
* Comp 555 Spring 2020 1

Randomized Algorithms

● Final exam

Friday, May 1

(8am-11am)

● Final Study session

Monday, April 27

(4pm-6pm)

* Comp 555 Spring 2016 2

Randomized Algorithms

• Randomized algorithms incorporate random,
rather than deterministic, decisions

• Commonly used in situations
where no exact and/or fast
algorithm is known

• Works for algorithms that behave well on typical
data, but poorly in special cases

• Main advantage is that no input can reliably
produce worst-case results because the
algorithm runs differently each time.

* Comp 555 Spring 2016 3

Select

• Select(L, k) finds the kth smallest element in L
• Select(L,1) find the smallest…

– Well known O(n) algorithm

• Select(L, len(L)/2) find the median…
– How?
– median = sorted(L)[len(L)/2] 🡪 O(n logn)

• Can we find medians, or 1st quartiles in O(n)?

minv = HUGE
for v in L:
 if (v < minv):
 minv = v

* Comp 555 Spring 2016 4

Select Recursion

• Select(L, k) finds the kth smallest element in L
– Select an element m from unsorted list L and

partition L the array into two smaller lists:

 Llo - elements smaller than m
and

 Lhi - elements larger than m

if (len(Llo) >= k) then
 Select(Llo, k)

elif (k > len(Llo) + 1) then
 Select(Lhi, k – (len(Llo) + 1))

else m is the kth smallest element

* Comp 555 Spring 2016 5

Example of Select(L, 5)

Given an array: L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

Step 1: Choose the first element as m

 L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

Our Selection

* Comp 555 Spring 2016 6

Example of Select(L,5) (cont’d)

Step 2: Split the array into Llo and Lhi

 Llo = { 3, 2, 4, 5, 1, 0 }

L = { 6, 3, 2, 8, 4, 5, 1, 7, 0, 9 }

 Lhi = { 8, 7, 9 }

* Comp 555 Spring 2016 7

Example of Select(L,5) (cont’d)

Step 3: Recursively call Select on either Llo or Lhi
until len(Llo)+1 = k, then return m.
len(Llo) > k = 5 🡪 Select({ 3, 2, 4, 5, 1, 0 }, 5)

m = 3

Llo = { 2, 1, 0 } Lhi = { 4, 5 }

m = 4
Llo = { empty }, Lhi = { 5 }

k = 5 > len(Llo) +1 🡪 Select({4, 5 }, 5 - 3 - 1)

k = 1 == len(Llo) + 1 🡪 return 4

* Comp 555 Spring 2016 8

Select Code

● How fast?
● Is it really any better than sorting, and selecting?

* Comp 555 Spring 2016 9

Select with Good Splits

• Runtime depends on our selection of m:

- A good selection will split L evenly such that

|Llo | = |Lhi |= |L|/2

- The recurrence relation is:
T(n) = T(n/2)

 n + n/2 + n/4 + n/8 + n/16 + ….= 2n 🡪 O(n)
Same as search
for minimum

* Comp 555 Spring 2016 10

Select with Bad Splits
However, a poor selection will split L unevenly and in the

worst case, all elements will be greater or less than m so
that one Sublist is full and the other is empty.

For a poor selection, the recurrence relation is
T(n) = T(n-1)

In this case, the runtime is O(n2).

Our dilemma:
O(n) or O(n2),
depending on the list… or O(n log n) independent of it

I could have sorted
first and done better

* Comp 555 Spring 2016 11

Select Analysis (cont’d)

• Select seems risky compared to Sort
• To improve Select, we need to choose m

to give good ‘splits’
• It can be proven that to achieve O(n) running

time, we don’t need a perfect splits, just
reasonably good ones.

• In fact, if both subarrays are at least of size n/4,
then running time will be O(n).

• This implies that half of the choices of m make
good splitters.

* Comp 555 Spring 2016 12

A Randomized Approach

• To improve Select, randomly select m.
• Since half of the elements will be good splitters,

if we choose m at random we will get a 50%
chance that m will be a good choice.

• This approach will make sure that no matter
what input is received, the expected running
time is small.

Randomized Select

* Comp 555 Spring 2016 13

* Comp 555 Spring 2016 14

RandomizedSelect Analysis

• Worst case runtime: O(n2)
• Expected runtime: O(n).
• Expected runtime is a good measure of the

performance of randomized algorithms, often
more informative than worst case runtimes.

• Worst case runtimes are rarely repeated
• RandomizedSelect always returns the correct

answer, which offers a way to classify
Randomized Algorithms.

* Comp 555 Spring 2016 15

Types of Randomized Algorithms

• Las Vegas Algorithms – always produce the
correct solution (i.e. randomizedSelect)

• Monte Carlo Algorithms – do not always return
the correct solution.

 Of course, Las Vegas Algorithms are always
preferred, but they are often hard to come by.

* Comp 555 Spring 2016 16

Gibbs Sampling
• RandomProfileMotifSearch is probably not

the best way to find motifs. Depends on
random guesses followed by a greedy
optimization procedure.

• Gibbs Sampling estimates a distribution of
each variable in turn, conditional on the
current values of the other variables.

• However, we can improve the algorithm by
introducing Gibbs Sampling, an iterative
procedure that discards one k-mer’s
contribution to the profile distribution at each
iteration and replaces it with a new one.

• Gibbs Sampling starts out slowly but chooses
new k-mers with increasing the odds that it
will improve the current solution.

* Comp 555 Spring 2016 17

How Gibbs Sampling Works
1) Randomly choose starting positions

 s = (s1,...,st) and form the set of k-mers associated
 with these starting positions.
 2) Randomly choose one of the t sequences.

3) Create a profile P from the other t -1 sequences.
4) For each position in the removed sequence,

 calculate the probability that the l-mer starting at
 that position was generated by P.
5) Choose a new starting position for the removed

 sequence at random based on the probabilities
 calculated in step 4.
6) Repeat steps 2-5 until there is no improvement

* Comp 555 Spring 2016 18

Gibbs Sampling: an Example
Input:

t = 5 sequences, motif length l = 8

1. GTAAACAATATTTATAGC
2. AAAATTTACCTCGCAAGG
3. CCGTACTGTCAAGCGTGG
4. TGAGTAAACGACGTCCCA
5. TACTTAACACCCTGTCAA

* Comp 555 Spring 2016 19

Gibbs Sampling: an Example

1) Randomly choose starting positions,
s=(s1,s2,s3,s4,s5) in the 5 sequences:

s1=7 GTAAACAATATTTATAGC
s2=11 AAAATTTACCTTAGAAGG
s3=9 CCGTACTGTCAAGCGTGG
s4=4 TGAGTAAACGACGTCCCA
s5=1 TACTTAACACCCTGTCAA

* Comp 555 Spring 2016 20

Gibbs Sampling: an Example

2) Choose one of the sequences at random:
Sequence 2: AAAATTTACCTTAGAAGG

 s1=7 GTAAACAATATTTATAGC
s2=11 AAAATTTACCTTAGAAGG
s3=9 CCGTACTGTCAAGCGTGG
s4=4 TGAGTAAACGACGTCCCA
s5=1 TACTTAACACCCTGTCAA

* Comp 555 Spring 2016 21

Gibbs Sampling: an Example
2) Choose one of the sequences at random:

Sequence 2: AAAATTTACCTTAGAAGG

 s1=7 GTAAACAATATTTATAGC

s3=9 CCGTACTGTCAAGCGTGG
s4=4 TGAGTAAACGACGTCCCA
s5=1 TACTTAACACCCTGTCAA

* Comp 555 Spring 2016 22

Gibbs Sampling: an Example

3) Create profile P from l-mers in remaining 4 sequences:

1 A A T A T T T A
3 T C A A G C G T

4 G T A A A C G A

5 T A C T T A A C

A 1/4 2/4 2/4 3/4 1/4 1/4 1/4 2/4

C 0 1/4 1/4 0 0 2/4 0 1/4

T 2/4 1/4 1/4 1/4 2/4 1/4 1/4 1/4

G 1/4 0 0 0 1/4 0 3/4 0
Consensus

String
T A A A T C G A

* Comp 555 Spring 2016 23

Gibbs Sampling: an Example

4) Calculate the prob(a|P) for every possible 8-mer
in the removed sequence:

 Strings Highlighted in Red prob(a|P)

AAAATTTACCTTAGAAGG .000732
AAAATTTACCTTAGAAGG .000122
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG .000183
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0
AAAATTTACCTTAGAAGG 0

* Comp 555 Spring 2016 24

Gibbs Sampling: an Example

5) Create a distribution of probabilities of
k-mers prob(a|P), and randomly select a new
starting position based on this distribution.

Starting Position 1: prob(AAAATTTA | P) = .706

Starting Position 2: prob(AAATTTAC | P) = .118

Starting Position 8: prob(ACCTTAGA | P) = .176

A) To create this distribution, divide each
probability prob(a|P) by the total:

Comp 555 - Spring 2020* Comp 555 Spring 2016 25

Gibbs Sampling: an Example

 B) Select a new starting position at random
according to computed distribution:

P(selecting starting position 1): .706
P(selecting starting position 2): .118
P(selecting starting position 8): .176

t = random.random()
if (t < .706):
 # use position 1
elif (t < (.706 + .118)):
 # use position 2
else:
 # use position 8

* Comp 555 Spring 2016 26

Gibbs Sampling: an Example
Assume we select the substring with the highest
probability – then we are left with the following
new substrings and starting positions.

s1=7 GTAAACAATATTTATAGC
s2=1 AAAATTTACCTCGCAAGG
s3=9 CCGTACTGTCAAGCGTGG
s4=5 TGAGTAATCGACGTCCCA
s5=1 TACTTCACACCCTGTCAA

* Comp 555 Spring 2016 27

Gibbs Sampling: an Example
6) We iterate the procedure again with the above

starting positions until we cannot improve the
score any more.

* Comp 555 Spring 2016 28

Gibbs Sampling in Python

Gibbs Sampling Performance

* Comp 555 Spring 2016 29

* Comp 555 Spring 2016 30

Gibbs Sampler in Practice

• Fewer profile searches, O(n), in exchange for updating
the profile, O(kt), more often (tradeoff which is easier)

• Gibbs sampling can converge much faster than a fully
randomized approach

• Gibbs sampling is more likely to converge to locally
optimal motifs rather a fully randomized algorithm.

• Like the fully Randomized Algorithm it must be run
with many randomly chosen initial seeds to achieve
good results.

It’s Over

• Final Friday, 5/1
– 8:00-11:00am
– Be sure to sign into zoom
– Open book, open notes,

open internet, online
– Will cover material

since midterm
– Final Study session:

• Monday 4/27, 4pm-6pm

* Comp 555 Spring 2016 31

