
Comp 555 - BioAlgorithms - Spring 2021

Finding TFBS Motifs in our Lifetime

● Recall from last time that the Brute
Force approach for finding a common
10-mer motif common to 10
sequences of length 80 bases was
going to take up roughly 30,000 years

● Today well consider alternative and
non-obvious approaches for solving
this problem

● We will trade one old man (us) for
another (an Oracle)

There will be a Python/Jupyter crash

course next Tuesday night, Jan 28,

from 5:00pm-6:30pm.

Comp 555 - Fall 2021

Recall from last lecture
The following set of 10 sequences have an embedded noisy motif, TAGATCCGAA.

 1 tagtggtcttttgagtgTAGATCTGAAgggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat TAGATCTGAA
 2 cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagtTGGATCCGAAactggagtttaatcggagtcctt TGGATCCGAA
 3 gttacttgtgagcctggtTAGACCCGAAatataattgttggctgcatagcggagctgacatacgagtaggggaaatgcgt TAGACCCGAA
 4 aacatcaggctttgattaaacaatttaagcacgTAAATCCGAAttgacctgatgacaatacggaacatgccggctccggg TAAATCCGAA
 5 accaccggataggctgcttatTAGGTCCAAAaggtagtatcgtaataatggctcagccatgtcaatgtgcggcattccac TAGGTCCAAA
 6 TAGATTCGAAtcgatcgtgtttctccctctgtgggttaacgaggggtccgaccttgctcgcatgtgccgaacttgtaccc TAGATTCGAA
 7 gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgCAGATCCGAAcgtctctggaggggtcgtgcgcta CAGATCCGAA
 8 atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactgtgTAGATCCGTA TAGATCCGTA
 9 ttcttacacccttcttTAGATCCAAAcctgttggcgccatcttcttttcgagtccttgtacctccatttgctctgatgac TAGATCCAAA
10 ctacctatgtaaaacaacatctactaacgtagtccggtctttcctgatctgccctaacctacaggTCGATCCGAAattcg TCGATCCGAA
 9+9+9+9+9
 +8+9+9+8+10 = 89

2

Some notes:
1. There are no exact matches
2. The consensus motif gives a good score

Comp 555 - Fall 2021

Consensus Scoring Function
● We developed an O(k) consensus scoring function to address noise (inexact matches)
● But, we need to apply it an exponential number, O(NM) of times!
● Here's the scoring function...

3

Comp 555 - Fall 2021

And here's the Score we're looking for...

4

So even at a blazing 40μs we'll need many lifetimes to compute the 7010 scores

Comp 555 - Fall 2021

Pruning Trees
● One method for reducing the computational cost of a search algorithm is to prune the space of permutations that

could not possibly lead to a better answer than the current best answer.
● Pruning decisions are based on solutions to subproblems that appear early on and offer no hope
● How does this apply to our Motif finding problem?
● Consider any permutation of offsets that begins with the indices [25, 63, 10, 43,].

Just based on the first 4 indices the largest possible score is 17 + (6*10) = 77, which
assumes that all 6 remaining strings match perfectly at all 10 positions.

 DNA[0][25:35] a a g g g a a a g t
 DNA[1][63:73] g t t t a a t c g g
 DNA[2][10:20] a g c c t g g t t a
 DNA[3][43:53] t t g a c c t g a t

 a [2, 1, 0, 1, 1, 2, 1, 1, 1, 1]
 Profile c [0, 0, 1, 1, 1, 1, 0, 1, 0, 0]
 g [1, 1, 2, 1, 1, 1, 1, 1, 2, 1]
 t [1, 2, 1, 1, 1, 0, 2, 1, 1, 2]
 [2, 2, 2, 1, 1, 2, 2, 1, 2, 2] Score = 17

If the best answer so far is 79, there is no need to consider the 706 offset permutations that start with these 4 indices.

5

Comp 555 - Fall 2021

Search Trees
● Our standard method for enumerating permutations can be considered as a traversal of leaf nodes

in a search tree
● Suppose after checking the first few offsets we can determine that any score of children nodes

could not beat the best score seen so far?

6

Comp 555 - Fall 2021

Branch-and-Bound Motif Search
● Since each level of the tree goes deeper

into search, discarding a prefix discards
all following branches

● This saves us from looking at
(N–k+1)M−depth leaves

● Note our enumeration of tree-branches is
depth-first

● We'll formulate of trimming algorithm as
a recursive algorithm

7

Comp 555 - Fall 2021

Recursive Exploration of a Search Tree

8

Comp 555 - Fall 2021

Let’s try it

Recall that last time it took almost 13 mins to search the first 4 sequences.
Here we took nearly ¼ of that to search 6 sequences.

9

Comp 555 - Fall 2021

Observations
● For our problem instance, Branch-and-Bound Motif finding is significantly faster

○ It found a motif in the first 6 strings in less time than the Brute Force approach found a
solution in the first 4 strings

○ More than 702≈5000 times faster
○ It did so by trimming more than 8 Million paths
○ Trimming added extra calls to Score (no worse than doubling

the worst-case number of calls), but ended up saving even
more hopeless calls along longer paths.

○ In practice, Branch-and-Bound, significantly improves
average performance

● Does this improve the worst-case performance from O(kNM)?
○ What if all of our motifs were found at the end of each DNA string?
○ How do we avoid these worse case data sets?
○ Randomize the search-tree traversal order

10

Comp 555 - Fall 2021

We need a new approach
● Enumerating every possible permutation of motif positions is still not getting us the speed we want.
● Let's try another tried-and-tested approach to algorithm design, mixing up the problem

○ Suppose that some Oracle
could tell us what the motif is...

○ How long would it take us to find
its position in each string?

○ We could compute the Hamming
Distance from our given motif to
the k-mer at every position in each
DNA sequence and keep track
of the smallest distance and its
position on each string.

○ These positions are our best guess
of where the motif can be found on
each string

● Let's call this approach scanning-and-scoring to find a given motif.

11

Comp 555 - Fall 2021

Scanning-and-Scoring a Motif

Wow, we can test over 900 motifs per second!

12

Comp 555 - Fall 2021

Scan-and-Score Motif Performance
● There are M(N−k+1) positions to test the motif,

and each test requires k tests.

So each scan is O(MNk)

● So where where do we get candidate motifs?
● Can we try all of them?

○ There are 410 = 1048576 in our example.
○ 1048576 motifs × 1.09 mS ≈ 19 mins
○ Not fast, but much less than a lifetime
○ O(4kMNk) vs. O(NMk)

● This approach is called a Median String Motif Search

● Recall from last Lecture that a string that minimizes Hamming distance is like finding a middle or
median string that is closer to all instances than the instances are to each other.

13

Comp 555 - Fall 2021

Let’s do it!

The right answer in under 20 mins! Much less than a lifetime.

14

Comp 555 - Fall 2021

Notes on Median String Motif Search
● Similarities between finding and alignment with minimal Hamming Distance

and maximizing a Motif's consensus score.
● In fact, if instead of counting mismatches as in the code fragment:

HammingDist = sum([1 for i in range(k) if motif[i] != seq[s+i]])

we had counted matches
Matches = sum([1 for i in range(k) if motif[i] == seq[s+i]])

and found the maximum(TotalMatches) instead of the min(TotalHammingDistance)
we would be using the same measure as Score().

● Thus, we expect MedianStringMotifSearch() to give the same answer as either
BruteForceMotifSearch() or BranchAndBoundMotifSearch().

● However, the 4k term raises some concerns. If k were instead 20, then we'd have to Scan-and-Score
more than 1012 times. Another not-in-a-lifetime algorithm

● We can also apply the Branch-and-Bound approach to the Median string method, but, as before it
would only improve the average case.

15

Comp 555 - Fall 2021

Other ways to guess the motif?
● If we knew that the motif that we are looking for was "contained"

somewhere in our DNA sequences we could test the (N−k+1)M
motifs from our DNA, giving a O(N2M2) algorithm.

● Unfortunately, as you may recall, our motif does not actually
appear in our data.

● Let’s not be discouraged and try it anyway

16

Comp 555 - Fall 2021

Let's consider only Motifs seen in the DNA

17

Comp 555 - Fall 2021

Insights from the consensus score matrix
If we call Score([17, 31, 18, 33, 21, 0, 46, 70, 16, 65], seqApprox, 10)

DNA[0][17:27] t a g a t c t g a a
DNA[1][31:41] t a g a c c a a a a
DNA[2][18:28] t a g a c c c g a a
DNA[3][33:43] t a a a t c c g a a
DNA[4][21:31] t a g g t c c a a a
DNA[5][0:10] t a g a t t c g a a
DNA[6][46:56] c a g a t c c g a a
DNA[7][70:80] t a g a t c c g t a
DNA[8][16:26] t a g a t c c a a a
DNA[9][65:75] t c g a t c c g a a

 a [0, 9, 1, 9, 0, 0, 1, 3, 9,10]
 c [1, 1, 0, 0, 2, 9, 8, 0, 0, 0]
 g [0, 0, 9, 1, 0, 0, 0, 7, 0, 0]
 t [9, 0, 0, 0, 8, 1, 1, 0, 1, 0]
 [9, 9, 9, 9, 8, 9, 8, 7, 9,10] Score = 87
Consensus t a g a t c c g a a Our motif!

Any Ideas?
18

This is the "contained" string.
Had to be here. Why?

The only different
offset value.

Comp 555 - Fall 2021

Contained-Consensus Motif Search

19

The consensus motif's hamming distance can be
no more than the "contained" string's. Why?

Comp 555 - Fall 2021

Dad, are we there yet?
●

●
○ Our other methods (branch and bound & median search)

were exhaustive, they examined every possibility
○ This method considers only a subset of possible

solutions, and picks the best one in a greedy fashion
○ What if there had been ties among the candidate motifs?
○ What if the consensus score (87% matches) had been lower
○ Would we, should we, be satisfied?

●
○ Our method is greedy in that it considers only the best contained

motif, greedy methods are subject to falling into local minimums
○ Since we consider only subsequences as motifs we introduce bias

●

20

Comp 555 - Fall 2021

A randomized approach to motif finding
●
●

○ Likely motif candidates from this distribution are
those generated by Consensus

○ Consensus strings can then be tested using Scan-and-Score
and these alignments lead to new consensus strings

○ Eventually, we should converge to some local minimal answer
●

● does not guarantee an optimal solution

21

Comp 555 - Fall 2021

A Randomized Motif Search

22

Creates 500 random
"offset" vectors, find's
their consensus motif,
and uses these 500 as
candidate k-mers.

Score each candidate and see if it's
offsets lead to a new motif candidate.
If so add it to the next set to be
considered.

This set union keeps track of all the
k-mers we've considered.

Comp 555 - Fall 2021

Let’s try it

Randomized algorithms need to be run multiple times to insure a stable solution

23

Comp 555 - Fall 2021

Lessons Learned
● We can find Motifs in our lifetime

○ Practical exhaustive search algorithm for small k, MedianStringMotifSearch()
○ Practical fast algorthim RandomizedMotifSearch(DNA, k)

● Three algorithm design approaches "Branch-and-Bound", "Greedy", and "Randomized"
● Reversing the objective, guessing an answer, and validating it (Needs good guesses).
● The power of randomness

○ Not susceptible to worse case data
○ Avoids local minimums that plague some greedy algorithms

24

