## Comp 555 - BioAlgorithms - Spring 2020



- PROBLEM SET \#S 15 DUE TONIGHT
- FINAL EXAM ON FRIDAY MAY I (8AM-11AM)
- STUDY SESSION? 4PM-GPM ON MONDAY 4/27-ORTUESDAY $4 / 28$


## Genome Rearrangements - Continued

## In search of Approximation Ratios

```
def GreedyReversalSort(pi).:
    for i in range(len(pi)-1):
        j = pi.index(min(pi[i:]))
        if (j != i):
            pi = pi[:i]
            + [v for v in reversed(pi[i:j+1])]
            + pi[j+1:]
    return pi
```


## A(1)

Step 0: 612345
Step 1: $16 \underline{6} 345$
Step 2: $126 \underline{6} 45$
Step 3: 123645
Step 4: $12346 \underline{5}$
Step 5: 123456

OPT(п)?
Step 0: 612345
Step 1: 5432116
Step 2: 123456


- 8



## New Idea: Adjacencies

- Adjacencies are locally sorted runs.
- Assume a permutation:

$$
\Pi=\pi_{1}, \pi_{2}, \pi_{3}, \ldots \pi_{n-1}, \pi_{n}
$$

- A pair of neighboring elements $\pi_{\mathrm{i}}$ and $\pi_{\mathrm{i}+1}$ are adjacent if:

$$
\pi_{i+1}=\pi_{i} \pm 1
$$

- For example:

$$
\Pi=1,9,3,4,7,8,2, \underline{6,5}
$$

- $(3,4)$ and $(7,8)$ and $(6,5)$ are adjacencies.


## Adjacencies and Breakpoints

- Breakpoints occur between neighboring non-adjacent elements

$$
\Pi=1,|9,|\underline{3,4},|\underline{7,8},|2,| \underline{6,5}
$$

- There are 5 breakpoints in our permuation between pairs $(1,9),(9,3),(4,7),(8,2)$ and $(2,5)$
- We define $b(\Pi)$ as the number of breakpoints in permutation $\Pi$


## Extending Permutations

- One can place two elements, $\pi_{0}=0$ and $\pi_{n+1}=n+1$ at the beginning and end of $\Pi$ respectively

$$
\begin{gathered}
1,|9,|3,4,|7,8,|2,| 6,5 \\
\Pi=01,|9,|3,4,|7,8,|2,|6,5,| 10
\end{gathered}
$$

- An addtional breakpoint was created after extending
- An extended permutation of length $n$ can have at most $(n+1)$ breakpoints
- ( $n-1$ ) between the original elements plus 2 for the extending elements


## How Reversals Effect Breakpoints

- Breakpoints are the targets for sorting by reversals.
- Once they are removed, the permutation is sorted.
- Each "useful" reversal eliminates at least 1, and at most 2 breakpoints.
- Consider the following application of GreedyReversalSort(Extend(П))

$$
\begin{array}{rl}
\Pi= & 2,3,1,4,6,5 \\
0|2,3| 1|4| 6,5 \mid 7 & b(\Pi)=5 \\
0, \overline{1|3,2| 4|6,5| 7} & b(\Pi)=4 \\
0, \overline{2,3}, 4|6,5| 7 & b(\Pi)=2 \\
0,1,2,3,4, \overline{5,6}, 7 & b(\Pi)=0
\end{array}
$$



## Sorting-by-Reversals: A second Greedy Algorithm

BreakpointReversalSort( $\underline{\pi}$ ):

1. while $b(\pi)>0$ :
2. Among all possible reversals, choose reversal $\rho$ minimizing $b(\pi)$
3. $\quad \Pi \leftarrow \Pi \cdot \rho(i, j)$
4. output $\Pi$
5. return

The "greedy" concept here is to


## Yet Another New Idea: Strips

Strip: an interval between two consecutive breakpoints in a permutation

- Decreasing strip: strip of elements in decreasing order (e.g. 65 and 32 ).
- Increasing strip: strip of elements in increasing order (e.g. 78 )
- A single-element strip can be declared either increasing or decreasing.
- We will choose to declare them as decreasing with exception of extension strips (with 0 and $\mathrm{n}+1$ )

$$
\overrightarrow{0,1}, \overleftarrow{9}, \overleftarrow{4,3}, \overrightarrow{7,8}, \overleftarrow{2}, \overrightarrow{5,6}, \overrightarrow{10}
$$

## Reducing the Number of Breakpoints

- Consider $\Pi=1,4,6,5,7,8,3,2$

$$
\overrightarrow{0,1},|\overleftarrow{4},|\overleftarrow{6,5},|\overrightarrow{7,8},|\overleftarrow{3,2},| \overrightarrow{9}
$$

$$
b(p)=5
$$

If permutation $p$ contains at least one decreasing strip, then there exists a reversal $r$ which decreases the number of breakpoints (i.e. $b(p \cdot r)<b(p))$.


Which reversal?

## Things to Consider

- Consider $\Pi=1,4,6,5,7,8,3,2$

$$
\overrightarrow{0,1},|\overleftarrow{4},|\overleftarrow{6,5},|\overrightarrow{7,8},|\overleftarrow{3,2},| \overrightarrow{9} \quad b(p)=5
$$

- Choose the decreassing strip with the smallest elment k in $\Pi$
- It'll always be the right-most element of that strip
- Find $\mathrm{k}-1$ in the permutation
- it'll always be flanked by a breakpoint
- Reverse the segment between k and $\mathrm{k}-1$


## Things to Consider

- Consider $\Pi=1,4,6,5,7,8,3,2$

$$
\overrightarrow{0,1,2,} \overrightarrow{3},|\overleftarrow{8,7},|\overrightarrow{5,6},|\overleftarrow{4},| \overrightarrow{9} \quad b(p)=4
$$

- Choose the decreassing strip with the smallest elment k in $\Pi$
- It'll always be the right-most element of that strip
- Find $\mathrm{k}-1$ in the permutation
- it'll always be flanked by a breakpoint
- Reverse the segment between k and $\mathrm{k}-1$


## Things to Consider

- Consider $\Pi=1,4,6,5,7,8,3,2$

$$
\overrightarrow{0,1,2,3,4},|\overleftarrow{6,5},| \overrightarrow{7,8,9} \quad b(p)=2
$$

- Choose the decreassing strip with the smallest elment k in $\Pi$
- It'll always be the right-most element of that strip
- Find $\mathrm{k}-1$ in the permutation
- it'll always be flanked by a breakpoint
- Reverse the segment between k and $\mathrm{k}-1$


## Things to Consider

- Consider $\Pi=1,4,6,5,7,8,3,2$

- Choose the decreassing strip with the smallest elment k in $\Pi$
- It'll always be the right-most element of that strip
- Find $\mathrm{k}-1$ in the permutation
- it'll always be flanked by a breakpoint
- Reverse the segment between k and $\mathrm{k}-1$


## Things to Consider

- Consider $\Pi=1,4,6,5,7,8,3,2$

$$
\begin{aligned}
& \overrightarrow{0,1},|\overleftarrow{4},|\overleftarrow{6,5},|\overrightarrow{7,8},|\overleftarrow{3,2},| \overrightarrow{9} \\
& \overrightarrow{0,1,2,3,4},|\overleftarrow{6,5},| \overrightarrow{7,8,9} \\
& \overrightarrow{0,1,2,3,4,5,6,7,8,9}
\end{aligned}
$$

$$
\begin{aligned}
& b(p)=5 \\
& b(p)=4 \\
& b(p)=2 \\
& b(p)=0 \\
& d(\Pi)=3
\end{aligned}
$$

## Potential Gotcha

$$
\overrightarrow{0,1,2},|\overrightarrow{5,6,7},|\overrightarrow{3,4},| \overrightarrow{8,9} \quad b(p)=3
$$

- If there is no decreasing strip, there may be no strip-reversal $\rho \rho$ that reduces the number of breakpoints (i.e. $b\left(\Pi^{\circ} \rho(i, j)\right) \geq b(\Pi)$ for any reversal $\rho$ ).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.



## Potential Gotcha

$$
\begin{array}{ll}
\overrightarrow{0,1,2},|\overrightarrow{5,6,7},|\overrightarrow{3,4},| \overrightarrow{8,9} & b(p)=3 \\
\overrightarrow{0,1,2},|\stackrel{4,6,5}{\longleftrightarrow},|\overrightarrow{3,4},| \overrightarrow{8,9} & b(p)=3
\end{array}
$$

- If there is no decreasing strip, there may be no strip-reversal $\rho \rho$ that reduces the number of breakpoints (i.e. $b\left(\Pi^{\circ} \rho(i, j)\right) \geq b(\Pi)$ for any reversal $\rho$ ).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.


## Putting it all together

1. With each reversal, one can remove at most 2 breakpoints
2. If there is any decreasing strip there exists a reversal that will remove at least one breakpoint
3. If breakpoints remain and there is no decreasing strip one can be created by reserving any remaining strip

| $\overrightarrow{0,1,2},\|\overrightarrow{5,6,7},\|\overrightarrow{3,4},\| \overrightarrow{8,9}$ | $b(p)=3$ | $\rho(3,5)$ |
| :--- | :--- | :--- |
| $\overrightarrow{0,1,2},\|\overleftarrow{7,6,5},\|\overrightarrow{3,4},\| \overrightarrow{8,9}$ | $b(p)=3$ | $\rho(6,7)$ |
| $\overrightarrow{0,1,2},\|\overleftarrow{7,6,5,4,3},\| \overrightarrow{8,9}$ | $b(p)=2$ | $\rho(3,7)$ |
| $\overrightarrow{0,1,2,3,4,5,6,7,8,9}$ | $b(p)=0$ | Done! |

An optimal algorithm would remove 2 breakpoints at every step. The last reversal always removes 2 breakpoints, thus if the number of breakpoints is odd, even the optimal algorithm must make at least one reersal that removes only 1 breakpoint.

## An Improved Breakpoint Reversal Sort

ImprovedBreakpointReversalSort( $\pi$ )

1. while $b(\pi)>0$
2. if $\pi$ has a decreasing strip
3. Among all possible reversals, choose reversal $\rho$ that minimizes $b(\pi \cdot \rho)$
4. else
5. Choose a reversal $\rho$ that flips an increasing strip in $\pi$
6. $\quad \pi \leftarrow \pi \cdot \rho$
7. output $\pi$
8. return


## Breakpoints and Strips

```
In [11]: def hasBreakpoints(seq):
    """ returns True if sequences is not strictly increasing by 1 """
    for i in range(1, len(seq)):
        if (seq[i] != seq[i-1] + 1):
            return True
    return False
def getStrips(seq):
    """ find contained intervals where sequence is ordered, and return intervals
    in as lists, increasing and decreasing. Single elements are considered
    decreasing. "Contained" excludes the first and last interval. """
    deltas = [seq[i+1] - seq[i] for i in range(len(seq)-1)]
    increasing = list()
    decreasing = list()
    start = 0
    for i, diff in enumerate(deltas):
        if (abs(diff) == 1) and (diff == deltas[start])
            continue
        if (start > 0):
            if deltas[start] == 1:
                    increasing.append((start, i+1))
                else:
                    decreasing.append((start, i+1))
        start = i+1
    return increasing, decreasing
```


## Handle Reversals

```
In [15]: def pickReversal(seq, strips):
    """ test each decreasing interval to see if it leads to a reversal that
    removes two breakpoints, otherwise, return a reversal that removes only one """
    for i, j in strips:
        k = seq.index(seq[j-1]-1)
        if (seq[k+1] + 1 == seq[j]):
            # removes 2 breakpoints
            return 2, (min(k+1, j), max(k+1, j))
    # In the worst case we remove only one, but avoid the length "1" strips
    for i, j in strips:
        k = seq.index(seq[j-1]-1)
        if (j - i > 1):
            break
    return 1, (min(k+1, j), max(k+1, j))
def doReversal(seq,reversal):
    i, j = reversal
    return seq[:i] + [element for element in reversed(seq[i:j])] + seq[j:]
```


## Let's do it!

In [13]: def improvedBreakpointReversalSort(seq, verbose=True): seq $=[0]+$ seq $+[\max (\operatorname{seq})+1]$ $\mathrm{N}=0$
while hasBreakpoints(seq):
increasing, decreasing = getStrips(seq)
if len(decreasing) > 0 :
removed, reversal = pickReversal(seq, decreasing)
else:
removed, reversal $=0$, increasing[0] \# No breakpoints can be removed
if verbose:
print("Strips:", increasing, decreasing)
print("\%d: \%s rho\%s" \% (removed, seq, reversal)) input("Press Enter:")
seq $=$ doReversal(seq, reversal)
$\mathrm{N}+=1$
if verbose:
print(seq, "Sorted")
return N
\# Also try: $[1,9,3,4,7,8,2,6,5]$
print(improvedBreakpointReversalSort([3,4,1,2,5,6,7,10,9,8], verbose=True))

## Strips: $[(1,3),(3,5),(5,8)][(8,11)]$

$2:[0,3,4,1,2,5,6,7,10,9,8,11]$ rho(8, 11)
Press Enter:
Strips: $[(1,3),(3,5)]$ []
$0:[0,3,4,1,2,5,6,7,8,9,10,11] \quad r h o(1,3)$
Press Enter:
Strips: [(3, 5)] [(1, 3)]
1: $[0,4,3,1,2,5,6,7,8,9,10,11] \quad r h o(3,5)$ Press Enter:
Strips: [] [(1, 5)]
2: $[0,4,3,2,1,5,6,7,8,9,10,11]$ rho(1, 5)
Press Enter:
$[0,1,2,3,4,5,6,7,8,9,10,11]$ Sorted
4
\# Extend sequence
\# pick a reversal that removes a decreasing strip

```
(seq, verbose=True):
    N}=
        emoved, reversal = pickReversal(seq, decreasing)
            reversal = 0, increasing[0]
                    *
```




```
                                    0
```

                                    0
            rbose:
            print(seq, "Sorted")
    
# Also try: [1,9,3,4,7, 8, 2, 6, 5]

print(improvedBreakpointReversalSort([3,4,1,2,5,6,7,10,9,8], verbose=True))
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] Sorted

```

\section*{Performance}
- ImprovedBreakPointReversalSort is a greedy algorithm with a performance guarantee of no worse than 4 compared to an optimal algorithm
- It eliminates at least one breakpoint in every two steps (flip an increasing then remove 1)
- That's at most: \(2 \mathrm{~b}(\Pi)\) steps
- An optimal algorithm could at most remove 2 breakpoints in every step, thus requiring \(\mathrm{b}(\Pi) / 2\) steps
- The approximation ratio is:
\[
\frac{\mathcal{A}(\Pi)}{O P T(\Pi)}=\frac{2 b(\Pi)}{\frac{b(\Pi)}{2}}=4
\]
- But there is a solution with far fewer flips

\section*{A Better Approximation Ratio}
- If there is a decreasing strip, the next reversal reduces \(b(\pi)\) by at least one.
- The only bad case is when there is no decreasing strip.

Then we do a reversal that does not reduce \(b(\pi)\).
- If we always choose a reversal reducing \(b(\pi)\) and, at the same time, select a permutation such that the result has at least one decreasing strip, the bad case would never occur.
- If all possible reversals that reduce \(b(\pi)\) create a permutation without decreasing strips, then there exists a reversal that reduces \(b(\pi)\) by 2 (Proof not given)!
- When the algorithm creates a permutation without a decreasing strip, the previous reversal must have reduced \(b(\pi)\) by two.
- At most \(b(\pi)\) reversals are needed.
- The improved Approximation ratio:
\[
\frac{\mathcal{A}_{\text {new }}(\Pi)}{O P T(\Pi)}=\frac{b(\Pi)}{\frac{b(\Pi)}{2}}=2
\]

\section*{Comparing Greedy Algorithms}

\section*{SimpleReversalSort}
- Attempts to extend the prefix \((\pi)\) at each step
- Approximation ratio ( \(\mathrm{n}-1\) )/(b(П)/2) can be large

\section*{ImprovedBreakpointReversalSort}
- Attempts to reduce the number of breakpoints at each step
- Approximation ratio \(b(\Pi) /(b(\Pi) / 2)=2 x\)


\section*{Next Time}
- A little randomness
- Study session?

Monday 4/27 or Tuesday 4/28 4pm-6pm?
- Need to resolve all outstanding grading issues
```

