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In search of Approximation Ratios e,

def GreedyReversalSort(pi).:
for i in range(len(pi)-1):
j = pi.index(min(pi[i:]))

approximation
ratio?

Tk e
pi = pi[:1i]
+ [v for v in reversed(pi[i:j+1])]
+ pi[j+1:]
return pi
A(NM) OPT(N)?
Step 0: 6 1 2 3 4 5 Step 0: 6 12345
Step 1: 1 62 3 4 5 Step 1: 54321 6 any better
Step 2: 126345 Step 2: 123456 greedy
Step 3: 1236 45 algorithms?
Step 4: 1 23465
Step 5: 1 23 45 6
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New |dea: Adjacencies

e Adjacencies are locally sorted runs.
e Assume a permutation:

N=n,n,n3,...7,_1, 7,
e A pair of neighboring elements r. and i are adjacent if:
miy =m 1

e For example:

[1=1,9,3,4,7,8,2,6,5

e (3,4)and (7,8)and (6,5) are adjacencies.
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Adjacencies and Breakpoints

e Breakpoints occur between neighboring non-adjacent elements

I1=1,19,13,4,17,8,12,16,5

e There are 5 breakpoints in our permuation between pairs (1,9), (9,3), (4,7), (8,2) and (2,5)
e We define b(IM) as the number of breakpoints in permutation I
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Extending Permutations e

e One can place two elements, m,= 0 and it .= n+1 at the beginning and end of
1 respectively

1,19,13,4,17,8,12,16,5

l
[I1=01,19,13,4,17,8,12,16,5,110

e An addtional breakpoint was created after extending
An extended permutation of length n can have at most (n+1) breakpoints
e (n-1) between the original elements plus 2 for the extending elements
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How Reversals Effect Breakpoints

Breakpoints are the targets for sorting by reversals.

Once they are removed, the permutation is sorted.

Each "useful" reversal eliminates at least 1, and at most 2 breakpoints.
Consider the following application of GreedyReversalSort(Extend(I1))

1= 2,3,1,4,6,5
012,3111416,517  b({AI) =5
0, 113,21416,517 b(I) =4
0,1,2,3,416,5|7 bdI) =2

0,1,2,3,4,5,6,7 b{dAI) =0
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Sorting-by-Reversals: A second Greedy Algorithm %,

BreakpointReversalSort(r):

1. while b(r) > O:
2. Among all possible reversals, choose reversal p minimizing b(x)

3. II«1II-pGi,j
P ( "]) The “greedy"” concept here is to
4., outp ut Il D reduce as many breakpoints as

5. return _‘ possible at each step.

Does it always terminate?

What if no reversal reduces the
number of breakpoints?

0 1 2|567|34|89
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Yet Another New Idea: Strips R

Strip: an interval between two consecutive breakpoints in a permutation

Decreasing strip: strip of elements in decreasing order (e.g. 6 5and 3 2).
Increasing strip: strip of elements in increasing order (e.g. 7 8)

A single-element strip can be declared either increasing or decreasing.
We will choose to declare them as decreasing with exception of extension
strips (with 0 and n+1)
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Reducing the Number of Breakpoints o

e Considerl1=1,4,6,5,7,8,3,2

— > < —

0,1,I4,|<6,5,|7,8,I3,2,I9 b(p) =15

Which
reversal?

¥ ¢ o>

~ How can we be sure
that we decrease
the number of
breakpoints?

If permutation p contains at least one
decreasing strip, then there exists a reversal
r which decreases the number of
breakpoints (i.e. b(p * r) < b(p) ).
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Things to Consider

e Considerl1=1,4,6,5,7,8,3,2

— < > < .
0,1,14,16,5,17,8,13,2,1 9

<€

e Choose the decreassing strip with the smallest elment k in I1
o It'll always be the right-most element of that strip

e Find k-1 in the permutation
o it'll always be flanked by a breakpoint

e Reverse the segment between k and k-1
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Things to Consider

e Considerl1=1,4,6,5,7,8,3,2

AN AN
Vd 7

0.1.2.3.18.7.15.6.14 .19
<=

e Choose the decreassing strip with the smallest elment k in I1
o It'll always be the right-most element of that strip

e Find k-1 in the permutation
o it'll always be flanked by a breakpoint

e Reverse the segment between k and k-1
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Things to Consider

Consider1=1,4,6,5,7,8,3,2

P — >
0,1,2,3,4,16,5,17,8,9  b(p) =2

-

Choose the decreassing strip with the smallest elment k in IT
o It'll always be the right-most element of that strip

Find k-1 in the permutation
o it'll always be flanked by a breakpoint

Reverse the segment between k and k-1
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Things to Consider

Consider1=1,4,6,5,7,8,3,2

0.1.2.3.4.5.6.7.8.9  b(p) =0

Choose the decreassing strip with the smallest elment k in IT
o It'll always be the right-most element of that strip

Find k-1 in the permutation
o it'll always be flanked by a breakpoint

Reverse the segment between k and k-1

Comp 555 - Spring 2020
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Things to Consider

e Considerl1=1,4,6,5,7,8,3,2

_>
0,1,|4 I65 |78 |3 2,|9

_)
O,l,23|87|56|4|9
O,l,234|65|789

0,1,2,3,4,5,6,7,8,9
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Potential Gotcha

A 4

0.1,2.15.6.7,13.4,18.9  b(p) =3

e If there is no decreasing strip, there may be no strip-reversal pp that reduces the number of
breakpoints (i.e. b(M'p(i,j)) = b(M) for any reversal p).

e However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints
remains unchanged.

e Then the number of breakpoints Créme
will be reduced in the following steps. =~
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Potential Gotcha

0.1,2.15.6,7.13.4,18.9 b(p) = 3

A 4

N
o

0.1,2.17.6.5.13.4,18.9 b(p) = 3

e If there is no decreasing strip, there may be no strip-reversal pp that reduces the number of
breakpoints (i.e. b(M'p(i,j)) = b(M) for any reversal p).

e However, reversing an increasing strip creates a decreasing strip,
and the number of breakpoints remains unchanged.

e Then the number of breakpoints will be reduced in the following steps.
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Putting it all together e,

1. With each reversal, one can remove at most 2 breakpoints
2. If thereis any decreasing strip there exists a reversal that will remove at least one breakpoint
3. If breakpoints remain and there is no decreasing strip one can be created

by reserving any remaining strip

0,1,2,15,6,7,13,4,18,9 bp)=3  p@3,5)
50

0,1,2,17,6.5,13,4,18,9 bp)=3  p6.7)

0,1,2,17,6,5.4,3,18,9 bp)=2  pB.7)

0.1.2.3.4.5.6.7.8.9 b)=0  Done!

An optimal algorithm would remove 2 breakpoints at every step. The last reversal always removes 2
breakpoints, thus if the number of breakpoints is odd, even the optimal algorithm must make at least one
reersal that removes only 1 breakpoint.

Comp 555 - Spring 2020 17



An Improved Breakpoint Reversal Sort

ImprovedBreakpointReversalSort(m)

1. while b(n) > ©

2 if m has a decreasing strip

3 Among all possible reversals, choose reversal p that minimizes b(m -+ p)
4 else

5. Choose a reversal p that flips an increasing strip in n

6 MmeT *p

7. output n

8. return

Break
Point
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Breakpoints and Strips

Iny [11] :

def

def

hasBreakpoints(seq):
""" returns True if sequences is not strictly increasing by 1 """
for i in range(1, len(seq)):
if (seq[i] != seq[i-1] + 1):
return True
return False

getStrips(seq):
""" find contained intervals where sequence is ordered, and return intervals
in as lists, increasing and decreasing. Single elements are considered
decreasing. "Contained" excludes the first and last interval. """
deltas = [seq[i+1] - seq[i] for i in range(len(seq)-1)]
increasing = list()
decreasing list()
start = 0
for i, diff in enumerate(deltas):
if (abs(diff) == 1) and (diff == deltas[start]):
continue
if (start > 0):
if deltas[start] == 1:
increasing.append((start, i+1))
else:
decreasing.append((start, i+1))
start = i+1
return increasing, decreasing

Comp 555 - Spring 2020
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Handle Reversals

In [15]: def pickReversal(seq, strips):
""" test each decreasing interval to see if it leads to a reversal that
removes two breakpoints, otherwise, return a reversal that removes only one """
for i, j in strips:
k = seq.index(seq[j-1]-1)
if (seq[k+1] + 1 == seq[j]):
# removes 2 breakpoints
return 2, (min(k+1, j), max(k+1, j))
# In the worst case we remove only one, but avoid the length "1" strips
for i, j in strips:
k = seq.index(seq[j-1]-1)
if (j = i > 1)
break
return 1, (min(k+1, j), max(k+1, j))

def doReversal(seq,reversal):

i, j = reversal
return seq[:i] + [element for element in reversed(seq[i:j])] + seq[j:]

Comp 555 - Spring 2020
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Let's do it!

In [13]: def improvedBreakpointReversalSort(seq, verbose=True):
seq = [0] + seq + [max(seq)+1] # Extend sequence
N =0
while hasBreakpoints(seq):
increasing, decreasing = getStrips(seq)

if len(decreasing) > 0: # pick a reversal that removes a decreasing strip
removed, reversal = pickReversal(seq, decreasing)

else:
removed, reversal = 0, increasing[0] # No breakpoints can be removed

if verbose:
print("Strips:", increasing, decreasing)
print("%d: %s rho%s" % (removed, seq, reversal))
input("Press Enter:")
seq = doReversal(seq,reversal)
N += 1
if verbose:
print(seq, "Sorted")
return N

# Also try: [1,9,3,4,7,8,2,6,5]
print(improvedBreakpointReversalSort([3,4,1,2,5,6,7,10,9,8], verbose=True))

Strips: [(1, 3), (3, 5), (5, 8)] [(8, 11)]

2: [0, 3, 4,1, 2, 5, 6, 7, 10, 9, 8, 11] rho(8, 11)
Press Enter:

Strips: [(1, 3), (3, 5)] []

ox[6, 3,4, 1, 2, 5, 6, 7, 8, 9, 10, 41] rho(1, 3)
Press Enter:

Strips: [(3, 5)] [(1, 3)]

1: [0, 4, 3, 1, 2, 5, 6, 7, 8, 9, 10, 11] rho(3, 5)
Press Enter:

Strips: [] [(1, 5)]

2: [0, 4, 3, 2, 1, 5, 6, 7, 8, 9, 10, 11] rho(1, 5)
Press Enter:

[6, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] Sorted

4
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Performance v,

e ImprovedBreakPointReversalSort is a greedy algorithm with a performance guarantee of no worse
than 4 compared to an optimal algorithm
o It eliminates at least one breakpoint in every two steps (flip an increasing then remove 1)

o That's at most: 2b(I) steps
o  An optimal algorithm could at most remove 2 breakpoints in every step, thus requiring b(I)/2

steps
o The approximation ratio is:

A _ 260D _
OPT(I) L) B

L

e But there is a solution with far fewer flips
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A Better Approximation Ratio KN

e If there is a decreasing strip, the next reversal reduces b(m) by at least one.

e The only bad case is when there is no decreasing strip.
Then we do a reversal that does not reduce b(t).

e If we always choose a reversal reducing b(m) and, at the same time, select a permutation such that
the result has at least one decreasing strip, the bad case would never occur.

e If all possible reversals that reduce b(m) create a permutation without decreasing strips, then there
exists a reversal that reduces b(m) by 2 (Proof not given)!

e When the algorithm creates a permutation without a decreasing strip, the previous reversal must
have reduced b(m) by two.

e At most b(m) reversals are needed.

e The improved Approximation ratio:

Ape(I) b1 )
OPT(IT) b

e

Comp 555 - Spring 2020 23



Comparing Greedy Algorithms o,
SimpleReversalSort

e Attempts to extend the prefix(m) at each step

e Approximation ratio (n-1)/(b()/2) can be large
ImprovedBreakpointReversalSort

e Attempts to reduce the number of breakpoints at each step
e Approximation ratio b(M)/(b(M)/2) = 2x

Mouse (X chrom.)
o - ——-——- - - ———

\ ® - - - P ———— - —
Human (X chrom.)
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Next Time

e A little randomness
e Study session?

Monday 4/27 or Tuesday 4/28
4pm-6pm?

e Need to resolve all
outstanding grading issues
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It seems like we've been
driving around forever.
What route are we taking?

I dunno, I set the GPS to
“random walk.” We'll get
home eventually.

o

s ¥

Bob! That assumes t'imc
is an infinite quantity! )

hE

You didn’t really need
be at your PhD defense
tomorrow, did you? J
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