Comp 555 - BioAlgorithms - Spring 2021

- MIDTERM Is THURSDAY
- STUDY SESSION FROM SPM-GPM TONIGHT
- Problem set \#S 15 DUE BEFDRE
MIDNICHT
- Problem set \#4 WILL BE POSTED BY THURSDAY

Adventures in Dynamic Programming

Algorithm Correctness

- An algorithm is correct only if it produces correct result for every valid input instance
- An algorithm is incorrect answer if it cannot produce a correct result for one or more input instances,
- Coin change problem
- Input: an amount of money M in cents, and a list of coin denominations [$c_{1}, c_{2}, \ldots, c_{n}$]
- Output: the smallest number of coins that add to M (may not be unique)
- US coin change problem

US Coin Change

Change Problem

- Input:
- an amount of money M
- an array of denominations $c=(c 1, c 2, \ldots, c d)$ in order of decreasing value
- Output: the smallest number of coins

A "Greedy" change approach

- Key idea: Use as many of the largest available coin denomination so long as the sum is less than or equal to the change amount

```
In [3]:
```

```
def greedyChange(amount, denominations):
```

def greedyChange(amount, denominations):
\# Goal is to produce the fewest coins to achieve
\# Goal is to produce the fewest coins to achieve
\# given target "amount"
\# given target "amount"
\# Strategy: Give as many of the largest coin
\# Strategy: Give as many of the largest coin
\# denomination that is less than amount.
\# denomination that is less than amount.
solution = []
solution = []
for coin in denominations:
for coin in denominations:
i = amount // coin \# truncating integer divide
i = amount // coin \# truncating integer divide
solution.append(i)
solution.append(i)
amount -= coin * i
amount -= coin * i
return solution
return solution
s1 = greedyChange(72, [25,10,5,1])
s1 = greedyChange(72, [25,10,5,1])
print(s1, sum(s1))
print(s1, sum(s1))
s2 = greedyChange(40, [25,10,5,1])
s2 = greedyChange(40, [25,10,5,1])
print(s2, sum(s2))
print(s2, sum(s2))
s3 = greedyChange(40, [25,20,10,5,1])
s3 = greedyChange(40, [25,20,10,5,1])
print(s3, sum(s3))
print(s3, sum(s3))
[2, 2, 0, 2] 6
[2, 2, 0, 2] 6
[1, 1, 1, 0] 3
[1, 1, 1, 0] 3
[1, 0, 1, 1, 0] 3

```
[1, 0, 1, 1, 0] 3
```


Another Approach?

- Let's bring back brute force
- Test every coin combination (where each denomination is less than 100) to see if it adds up to our target
- Is there exhaustive search algorithm?

In [8]:

```
def exhaustiveChange(amount, denominations):
    bestN = 100
    count = [0 for i in range(len(denominations))]
    while True:
        for i, coinValue in enumerate(denominations):
            count[i] += 1
            if (count[i]*coinValue < 100):
                    break
                count[i] = 0
        n = sum(count)
        if n == 0:
            break
        value = sum([count[i]*denominations[i] for i in range(len(denominations))])
        if (value == amount):
            if (n < bestN)
                    solution = [count[i] for i in range(len(denominations))]
                    bestN = n
    return solution
%time print(exhaustiveChange(40,[25,20,10,5,1]))
```

$[0,2,0,0,0]$
CPU times: user 688 ms , sys: 0 ns, total: 688 ms
Wall time: 672 ms

Correct, but costly

- Our algorithm now gets the right answer for every value $1 . .100$
- It must, because it considers every possible answer (that's the good thing about brute force)
- There is a downside though

In [16]: 1 \%time print(exhaustiveChange(40, [25, 10, 5, 1]))
2 \%time print(exhaustiveChange(40, $[25,20,10,5,1]))$

```
[1, 1, 1, 0]
CPU times: user 155 ms, sys: 0 ns, total: 155 ms
Wall time: }149\textrm{ms
[0, 2, 0, 0, 0]
CPU times: user 632 ms, sys: 0 ns, total: 632 ms
Wall time: }628\textrm{ms
[0, 3, 1, 0, 0, 0]
CPU times: user 2min 50s, sys: 0 ns, total: 2min 50s
Wall time: 2min 50s
```


Other tricks?

A Branch-and-bound algorithm, almost identical to brute force

```
def branchAndBoundChange(amount, denominations):
    bestN = amount
    count = [0 for i in range(len(denominations))]
    while True
        for i, coinValue in enumerate(denominations):
            count[i] += 1
            if (count[i]*coinValue < amount): # Set upper bound to amount rather than 100
                break
                count[i] = 0
        n = sum(count)
        if n == 0:
            break
        if ( }\textrm{n}\mathrm{ > bestN): # don't compute the amount if there are too many coins
            continue
        value = sum([count[i]*denominations[i] for i in range(len(denominations))])
        if (value == amount)
            if (n < bestN):
                    solution = [count[i] for i in range(len(denominations))]
            bestN = n
    return solution
%time print(branchAndBoundChange(40, [13,11,7,5,3,1]))
```

$[0,3,1,0,0,0]$
CPU times: user 317 ms , sys: 0 ns , total: 317 ms
Wall time: 299 ms
..Correct, and it works well for many cases, but can be as slow as an exhaustive search for some inputs (try 99).

Is there another Approach?

Tabulating Answers

- If it is costly to compute the answer for a given input, then there may be advantages to caching the result of previous calculations in a table
- This trades-off time-complexity for space
- How could we fill in the table in the first place?
- Run our best correct algorithm
- Can the table itself be used to speed up the process?

Solutions using a Table

- Suppose you are asked to fill-in the unknown table entry for 67¢
- It must differ from a previously known optimal result by at most one coin...
- So what are the possibilities?
- BestChange(67 $\dot{C})=25 \dot{\phi}+$ BestChange(42 $¢)$, or
- BestChange(67) $=20 \grave{c}+$ BestChange(47 $¢$), or
- BestChange(67¢¢) $=10 \grave{c}+$ BestChange(57 $¢$), or
- BestChange(67) $=5 \dot{\phi}+$ BestChange(62 $)$), or
- BestChange(67) $=1 \grave{\phi}+$ BestChange($66 \grave{¢})$

Looks like a
recursive
definition.
That gives me an idea!

A Recursive Coin-Change Algorithm

```
In [23]: def RecursiveChange(M, c):
    if (M == 0):
        return [0 for i in range(len(c))]
    smallestNumberOfCoins = M+1
    for i in range(len(c)):
        if (M >= c[i]):
            thisChange = RecursiveChange(M - c[i], c)
            thisChange[i] += 1
            if (sum(thisChange) < smallestNumberOfCoins):
                bestChange = thisChange
            smallestNumberOfCoins = sum(thisChange)
    return bestChange
%time print(RecursiveChange(40, [1,3,5,7,11,13]))
```

[1, 0, 0, 0, 0, 3]
CPU times: user 6min 43s, sys: 16 ms, total: 6min 43s
Wall time: 6min 43s

Oops... it got slower. Why?
(Not to mention, it found another "different" correct answer.)

Recursion Recalculations

- Recursion often results in many redundant calls
- Even after only two levels of recursion 6 different change values are repeated multiple times
- How can we avoid this repetition?
- Cache precomputed results in a table!

$$
\begin{aligned}
& \text { Change }(40)= 25+\text { Change(15) } \\
& 25+10+\text { Change(5) } \\
& 25+5+\text { Change(10) } \\
& 20+ \text { Change(20) } \\
& 20+20+\text { Change }(0) \\
& 20+10+\text { Change(10) } \\
& 20+5+\text { Change(15) } \\
& 10+ \text { Change (30) } \\
& 10+25+\text { Change(5) } \\
& 10+20+\text { Change(10) } \\
& 10+10+\text { Change(20) } \\
& 10+5+\text { Change(25) } \\
& 5+\text { Change(35) } \\
& 5+25+\text { Change(15) } \\
& 5+20+\text { Change(10) } \\
& 5+10+\text { Change(25) } \\
& 5+5+\text { Change(30) }
\end{aligned}
$$

Back to Table Evaluation

- When do we fill in the values of our table?
- We could solve for change for every value from 1 up to M, thus we'd be gaurenteed to have found the best change for any value less than M when needed
- Thus, instead of just trying to find the minimal number of coins to change M cents, we attempt the solve the superficially harder problem of solving for the optimal change for all values from 1 to M

$$
\begin{array}{l|l|l|l|l}
\hline 1 C=[0,0,0,0,1] & 2 C=[0,0,0,0,2] & 3 C=[0,0,0,0,3] & \cdots & M C=[?, ?, ?, ?, ?] \\
\hline
\end{array}
$$

Change via Dynamic Programming

In [27]: def DPChange($M, ~ c$):
for m in range (1, M+1)
bestNumCoins $=m+1$
for i in range(len(c)):
if (m >= c[i]):
thischange $=[x$ for x in change[m - c[i]]]
thisChange[i] += 1
if (sum(thisChange) < bestNumCoins):
change[m:m] = [thisChange]
bestNumCoins = sum(thisChange)
return change[M]
\%time print(DPChange(40, [1,3,5,7,11,13]))
\%time print(DPChange(40, [1,3,5,7,11,13,17]))
\%time print(DPChange(40, $[1,3,5,7,11,13,17,19])$)
[1, 0, 0, 0, 0, 3]
CPU times: user $3 \mathrm{~ms}, ~ s y s: 1 e+03 \mu \mathrm{~s}, \mathrm{total}: 4 \mathrm{~ms}$
Wall time: 2.82 ms
[1, 0, 1, 0, 0, 0, 2]
CPU times: user 1e+03 $\mu \mathrm{s}$, sys: 0 ns, total: 1e+03 $\mu \mathrm{s}$
Wall time: 1.28 ms
[2, 0, 0, 0, 0, 0, 0, 2]
CPU times: user 0 ns, sys: 0 ns, total: 0 ns
Wall time: $462 \mu \mathrm{~s}$

- BruteForceChange() was $\mathrm{O}\left(\mathrm{d}^{\mathrm{M}}\right)$
- DPChange() is $\mathrm{O}(\mathrm{Md})$

A Hybrid Approach: Memoization

- Often we can simply modify a recursive algorithm to "cache" the result of previous invocations
- FIll in table lazily as needed... as each call to progresses from M down to 1
- This "lazy evaluated" form of dynamic programming is often called "Memoization"

```
In [34]: M change = {}
# This is a cache for saving bestChange[M]
def MemoizedChange(M, c):
    global change
    if (M in change): # Check the cache first
        return [v for v in change[M]]
    if (len(change) == 0): # Initialize cache
        change[0] = [0 for i in range(len(c))]
    smallestNumberOfCoins = M+1
    for i in range(len(c)):
        if (M >= c[i]):
            thisChange = MemoizedChange(M - c[i], c)
            thisChange[i] += 1
            if (sum(thisChange) < smallestNumberOfCoins):
                bestchange = [v for v in thisChange]
                smallestNumberOfCoins = sum(thisChange)
    change[M] = [v for v in bestChange]
    return bestChange
%time print(MemoizedChange(40, [1,3,5,7,11,13]))
[1, 0, 0, 0, 0, 3]
CPU times: user 541 \mus, sys: 0 ns, total: 541 \mus
Wall time: 477 \mus
```


Dynamic Programming

- Dynamic Programming is a general technique for computing recurrence relations efficiently by storing partial or intermediate results
- Three keys to constructing a dynamic programming solution:

1. Formulate the answer as a recurrence relation
2. Consider all instances of the recurrence at each step
3. Order evaluations so you will always have precomputed the needed partial results

- Memoization is an easy way to convert recursive solutions to a DP
- We'll see it again, and again

Next Time

- On to sequence alignment
- But first we'll learn how to navigate in Manhattan

