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Randomized Algorithms

● Final exam

Friday, May 1 

(8am-11am)

● Final Study session

Monday, April 27

(4pm-6pm)
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Randomized Algorithms

• Randomized algorithms incorporate random, 
rather than deterministic, decisions

• Commonly used in situations 
where no exact and/or fast 
algorithm is known

• Works for algorithms that behave well on typical 
data, but poorly in special cases

• Main advantage is that no input can reliably 
produce worst-case results because the 
algorithm runs differently each time.
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Select

• Select(L, k) finds the kth smallest element in L
• Select(L,1) find the smallest…

– Well known O(n) algorithm

• Select(L, len(L)/2) find the median…
– How? 
– median = sorted(L)[len(L)/2]    🡪 O(n logn)

• Can we find medians, or 1st quartiles in O(n)?

minv = HUGE
for v in L:
    if (v < minv):
        minv = v
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Select Recursion

• Select(L, k) finds the kth smallest element in L
– Select an element m from unsorted list L and 

partition L the array into two smaller lists: 

   Llo - elements smaller than m
and

      Lhi - elements larger than m

if (len(Llo) >= k) then 
   Select(Llo, k)

elif (k > len(Llo) + 1) then 
   Select(Lhi, k – (len(Llo) + 1))

else m is the kth smallest element
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Example of Select(L, 5)

Given an array: L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

Step 1:  Choose the first element as m

     L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

Our  Selection
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Example of Select(L,5) (cont’d)

Step 2:  Split the array into Llo and Lhi

                                                       Llo = { 3,    2,    4,    5,    1,    0 }

L = {    6,     3,     2,     8,     4,     5,     1,     7,     0,     9 }

                        Lhi = { 8,     7,     9 }
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Example of Select(L,5) (cont’d)

Step 3: Recursively call Select on either Llo or Lhi    
until len(Llo)+1 = k, then return m.
len(Llo) > k = 5  🡪 Select({ 3,  2,  4,  5,  1,  0 }, 5)

m = 3

Llo = { 2,  1,  0 }    Lhi = { 4, 5 } 

m = 4
Llo = { empty },  Lhi = {  5  }

k = 5 > len(Llo) +1  🡪 Select({4,  5 }, 5 - 3 - 1)

k  = 1  ==  len(Llo) + 1 🡪 return 4
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Select Code

● How fast? 
● Is it really any better than sorting, and selecting?
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Select with Good Splits

• Runtime depends on our selection of m:

- A good selection will split L evenly such that

|Llo | = |Lhi |= |L|/2

- The recurrence relation is:
T(n)  =  T(n/2)

 n + n/2 + n/4 + n/8 + n/16 + ….= 2n 🡪 O(n)
Same as search
for minimum
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Select with Bad Splits
However, a poor selection will split L unevenly and in the  

worst case, all elements will be greater or less than m so  
that one Sublist is full and the other is empty.  

For a poor selection, the recurrence relation is
T(n)  =  T(n-1)

In this case, the runtime is O(n2).

Our dilemma: 
O(n) or O(n2),
depending on the list… or O(n log n) independent of it

I could have sorted 
first and done better
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Select Analysis (cont’d)

• Select seems risky compared to Sort
• To improve Select, we need to choose m 

to give good ‘splits’
• It can be proven that to achieve O(n) running 

time, we don’t need a perfect splits, just 
reasonably good ones. 

• In fact, if both subarrays are at least of size n/4, 
then running time will be O(n).

• This implies that half of the choices of m make 
good splitters.  
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A Randomized Approach

• To improve Select, randomly select m.
• Since half of the elements will be good splitters, 

if we choose m at random we will get a 50% 
chance that m will be a good choice.

• This approach will make sure that no matter 
what input is received, the expected running 
time is small.



Randomized Select
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RandomizedSelect Analysis

• Worst case runtime: O(n2)
• Expected runtime: O(n).
• Expected runtime is a good measure of the 

performance of randomized algorithms, often 
more informative than worst case runtimes.

• Worst case runtimes are rarely repeated 
• RandomizedSelect always returns the correct 

answer, which offers a way to classify 
Randomized Algorithms.
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Types of Randomized Algorithms

• Las Vegas Algorithms – always produce the 
correct solution (i.e. randomizedSelect)

• Monte Carlo Algorithms – do not always return 
the correct solution.

    Of course, Las Vegas Algorithms are always 
preferred, but they are often hard to come by.
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Gibbs Sampling
• RandomProfileMotifSearch is probably not 

the best way to find motifs. Depends on 
random guesses followed by a greedy 
optimization procedure.

• Gibbs Sampling estimates a distribution of 
each variable in turn, conditional on the 
current values of the other variables.

• However, we can improve the algorithm by 
introducing Gibbs Sampling, an iterative 
procedure that discards one k-mer’s 
contribution to the profile distribution at each 
iteration and replaces it with a new one.

• Gibbs Sampling starts out slowly but chooses 
new k-mers with increasing the odds that it 
will improve the current solution.
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How Gibbs Sampling Works
1)  Randomly choose starting positions 

         s = (s1,...,st) and form the set of  k-mers associated 
         with these starting positions.
    2)  Randomly choose one of the t sequences.

3)  Create a profile P from the other t -1 sequences.
4)  For each position in the removed sequence,

      calculate the probability that the l-mer starting at
      that position was generated by P.
5)  Choose a new starting position for the removed

      sequence at random based on the probabilities
      calculated in step 4.
6)  Repeat steps 2-5 until there is no improvement
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Gibbs Sampling: an Example
Input: 

t = 5 sequences, motif length  l = 8

1.  GTAAACAATATTTATAGC
2.  AAAATTTACCTCGCAAGG
3.  CCGTACTGTCAAGCGTGG
4.  TGAGTAAACGACGTCCCA
5.  TACTTAACACCCTGTCAA
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Gibbs Sampling: an Example

1)  Randomly choose starting positions,       
s=(s1,s2,s3,s4,s5) in the 5 sequences: 

s1=7 GTAAACAATATTTATAGC
s2=11 AAAATTTACCTTAGAAGG
s3=9 CCGTACTGTCAAGCGTGG
s4=4 TGAGTAAACGACGTCCCA
s5=1 TACTTAACACCCTGTCAA
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Gibbs Sampling: an Example

2) Choose one of the sequences at random:
Sequence 2: AAAATTTACCTTAGAAGG 

     s1=7    GTAAACAATATTTATAGC
s2=11 AAAATTTACCTTAGAAGG
s3=9 CCGTACTGTCAAGCGTGG
s4=4 TGAGTAAACGACGTCCCA
s5=1 TACTTAACACCCTGTCAA
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Gibbs Sampling: an Example
2) Choose one of the sequences at random:

Sequence 2: AAAATTTACCTTAGAAGG 

    s1=7 GTAAACAATATTTATAGC

s3=9 CCGTACTGTCAAGCGTGG
s4=4 TGAGTAAACGACGTCCCA
s5=1 TACTTAACACCCTGTCAA



* Comp 555 Spring 2016 22

Gibbs Sampling: an Example

3) Create profile P from l-mers in remaining 4 sequences:

1 A A T A T T T A
3 T C A A G C G T

4 G T A A A C G A

5 T A C T T A A C

A 1/4 2/4 2/4 3/4 1/4 1/4 1/4 2/4

C 0 1/4 1/4 0 0 2/4 0 1/4

T 2/4 1/4 1/4 1/4 2/4 1/4 1/4 1/4

G 1/4 0 0 0 1/4 0 3/4 0
Consensus

String
T A A A T C G A
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Gibbs Sampling: an Example

4) Calculate the prob(a|P) for every possible 8-mer 
in the removed sequence:    

         Strings Highlighted in Red                     prob(a|P) 

AAAATTTACCTTAGAAGG .000732
AAAATTTACCTTAGAAGG .000122
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG .000183
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
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Gibbs Sampling: an Example

5)  Create a distribution of probabilities of 
k-mers prob(a|P), and randomly select a new 
starting position based on this distribution. 

Starting Position 1:  prob( AAAATTTA | P ) =  .706

Starting Position 2:  prob( AAATTTAC | P ) =  .118

Starting Position 8:  prob( ACCTTAGA | P ) = .176

A) To create this distribution, divide each 
probability  prob(a|P) by the total:
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Gibbs Sampling: an Example

 B) Select a new starting position at random 
according to computed distribution:

P(selecting starting position 1):     .706
P(selecting starting position 2):     .118
P(selecting starting position 8):     .176

t = random.random()
if (t < .706):
    # use position 1
elif (t < (.706 + .118)):
    # use position 2
else:
    # use position 8
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Gibbs Sampling: an Example
Assume we select the substring with the highest 
probability – then we are left with the following 
new substrings and starting positions.

s1=7 GTAAACAATATTTATAGC
s2=1 AAAATTTACCTCGCAAGG
s3=9 CCGTACTGTCAAGCGTGG
s4=5 TGAGTAATCGACGTCCCA
s5=1 TACTTCACACCCTGTCAA
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Gibbs Sampling: an Example
6) We iterate the procedure again with the above 

starting positions until we cannot improve the 
score any more.
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Gibbs Sampling in Python



Gibbs Sampling Performance
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Gibbs Sampler in Practice

• Fewer profile searches, O(n), in exchange for updating 
the profile, O(kt), more often (tradeoff which is easier) 

• Gibbs sampling can converge much faster than a fully 
randomized approach

• Gibbs sampling is more likely to converge to locally 
optimal motifs rather a fully randomized algorithm.

• Like the fully Randomized Algorithm it must be run 
with many randomly chosen initial seeds to achieve 
good results.



It’s Over

• Final Friday, 5/1
– 8:00-11:00am
– Be sure to sign into zoom
– Open book, open notes,

open internet, online
– Will cover material 

since midterm
– Final Study session:

• Monday 4/27,  4pm-6pm
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