How many pancakes

Comp 555 - BioAlgorithms - Spring 2020

Minimum Strategy
should | flip to make the current stack next stack
next new stack? =
=% 5 == ® PROBLEM SET #S IS
= — DVE TONIGHT
4215367 3512467
o FINAL EXAM ON
Maximum Strategy FRIdAY May)
current stack next stack (®am-Nar)
= 4 = o STUDY SESSION?
_i::;iz:;: > 7 [7 jizirj :7::(7] *PM-LPM 6”
4215367 5124367

Mowpay t/2? -or-
TVESDAY /28
Genome Rearrangements - Continued

In search of Approximation Ratios e,

def GreedyReversalSort(pi).:
for i in range(len(pi)-1):
j = pi.index(min(pi[i:]))

approximation
ratio?

Tk e
pi = pi[:1i]
+ [v for v in reversed(pi[i:j+1])]
+ pi[j+1:]
return pi
A(NM) OPT(N)?
Step 0: 6 1 2 3 4 5 Step 0: 6 12345
Step 1: 1 62 3 4 5 Step 1: 54321 6 any better
Step 2: 126345 Step 2: 123456 greedy
Step 3: 1236 45 algorithms?
Step 4: 1 23465
Step 5: 1 23 45 6

Comp 555 - Spring 2020 2

New |dea: Adjacencies

e Adjacencies are locally sorted runs.
e Assume a permutation:

N=n,n,n3,...7,_1, 7,
e A pair of neighboring elements r. and i are adjacent if:
miy =m 1

e For example:

[1=1,9,3,4,7,8,2,6,5

e (3,4)and (7,8)and (6,5) are adjacencies.

Comp 555 - Spring 2020

Adjacencies and Breakpoints

e Breakpoints occur between neighboring non-adjacent elements

I1=1,19,13,4,17,8,12,16,5

e There are 5 breakpoints in our permuation between pairs (1,9), (9,3), (4,7), (8,2) and (2,5)
e We define b(IM) as the number of breakpoints in permutation I

Comp 555 - Spring 2020

Extending Permutations e

e One can place two elements, m,= 0 and it .= n+1 at the beginning and end of
1 respectively

1,19,13,4,17,8,12,16,5

l
[I1=01,19,13,4,17,8,12,16,5,110

e An addtional breakpoint was created after extending
An extended permutation of length n can have at most (n+1) breakpoints
e (n-1) between the original elements plus 2 for the extending elements

Comp 555 - Spring 2020

How Reversals Effect Breakpoints

Breakpoints are the targets for sorting by reversals.

Once they are removed, the permutation is sorted.

Each "useful" reversal eliminates at least 1, and at most 2 breakpoints.
Consider the following application of GreedyReversalSort(Extend(I1))

1= 2,3,1,4,6,5
012,3111416,517 b({AI) =5
0, 113,21416,517 b(I) =4
0,1,2,3,416,5|7 bdI) =2

0,1,2,3,4,5,6,7 b{dAI) =0

Comp 555 - Spring 2020

required - b(m)

reversals —

\
9

5

2

Sorting-by-Reversals: A second Greedy Algorithm %,

BreakpointReversalSort(r):

1. while b(r) > O:
2. Among all possible reversals, choose reversal p minimizing b(x)

3. II«1II-pGi,j
P ("]) The “greedy"” concept here is to
4., outp ut Il D reduce as many breakpoints as

5. return _‘ possible at each step.

Does it always terminate?

What if no reversal reduces the
number of breakpoints?

0 1 2|567|34|89

Comp 555 - Spring 2020

Yet Another New Idea: Strips R

Strip: an interval between two consecutive breakpoints in a permutation

Decreasing strip: strip of elements in decreasing order (e.g. 6 5and 3 2).
Increasing strip: strip of elements in increasing order (e.g. 7 8)

A single-element strip can be declared either increasing or decreasing.
We will choose to declare them as decreasing with exception of extension
strips (with 0 and n+1)

Comp 555 - Spring 2020

Reducing the Number of Breakpoints o

e Considerl1=1,4,6,5,7,8,3,2

— > < —

0,1,I4,|<6,5,|7,8,I3,2,I9 b(p) =15

Which
reversal?

¥ ¢ o>

~ How can we be sure
that we decrease
the number of
breakpoints?

If permutation p contains at least one
decreasing strip, then there exists a reversal
r which decreases the number of
breakpoints (i.e. b(p * r) < b(p)).

Comp 555 - Spring 2020

Things to Consider

e Considerl1=1,4,6,5,7,8,3,2

— < > < .
0,1,14,16,5,17,8,13,2,1 9

<€

e Choose the decreassing strip with the smallest elment k in I1
o It'll always be the right-most element of that strip

e Find k-1 in the permutation
o it'll always be flanked by a breakpoint

e Reverse the segment between k and k-1

Comp 555 - Spring 2020

*}‘;T
4\ %
Qe

b(p) =3

10

Things to Consider

e Considerl1=1,4,6,5,7,8,3,2

AN AN
Vd 7

0.1.2.3.18.7.15.6.14 .19
<=

e Choose the decreassing strip with the smallest elment k in I1
o It'll always be the right-most element of that strip

e Find k-1 in the permutation
o it'll always be flanked by a breakpoint

e Reverse the segment between k and k-1

Comp 555 - Spring 2020

b(p) =4

11

Things to Consider

Consider1=1,4,6,5,7,8,3,2

P — >
0,1,2,3,4,16,5,17,8,9 b(p) =2

-

Choose the decreassing strip with the smallest elment k in IT
o It'll always be the right-most element of that strip

Find k-1 in the permutation
o it'll always be flanked by a breakpoint

Reverse the segment between k and k-1

Comp 555 - Spring 2020

12

Things to Consider

Consider1=1,4,6,5,7,8,3,2

0.1.2.3.4.5.6.7.8.9 b(p) =0

Choose the decreassing strip with the smallest elment k in IT
o It'll always be the right-most element of that strip

Find k-1 in the permutation
o it'll always be flanked by a breakpoint

Reverse the segment between k and k-1

Comp 555 - Spring 2020

13

Things to Consider

e Considerl1=1,4,6,5,7,8,3,2

_>
0,1,|4 I65 |78 |3 2,|9

_)
O,l,23|87|56|4|9
O,l,234|65|789

0,1,2,3,4,5,6,7,8,9

Comp 555 - Spring 2020

b(p) =
b(p) =
b(p) =
b(p) =

d(IT) = 3

&"}%g

Does it work
for any
permutation?

po)

2

14

Potential Gotcha

A 4

0.1,2.15.6.7,13.4,18.9 b(p) =3

e If there is no decreasing strip, there may be no strip-reversal pp that reduces the number of
breakpoints (i.e. b(M'p(i,j)) = b(M) for any reversal p).

e However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints
remains unchanged.

e Then the number of breakpoints Créme
will be reduced in the following steps. =~

Comp 555 - Spring 2020 15

Potential Gotcha

0.1,2.15.6,7.13.4,18.9 b(p) = 3

A 4

N
o

0.1,2.17.6.5.13.4,18.9 b(p) = 3

e If there is no decreasing strip, there may be no strip-reversal pp that reduces the number of
breakpoints (i.e. b(M'p(i,j)) = b(M) for any reversal p).

e However, reversing an increasing strip creates a decreasing strip,
and the number of breakpoints remains unchanged.

e Then the number of breakpoints will be reduced in the following steps.

Comp 555 - Spring 2020

Putting it all together e,

1. With each reversal, one can remove at most 2 breakpoints
2. If thereis any decreasing strip there exists a reversal that will remove at least one breakpoint
3. If breakpoints remain and there is no decreasing strip one can be created

by reserving any remaining strip

0,1,2,15,6,7,13,4,18,9 bp)=3 p@3,5)
50

0,1,2,17,6.5,13,4,18,9 bp)=3 p6.7)

0,1,2,17,6,5.4,3,18,9 bp)=2 pB.7)

0.1.2.3.4.5.6.7.8.9 b)=0 Done!

An optimal algorithm would remove 2 breakpoints at every step. The last reversal always removes 2
breakpoints, thus if the number of breakpoints is odd, even the optimal algorithm must make at least one
reersal that removes only 1 breakpoint.

Comp 555 - Spring 2020 17

An Improved Breakpoint Reversal Sort

ImprovedBreakpointReversalSort(m)

1. while b(n) > ©

2 if m has a decreasing strip

3 Among all possible reversals, choose reversal p that minimizes b(m -+ p)
4 else

5. Choose a reversal p that flips an increasing strip in n

6 MmeT *p

7. output n

8. return

Break
Point

Comp 555 - Spring 2020

Breakpoints and Strips

Iny [11] :

def

def

hasBreakpoints(seq):
""" returns True if sequences is not strictly increasing by 1 """
for i in range(1, len(seq)):
if (seq[i] != seq[i-1] + 1):
return True
return False

getStrips(seq):
""" find contained intervals where sequence is ordered, and return intervals
in as lists, increasing and decreasing. Single elements are considered
decreasing. "Contained" excludes the first and last interval. """
deltas = [seq[i+1] - seq[i] for i in range(len(seq)-1)]
increasing = list()
decreasing list()
start = 0
for i, diff in enumerate(deltas):
if (abs(diff) == 1) and (diff == deltas[start]):
continue
if (start > 0):
if deltas[start] == 1:
increasing.append((start, i+1))
else:
decreasing.append((start, i+1))
start = i+1
return increasing, decreasing

Comp 555 - Spring 2020

19

Handle Reversals

In [15]: def pickReversal(seq, strips):
""" test each decreasing interval to see if it leads to a reversal that
removes two breakpoints, otherwise, return a reversal that removes only one """
for i, j in strips:
k = seq.index(seq[j-1]-1)
if (seq[k+1] + 1 == seq[j]):
removes 2 breakpoints
return 2, (min(k+1, j), max(k+1, j))
In the worst case we remove only one, but avoid the length "1" strips
for i, j in strips:
k = seq.index(seq[j-1]-1)
if (j = i > 1)
break
return 1, (min(k+1, j), max(k+1, j))

def doReversal(seq,reversal):

i, j = reversal
return seq[:i] + [element for element in reversed(seq[i:j])] + seq[j:]

Comp 555 - Spring 2020

20

Let's do it!

In [13]: def improvedBreakpointReversalSort(seq, verbose=True):
seq = [0] + seq + [max(seq)+1] # Extend sequence
N =0
while hasBreakpoints(seq):
increasing, decreasing = getStrips(seq)

if len(decreasing) > 0: # pick a reversal that removes a decreasing strip
removed, reversal = pickReversal(seq, decreasing)

else:
removed, reversal = 0, increasing[0] # No breakpoints can be removed

if verbose:
print("Strips:", increasing, decreasing)
print("%d: %s rho%s" % (removed, seq, reversal))
input("Press Enter:")
seq = doReversal(seq,reversal)
N += 1
if verbose:
print(seq, "Sorted")
return N

Also try: [1,9,3,4,7,8,2,6,5]
print(improvedBreakpointReversalSort([3,4,1,2,5,6,7,10,9,8], verbose=True))

Strips: [(1, 3), (3, 5), (5, 8)] [(8, 11)]

2: [0, 3, 4,1, 2, 5, 6, 7, 10, 9, 8, 11] rho(8, 11)
Press Enter:

Strips: [(1, 3), (3, 5)] []

ox[6, 3,4, 1, 2, 5, 6, 7, 8, 9, 10, 41] rho(1, 3)
Press Enter:

Strips: [(3, 5)] [(1, 3)]

1: [0, 4, 3, 1, 2, 5, 6, 7, 8, 9, 10, 11] rho(3, 5)
Press Enter:

Strips: [] [(1, 5)]

2: [0, 4, 3, 2, 1, 5, 6, 7, 8, 9, 10, 11] rho(1, 5)
Press Enter:

[6, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] Sorted

4

Comp 555 - Spring 2020 21

Performance v,

e ImprovedBreakPointReversalSort is a greedy algorithm with a performance guarantee of no worse
than 4 compared to an optimal algorithm
o It eliminates at least one breakpoint in every two steps (flip an increasing then remove 1)

o That's at most: 2b(I) steps
o An optimal algorithm could at most remove 2 breakpoints in every step, thus requiring b(I)/2

steps
o The approximation ratio is:

A _ 260D _
OPT(I) L) B

L

e But there is a solution with far fewer flips

Comp 555 - Spring 2020 22

A Better Approximation Ratio KN

e If there is a decreasing strip, the next reversal reduces b(m) by at least one.

e The only bad case is when there is no decreasing strip.
Then we do a reversal that does not reduce b(t).

e If we always choose a reversal reducing b(m) and, at the same time, select a permutation such that
the result has at least one decreasing strip, the bad case would never occur.

e If all possible reversals that reduce b(m) create a permutation without decreasing strips, then there
exists a reversal that reduces b(m) by 2 (Proof not given)!

e When the algorithm creates a permutation without a decreasing strip, the previous reversal must
have reduced b(m) by two.

e At most b(m) reversals are needed.

e The improved Approximation ratio:

Ape(I) b1)
OPT(IT) b

e

Comp 555 - Spring 2020 23

Comparing Greedy Algorithms o,
SimpleReversalSort

e Attempts to extend the prefix(m) at each step

e Approximation ratio (n-1)/(b()/2) can be large
ImprovedBreakpointReversalSort

e Attempts to reduce the number of breakpoints at each step
e Approximation ratio b(M)/(b(M)/2) = 2x

Mouse (X chrom.)
o - ——-——- - - ———

\ ® - - - P ———— - —
Human (X chrom.)

Comp 555 - Spring 2020 24

Next Time

e A little randomness
e Study session?

Monday 4/27 or Tuesday 4/28
4pm-6pm?

e Need to resolve all
outstanding grading issues

Comp 555 - Spring 2020

It seems like we've been
driving around forever.
What route are we taking?

I dunno, I set the GPS to
“random walk.” We'll get
home eventually.

o

s ¥

Bob! That assumes t'imc
is an infinite quantity!)

hE

You didn’t really need
be at your PhD defense
tomorrow, did you? J

25

