination in a Manhattan-like city grid that maximizes the number of attractions (*) passed. With the following caveat- at every step you must make progress towards the goal. We treat the city map as a graph, with a vertices at each intersection, and weighted edges along each block. The weights are the number of attractions along each block.

Manhattan Tourist Game

Goal: Find the maximum weighted shortest path in a grid.
Input: A weighted grid G with two distinct vertices, one labeled source and the other labeled destination
Output: A shortest path in G from source to destination with the greatest weight

- There are many shortest paths that go south 4 blocks and east 4 blocks
- Of those paths, which sees the most sites?

MTP: A Greedy Algorithm Is Not Optimal

Different types of Greedy

- Short horizon: At each block select the direction where the next block offers the most attractions
- Long horizon: Look ahead at all streets between your current position and the destination, and then go down streets with the most attractions

A New Solution Strategy

Dynamic Programming is a technique for computing recurrence relations efficiently by storing and reusing intermediate results

Three keys to constructing a dynamic programming solution:

1. Formulate the answer as a recurrence relation
2. Consider all instances of the recurrence at each step
(In our case this means all paths that lead to a vertex or intersection).
3. Order evaluations so you will always have precomputed any needed partial results

Irony: Often the most efficient approach to solving a specific problem involves solving every smaller subproblem.

MTP Dynamic Program Solution

The solution may not be unique, but it will have the best possible, optimal, score

MTP Dynamic Program Strategy

- Instead of solving the Manhattan Tourist problem directly, (i.e. the path from $(0,0)$ to $(n, m))$ we will solve a more general problem: find the longest path from $(0,0)$ to any arbitrary vertex (i, j).
- If the longest path from $(0,0)$ to (n, m) passes through some vertex (i, j), then the path from $(0,0)$ to (i,j) must be the longest. Otherwise, you could increase the weight along your path by changing it.

MTP: Dynamic Program

- Calculate optimal path score for every vertex in the graph between our source and destination
- Each vertex's score is the maximum of the prior vertices score plus the weight of the connecting edge in between

MTP: Dynamic Program Continued

Consider all destinations 2 blocks from the source.

Notice I have allowed "negative" edge weights... assume these are the number of things that your guide book suggests you should avoid at all cost!

MTP: Dynamic Program Continued

For each intersection let's keep track of the score and the direction that our "best" answer came from... We could do this by putting a yellow sticky on a corner lamp post, which said we saw N sites and arrived from either the north or the west

MTP: Dynamic Program Continued

MTP: Dynamic Program Continued

MTP: Dynamic Program Continued

- Once the destination node (intersection) is reached, we're done.
- Our table will have the answer of the maximum number of attractions stored in the entry associated with the destination.
- We use the links back in the table to recover the path. (Backtracking)

MTP: Recurrence

Computing the score for a point (i, j) by the recurrence relation:

$$
s_{i, j}=\max \left\{\begin{array}{l}
\text { Path to the intersection from the left } \\
s_{i-1, j}+\text { weight of the edge between }(i-1, j) \text { and }(i, j) \\
s_{i, j-1}+\text { weight of the edge between }(i, j-1) \text { and }(i, j)
\end{array}\right.
$$

The running time is $n m$ for a $\mathrm{n} \times \mathrm{m}$ grid

- You visit all intersections once, add two numbers, compare which is larger, save it and it's direction
($\mathrm{n}=$ \# of rows, $\mathrm{m}=$ \# of columns)

Manhattan Is Not A Perfect Grid

What about diagonals?
Broadway, Greenwich, etc.

- Easy to fix. Just adds more recursion cases.
- The score at point B is given by:

$$
s_{B}=\max \left\{\begin{array}{l}
s_{A 1}+\text { weight of the edge }\left(A_{1}, B\right) \\
s_{A 2}+\text { weight of the edge }\left(A_{2}, B\right) \\
s_{A 3}+\text { weight of the edge }\left(A_{3}, B\right)
\end{array}\right.
$$

Other ways to safely explore the Manhattan

- We chose to evaluate our table in a particular order.

Uniform distances from the source (all points one block away, then 2 blocks, etc.)

- Other strategies:
- Column by column
- Row by row
- Radiate out along diagonals
- This choice can have performance implications

Next Time

- Return to sequence alignment
- Coding dynamic programs

