Comp 555 - BioAlgorithms - Spring 2020

WELCOME BACK!
 TO THE NEW UNCHARTED WORLD THAT WE NOW LIVE IN

CLUSTAL $O(1.2 .1)$ multiple sequence alignment

Cat	MAPWTRLLPLLALLSLWIPAPTRAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAED	60
Pig	MALWTRLLPLLALLALWAPAPAQAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAEN	60
Human	MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAED	60
Dog	MALWMRLLPLLALLALWAPAPTRAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREVED	60
	$* * * * * * * * * * * *: * * * *: *: * * * * *: ~$	
Cat	LQGKDAELGEAPGAGGLQPSALEAPLQKRGIVEQCCASVCSLYQLEHYCN	110
Pig	PQAGAVELGG--GLGGLQALALEGPPQKRGIVEQCCTSICSLYQLENYCN	108
Human	LQ------------GSLQPLALEGSLQKRGIVEQCCTSICSLYQLENYCN	98
Dog	LQVRDVELAGAPGEGGLQPLALEGALQKRGIVEQCCTSICSLYQLENYCN	110

- Midterm results
- back tロ business
- Review of sequence Alignment
- SCORING MATRICES
- clabal vs. local

Advanced Sequence Alignment

How does the rest of the semester play out?

- We will continue to meet at our regular time T-Th 9:30-10:45 (I will linger around until 11am)
- My office hours will also move to Zoom at the same time W 2-4pm
- We will continue to have "in-class" exercises
- The two remaining problem sets and the final exam will be downloaded and submitted online as before.

- Everyone can take the course as either a letter grade or P/F, and you can wait until the end of the course to decide.

Midterm Results

Average: 71.91
Q1: $\quad 83.00$
Median: 75.00
Q3: $\quad 65.00$

All curves will be applied to the combined weighted course average

The median course grade will be a
"B", "B+', or "B-"

At least as good as it would on a 10-point scale

A Refresher

Longest Common Subsequence (LCS) is a special case of alignment

1. Construct a graph
2. Define a recurrence relation
3. Solve it for all paths from $(0,0)$ to (n, m)
4. Used a dynamic program where each step relies only on solutions already computed and saved in our tableau

How about alternate recurrence relations?

$$
S_{i j}=\max \left\{\begin{array}{lll}
S_{i-1, j-1}+1 & \text { if } & v_{i}=w_{j} \\
S_{i-1, j-1}-1 & \text { if } & v_{i} \neq w_{j} \\
S_{i-1, j}-2 & & \\
S_{i, j-1}-2 &
\end{array}\right.
$$

$$
S_{i, j}=\max \left\{\begin{array}{c}
s_{i-1, j-1}+1 \quad \text { if } v_{i}=w_{i} \\
s_{i-1, j} \\
s_{i, j-1}
\end{array} \quad \longrightarrow \quad\right.
$$

	W	A	T	C	G	T	A	C
v	A							
A								
T								
G					\searrow			
T					\square			
T						A		
A								
T								

A more "general purpose" alignment graph

Now consider a more uniform "Manhatten"
There are four ways to reach an intersection

From the north,
Fom the east, from a diagonal with a "match", from a diagonal with a "mismatch"
C

Alignment using a Scoring Matrix

- Rather edit distance one can use a table with costs for every symbol aligned to any other
- Scoring matrices allow alignments to consider biological constraints
- Alignments can be thought of as two sequences that differ due to mutations.
- Some types of mutations are more common, or have little or no effect on function, therefore some mismatch penalties, $\delta\left(v_{i}, w_{j}\right)$, should be less harsh than others.

Example: DNA transitions and transversions

- Like LCS, we want to maximize sequence matches, so each should have a positive score (diagonal of scoring matrix)
- Unlike LCS, we need to allow for occasional mismatches, as well as INDELs.
- The 4 DNA nucleotides come in two types, purines (A and G), which have two-rings

δ	A	C	G	T	-
A	1	-2	-1	-2	-3
C	-2	1	-2	-1	-3
G	-1	-2	1	-2	-3
T	-2	-1	-2	1	-3
-	-3	-3	-3	-3	

- Mutations within types are far more common than mutations between types, despite there being twice as many. This higher mutation rate can be encoded as a smaller substitution penalty.
- Insertions and deletions are even less common that any substitution, thus they have even higher penalties.

Impact on Alignment

Graph includes all diagonal edges, but many with negative weights

$s_{i, j}=\max \left\{\begin{array}{l}s_{i-1, j-1}+\delta\left(v_{i}, w_{j}\right) \\ s_{i-1, j}+\delta\left(v_{i,-}\right) \\ s_{i, j-1}+\delta\left({ }_{-}, w_{j}\right)\end{array}\right.$

Generalized recurrence relation

Needleman-Wunsch Alignment Algorithm

Global Alignment with a scoring matrix

In [9]: import numpy

```
def GlobalAlign(v, w, scorematrix, indel)
    \(s=\) numpy.zeros \(((\operatorname{len}(v)+1, \operatorname{len}(w)+1)\), dtype="int32"
    \(=\) numpy.zeros((len \((v)+1, \operatorname{len}(w)+1), \quad\) dtype="int32")
    for \(i\) in range \((0, \operatorname{len}(v)+1)\)
        for \(j\) in range \((0\), len \((w)+1)\)
            if \((j==0)\) :
            (i,
                    \(s[i, j]=s[i-1, j]+i n d e l\)
                    \(\mathrm{b}[\mathrm{i}, \mathrm{j}]=1\)
            continue
            if ( \(i==0\) )
                \(s[i, j]=s[i, j-1]+\) indel
            \(\mathrm{b}[\mathrm{i}, \mathrm{j}]=\)
            core \(=s[i-1, j-1]+\operatorname{scorematrix}[v[i-1], w[j-1]]\)
            skip \(=s[i-1, j]+\) inde
            skip \(=s[i, j-1]+\) inde
            [i,j] = max(vskip, wskip, score)
            f ( \(s[i, j]==\) vskip)
            \(\mathrm{b}[\mathrm{i}, \mathrm{j}]=1\)
            elif ( \(s[i, j]==\) wskip):
                b[i,j] = 2
            else:
    ( \(b[i, j]=3\)
match \(=\left\{\left({ }^{\prime} A^{\prime},{ }^{\prime} A^{\prime}\right):\right.\) 1, ('A', 'C'): -2, ('A', 'G'): -1, ('A','T'): -2
```



```
\(v=\) "TTCCGAGCGTTA"
w = "TTTCAGGTTA"
\(\mathrm{s}, \mathrm{b}=\) GlobalAlign \((\mathrm{v}, \mathrm{w}\), match, -3 )
print( \(" B e s t ~ s c o r e ~\)
align \(=\) Alignment \((b, \mathrm{~s}, \mathrm{w}, \mathrm{b}\), shape \([0]-1, \mathrm{~b}\), shape \([1]-1\) )
print("v =", align[0])
print("w =", align[1])

\section*{Local vs. Global Alignment}
- The Global Alignment Problem tries to find the highest scoring path between vertices \((0,0)\) and \((n, m)\) in the edit graph.
- The Local Alignment Problem tries to find the highest scoring subpath between all vertex pairs \(\left(i_{1}, j_{1}\right)\) and \(\left(i_{2}, j_{2}\right)\) in the edit graph where \(i_{2}>i_{1}\) and \(j_{2}>j_{1}\).
- In an edit graph with negatively-weighted scores, a Local Alignment may score higher than a Global Alignment

\section*{Example:}
- Global Alignment finds a match for the entire sequence

- Local Alignment finds a long conserved subsequence
tccCAGTTATGTCAGgggacacgagcatgcagagac
|||||||||||
aattgccgccgtcgttttcagCAGTTATGTCAGatc

\section*{Local Alignments: Why?}

Two genes in different species may be similar over short conserved regions and dissimilar over remaining regions.

Example:
- Homeobox genes have a short region called the homeodomain that is highly conserved between species.
- A global alignment would not find the homeodomain because it would try to align the ENTIRE sequence

\section*{Local Alignment Problem:}
- Goal: Find the best local alignment between two strings
- Input: Strings \(v, w\) and scoring matrix \(\delta\)
- Output: Alignment of substrings of \(v\) and \(w\) whose alignment score is maximum among all possible alignment of all possible substrings

\section*{Local Alignment Approach}

A local alignment is a subpath in a global alignment


\section*{Brute Force Local Alignment}

Find the best global alignment among all blocks \(\left(i_{1} j_{1} i_{2} j_{2}\right)\)


Long run time \(O\left(\mathrm{n}^{4}\right)\) :
- In the grid of size \(n \times n\) there are \(O\left(n^{2}\right)\) vertices \(\left(i_{1}, j_{1}\right)\) that may serve as a source.
- For each such vertex computing alignments from \(\left(\mathrm{i}_{1} \mathrm{j}_{1}\right)\) to \(\left(\mathrm{i}_{2} \mathrm{j}_{2}\right)\) takes \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) time.

\section*{Local Alignment with Free Rides}
- Key Ideas: Add extra edges to our graph, consider all scores in matrix

- The dashed edges represent a free ride from \((0,0)\) to any other node
- The largest value of \(\mathrm{s}_{\mathrm{i}, \mathrm{j}}\) over the whole score matrix is the end point of the best local alignment (instead of \(\mathrm{s}_{\mathrm{n}, \mathrm{m}}\) )

\section*{Local Alignment Recurrence}
\[
s_{i, j}=\max \begin{cases}0 & \begin{array}{l}
\text { Notice there is only this } \\
\text { small change from the } \\
\text { original recurrence of a } \\
s_{i-1, j-1}+\delta\left(v_{i}, w_{j}\right) \\
s_{i-1, j}+\delta\left(v_{i,},-\right) \\
s_{i, j-1}+\delta\left(-, w_{j}\right)
\end{array}\end{cases}
\]
- The zero is our free ride that allows the node to restart with a score of 0 at any point
- What does this imply?
- After solving for the entire score matrix, we then search for si,j with the highest score, this is \(\left(\mathrm{i}_{2}, \mathrm{j}_{2}\right)\)
- We follow our back tracking matrix until we reach a score of 0 , whose coordinate becomes ( \(\mathrm{i}_{1}, \mathrm{i}_{1}\) )

\section*{Smith-Waterman Local Alignment}


Key Idea: Add edges from the source to any intersection. These free rides might be better than any other path reaching an intersection.

\section*{Local Alignment Example}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \(=0\) & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline i= & & - & G & C & T & G & G & A & A & G & G & C & A & T \\
\hline 0 & - & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & G & 0 & & & & & & & & & & & & \\
\hline 2 & C & 0 & & & & & & & & & & & & \\
\hline 3 & A & 0 & & & & & & & & & & & & \\
\hline 4 & G & 0 & & & & & & & & & & & & \\
\hline 5 & A & 0 & & & & & & & & & & & & \\
\hline 6 & G & 0 & & & & & & & & & & & & \\
\hline 7 & C & 0 & & & & & & & & & & & & \\
\hline 8 & A & 0 & & & & & & & & & & & & \\
\hline 9 & C & 0 & & & & & & & & & & & & \\
\hline 10 & T & 0 & & & & & & & & & & & & \\
\hline
\end{tabular}

Match \(=5\), Mismatch \(=-4\), Indel \(=-7\)

\section*{Local Alignment Example - continued}


Match \(=5\), Mismatch \(=-4\), Indel \(=-7\)

\section*{Local Alignment Example - continued}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & j=0 & 1 & 2 & 3 & & 5 & & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline i= & & - & G & C & T & G & G & A & A & G & G & C & A & \\
\hline 0 & - & 0 & 0 & 0 & 0 & 0 & 00 & & 0 & 0 & 0 & 0 & 0 & \\
\hline 1 & G & 0 & 5 & 0 & & & & & & & & & & \\
\hline 2 & c & 0 & 0 & \(\mathrm{S}_{2,2}\) & & & & & \(S_{1,1}+\) & \(C_{C}=\) & \(5+\) & \(=10\) & & \\
\hline 3 & A & 0 & & & & & & & & & & & & \\
\hline 4 & G & 0 & & & & & & & & & & & & \\
\hline \[
5
\] & A & 0 & & & & & max & & \(S_{1,2}+\) & & & & & \\
\hline 6 & G & 0 & & & & & & & & & & & & \\
\hline & c & 0 & & & & & & & & & & & & \\
\hline 8 & A & 0 & & & & & & & & & & & & \\
\hline 9 & C & 0 & & & & & & & & & & & & \\
\hline 10 & т & 0 & & & & & & & & & & & & \\
\hline
\end{tabular}
\[
\text { Match }=5 \text {, Mismatch }=-4, \text { Indel }=-7
\]

\section*{Local Alignment Example - continued}
\begin{tabular}{llrrrrrrrrrrrr} 
& 0 & G & C & T & G & G & A & A & G & G & C & A & T \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
G & 0 & 5 & 0 & 0 & 5 & 5 & 0 & 0 & 5 & 5 & 0 & 0 & 0 \\
C & 0 & 0 & 10 & 3 & 0 & 1 & 1 & 0 & 0 & 1 & 10 & 3 & 0 \\
A & 0 & 0 & 3 & 6 & 0 & 0 & 6 & 6 & 0 & 0 & 3 & 15 & 8 \\
G & 0 & 5 & 0 & 0 & 11 & 5 & 0 & 2 & 11 & 5 & 0 & 8 & 11 \\
A & 0 & 0 & 1 & 0 & 4 & 7 & 10 & 5 & 4 & 7 & 1 & 5 & 4 \\
G & 0 & 5 & 0 & 0 & 5 & 9 & 3 & 6 & 10 & 9 & 3 & 0 & 1 \\
C & 0 & 0 & 10 & 3 & 0 & 2 & 5 & 0 & 3 & 6 & 14 & 7 & 0 \\
A & 0 & 0 & 3 & 6 & 0 & 0 & 7 & 10 & 3 & 0 & 7 & 19 & 12 \\
C & 0 & 0 & 5 & 0 & 2 & 0 & 0 & 3 & 6 & 0 & 5 & 12 & 15 \\
T & 0 & 0 & 0 & 10 & 3 & 0 & 0 & 0 & 0 & 2 & 0 & 5 & 17
\end{tabular}
\[
\text { Match }=5, \text { Mismatch }=-4, \text { Indel }=-7
\]
- Once the matrix is filled in we find the best alignment
- Rather than using the score of the last entry as we did for a global alignment, we search for the entire matrix for the maximum entry ( \(O(m n)\) steps)

\section*{Local Alignment Example - continued}
\begin{tabular}{lllrlrlrrrrrrr} 
& O & G & C & T & G & G & A & A & G & G & C & A & T \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
G & 0 & 5 & 0 & 0 & 5 & 5 & 0 & 0 & 5 & 5 & 0 & 0 & 0 \\
C & 0 & 0 & 10 & 3 & 0 & 1 & 1 & 0 & 0 & 1 & 10 & 3 & 0 \\
A & 0 & 0 & 3 & 6 & 0 & 0 & 6 & 6 & 0 & 0 & 3 & 15 & 8 \\
G & 0 & 5 & 0 & 0 & 11 & 5 & 0 & 2 & 11 \\
A & 0 & 0 & 1 & 0 & 4 & 7 & 10 & 5 & 4 & 7 & 0 & 8 & 11 \\
G & 0 & 5 & 0 & 0 & 5 & 9 & 3 & 6 & 10 & 9 & 3 & 0 & 4 \\
C & 0 & 0 & 10 & 3 & 0 & 2 & 5 & 0 & 3 & 6 & 14 & 7 & 1 \\
A & 0 & 0 & 3 & 6 & 0 & 0 & 7 & 10 & 3 & 0 & 7 & 119 & 12 \\
C & 0 & 0 & 5 & 0 & 2 & 0 & 0 & 3 & 6 & 0 & 5 & 12 & 15 \\
T & 0 & 0 & 0 & 10 & 3 & 0 & 0 & 0 & 0 & 2 & 0 & 5 & 17
\end{tabular}
Match = 5, Mismatch = -4, Indel = -7
- From the largest score attained, then backtrack from there until a beginning "0" is reached to find the alignment.

\section*{Local Alignment Example - continued}

\section*{G C T G \(\mathbf{G} \mathbf{A} \mathbf{A} \mathbf{G} \mathbf{G} \mathbf{C} \mathbf{A} T\) \\  \\ G C A G A GCACT}

6 matches: \(6 \times 5=30\)
1 mismatch: -4
1 indel: -7
Total: 19

\section*{Local Alignment Code}

In [11]: import numpy
def LocalAlign(v, w, scorematrix, indel):
\(s=\) numpy.zeros \(\left((\operatorname{len}(v)+1, \operatorname{len}(w)+1)\right.\), dtype="int \(\left.32^{\prime \prime}\right)\)
\(\mathrm{b}=\) numpy.zeros \(((\operatorname{len}(\mathrm{v})+1, \operatorname{len}(\mathrm{w})+1)\), dtype="int32")
for \(i\) in range \((1\), len \((v)+1)\)
for \(j\) in \(\operatorname{range}(1, \operatorname{len}(w)+1)\) :
if ( \(\mathrm{j}==0\) ):
\(s[i, j]=\max (s[i-1, j]+\) indel, 0\()\)
\(b[i, j]=1\)

> continue if
if \((i, j]=\max (s[i, j-1]+\) indel, 0\()\)
\(\mathrm{b}[\mathrm{i}, \mathrm{j}]=2\)
continue
score \(=s[i-1, j-1]+\operatorname{scorematrix}[v[i-1], w[j-1]]\)
vskip \(=s[i-1, j]+\) indel
wskip \(=s[i, j-1]+\) indel
\(\mathrm{s}[\mathrm{i}, \mathrm{j}]=\max (\mathrm{vskip}\), wskip, score, 0)
if ( \(s[i, j]==\) vskip) :
\(b[i, j]=1\)
elif ( \(s[i, j]==\) wskip):
\(b[i, j]=2\)
elif ( \(s[i, j]==\) score):
\(\mathrm{b}[\mathrm{i}, \mathrm{j}]=3\)
else:
return (s, b)
match \(=\left\{\left(' A^{\prime}, ' A^{\prime}\right): ~ 5, ~(' A ', ' C '): ~-4, ~(' A ', ' G '): ~-4, ~(' A ', ' T '): ~-4\right.\), ('C','A'): -4, ('C','C'): 5, ('C','G'): -4, ('C','T'): -4 ('G','A'): -4, ('G','C'): -4, ('G','G'): 5, ('G','T'): -4,
\((' T ', ' A '): ~-4, ~(' T ', ' C '): ~-4, ~(' T ', ' G '): ~-4, ~(' T ', ' T '): ~ 5\} ~\)
\(v=\) "GCTGGAAGGCAT
\(\mathrm{w}=\) "GCAGAGCACT"
\(\mathrm{s}, \mathrm{b}=\) LocalAlign(v, w, match, -7)
print(s)
print()
print(b)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline [ [ 0 & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & & 0 & \(0]\) \\
\hline [ 0 & 5 & 0 & 0 & 5 & 0 & 5 & 0 & 0 & & 0 & \(0]\) \\
\hline [ 0 & & 10 & 3 & 0 & 1 & 0 & 10 & 3 & & 5 & \(0]\) \\
\hline [ 0 & & 3 & 6 & 0 & 0 & 0 & 3 & 6 & & 0 & 10] \\
\hline [ 0 & & 0 & 0 & 11 & 4 & 5 & 0 & 0 & & 2 & 3] \\
\hline [ 0 & & 1 & 0 & 5 & 7 & 9 & 2 & 0 & & 0 & \(0]\) \\
\hline [ 0 & & 1 & 6 & 0 & 10 & 3 & 5 & 7 & & 0 & \(0]\) \\
\hline [ 0 & & 0 & 6 & 2 & 5 & 6 & 0 & 10 & & 3 & \(0]\) \\
\hline [ 0 & 5 & 0 & 0 & 11 & 4 & 10 & 3 & 3 & & 6 & 0] \\
\hline [ 0 & & 1 & 0 & 5 & 7 & 9 & 6 & 0 & & 0 & \(2]\) \\
\hline [ 0 & & 10 & 3 & 0 & 1 & 3 & 14 & 7 & & 5 & \(0]\) \\
\hline [ 0 & & 3 & 15 & 8 & 5 & 0 & 7 & 19 & 1 & & 5] \\
\hline 0 & & 0 & 8 & 11 & 4 & 1 & 0 & 12 & 1 & & 17] \\
\hline [ \([00\) & & 00 & 00 & 00 & 0 & 00 & & & & & \\
\hline \([0\) & & 03 & 30 & 30 & 00 & 0 0 & & & & & \\
\hline [0 0 & & 20 & 03 & 03 & 32 & 30 & & & & & \\
\hline [0 0 & & 30 & 0 & 01 & 13 & 03 & & & & & \\
\hline [0 3 & & 03 & 32 & 30 & 0 & 31 & & & & & \\
\hline [0 3 & & 03 & 33 & 32 & 20 & 0 0 & & & & & \\
\hline [0 0 & & 30 & 03 & 23 & 3 & 20 & & & & & \\
\hline & & 33 & 33 & 30 & 03 & 20 & & & & & \\
\hline [0 3 & 0 & 03 & 32 & 32 & 21 & 30 & & & & & \\
\hline & & 03 & 33 & 33 & 30 & 03 & & & & & \\
\hline & & 20 & 03 & 33 & 32 & 30 & & & & & \\
\hline [0 0 & 1 & 32 & 23 & 01 & 13 & 22 & & & & & \\
\hline [0 0 & & 13 & 32 & 31 & 11 & 33 & 3]] & & & & \\
\hline
\end{tabular}

\section*{Scoring Indels: Naive Approach}
```

ATCTTCAGCCATAAAAGATGAAGTT
ATCTTCAGCCAAAGATGAAGTT
ATCTTCAGCC---AAAGATGAAGTT
ATCTTCAGCCA--A-AGATGAAGTT
ATCTTCAGCCA-AA--GATGAAGTT
ATCTTCAGCCA-A-A-GATGAAGTT
ATCTTCAGCCATATGTGAAAGATGAAGTT
Reference
3 base deletion relative to the reference
version 1
version 2
version 3
version 4
version 5
4 base insertion

```
- A fixed penalty \(\sigma\) is given to every indel:
- \(-\sigma\) for 1 indel,
- \(-2 \sigma\) for 2 consecutive indels
- \(-3 \sigma\) for 3 consecutive indels, etc.
- Can be too severe penalty for a series of 100 consecutive indels
- large insertions or deletions might result from a single event

\section*{Affine Gap Penalties}

In nature, a series of \(k\) indels often come as a single, albeit rare, event rather than as a series of muliple events


\section*{Accounting for Gaps}
- Gaps- contiguous sequence of indels in a row
- Modify the scoring for a gap of length \(x\) to be:
\[
-(\rho+\sigma x)
\]
- where \(\rho+\sigma>0\) is the penalty for introducing a gap:
\[
\rho=\text { gap opening penalty }
\]
- and \(\sigma\) is the cost of extending it further ( \(\rho+\sigma \gg \sigma\) ):
\[
\sigma=\text { gap extension penalty }
\]
- because you do not want to add too much of a penalty for further extending the gap, once it is opened.

\section*{Adding Affine Gap Penalties to our Graph}
- To reflect affine gap penalties we have to add "long" horizontal and vertical edges to the edit graph.
- Each such edge of length x should have weight
\[
-\rho-x \cdot \sigma
\]
- There are many such edges!
- Adding them to the graph increases the running time of the alignment algorithm by a factor of n (where n is the number of vertices)
- So the complexity increases from \(O\left(n^{2}\right)\) to \(O\left(n^{3}\right)\)

Can we do it some other way?


\section*{Adding Two More Tables}

Affine Gap penalties can be more easily expressed in terms of 3 recurrences

Keep track of these intermediate values in two new tables
\[
\begin{aligned}
& \begin{aligned}
& \ddot{\circ} t_{i, j}= \\
& \max \left\{\begin{array}{l}
t_{i-1, j}-\sigma \\
s_{i-1, j}-(\rho+\sigma)
\end{array}\right. \\
& u_{i, j}= \\
& \max \left\{\begin{array}{l}
u_{i, j-1}-\sigma \\
s_{i, j-1}-(\rho+\sigma)
\end{array}\right. \\
& s_{i, j}= \\
& \max \left\{\begin{array}{l}
s_{i-1, j-1}+\delta\left(v_{i}, w_{j}\right) \\
t_{i, j} \\
u_{i, j}
\end{array}\right.
\end{aligned} \\
& \text { Continue Gap in w (deletion) } \\
& \text { Start Gap in w (deletion): from middle } \\
& \text { Continue Gap in } v \text { (insertion) } \\
& \text { Start Gap in } v \text { (insertion):from middle } \\
& \text { Match or Mismatch } \\
& \text { End deletion: from top } \\
& \text { End insertion: from left }
\end{aligned}
\]

\section*{A 3-level Manhattan Grid}


\section*{Gaps in w (t-table)}

MatchesMismatches (s-table)

\section*{Gaps in v (u-table)}
- The three recurrences for the scoring algorithm creates a 3-layered graph.
- The top level creates/extends gaps in the sequence \(w\).
- The bottom level creates/extends gaps in sequence \(v\).
- The middle level extends matches and mismatches.

\section*{Switching between Layers}

- Levels:
- The main level is for diagonal edges
- The lower level is for horizontal edges
- The upper level is for vertical edges
- A jumping penalty is assigned to moving from the main level to either the upper level or the lower level \((-\rho-\sigma)\)
- There is a gap extension penalty for each continuation on a level other than the main level ( \(-\sigma\) )

\section*{Multiple versus Pairwise Alignment}
- Up until now we have only tried to align two sequences.
- What about more than two? And why?
- A faint similarity between two sequences becomes significant if present in many
- Multiple alignments can reveal subtle similarities that pairwise alignments do not reveal


\section*{Generalizing Pairwise Alignment}
- Alignment of 2 sequences is represented as a 2 -row matrix
- In a similar way, we represent alignment of 3 sequences as a 3-row matrix
\[
\begin{aligned}
& A T \_G C G_{-} \\
& A-C G T-A \\
& A T C A C-A
\end{aligned}
\]
- Score: more conserved columns, better alignment

\section*{Three-D Alignment Paths}
- An alignment of 3 sequences: ATGC, AATC, ATGC
\begin{tabular}{|c|c|c|c|c|c|}
\hline 0 & 1 & 1 & 2 & 3 & 4 \\
\hline \hline & A & -- & T & G & C \\
\hline \hline 0 & 1 & 2 & 3 & 3 & 4 \\
\hline \hline & A & A & T & -- & C \\
\hline \hline 0 & 0 & 1 & 2 & 3 & 4 \\
\hline \hline & -- & A & T & G & C \\
\hline
\end{tabular}
\(x\) coordinate
y coordinate
z coordinate
- Resulting path in ( \(x, y, z\) ) space:
\((0,0,0) \rightarrow(1,1,0) \rightarrow(1,2,1) \rightarrow(2,3,2) \rightarrow(3,3,3) \rightarrow(4,4,4)\)
- Is there a better one?

\section*{Aligning Three Sequences}

- Same strategy as aligning two sequences
- Use a 3-D "Manhattan Cube", with each axis representing a sequence to align
- For global alignments, go from source to sink

\section*{2-sequence vs 3-sequence Alignment}
- In a 2-D grid there are 3 approaches to each intersection
- I'm now ignoring
- Free-passes
- Affine jumps
- How about 3-D?
- How does this impact our recurrence relations?


2-D edit graph


3-D edit graph

\section*{A 2-D versus a 3-D neighborhood}


In 2-D, 3 edges lead to each interior vertex


In 3-D, 7 edges lead to each interior vertex
- 2-D \([(i-1, j-1),(i-1, j),(i, j-1)] \rightarrow(i, j)\) (3 directions)
- 3-D [(i-1,j-1,k-1), (i-1,j,k), (i,j-1,k), (i,j,k-1), (i,j-1,k-1), (i-1,j,k-1),(i-1,j-1,k)]>(i,j,k)(7directions)
- \(\quad \mathrm{N}-\mathrm{D}\left(2^{\mathrm{N}}-1\right.\) directions \()\)

\section*{Structure of a 3-D Alignment Cell}

There are three path types
1. Consume a character in all 3 sequences (diagonal "red" edge)
2. Consumes characters in 2 of 3 sequences ("blue" diagonals on faces)
3. Consuumes a character from only one sequence ("green" edges"


\section*{Multiple Alignment: Recursion Relation}
- \(\delta(x, y, z)\) is an entry in the 3-D scoring matrix

Scoring matrix has \(5^{3}\) entries

\section*{Multiple Alignment: Running Time}
- For 3 sequences of length \(n\), the run time is \(7 n^{3} ; 0\left(n^{3}\right)\)
- For \(k\) sequences, build a \(k\)-dimensional Manhattan, with run time \(\left(2^{k}-1\right)\left(n^{k}\right) ; O\left(2^{k} n^{k}\right)\)
- Conclusion: dynamic programming approach for alignment between two sequences is easily extended to k sequences but it is impractical due to exponential running time

\section*{Example:}

To align 6, 100-base sequences, there are 63 directions to consider and \(10^{12}\) cells to compute
Compare to aligning all \(6(5-1) / 2=15\) pairs, each with 3 directions and 10,000 cells

\section*{Multiple Alignment Induces Pairwise Alignments}

Every multiple alignment induces pairwise alignments
\[
\begin{array}{ll}
x: & \text { AC-GCGG-C } \\
y: & \text { AC-GC-GAG } \\
z: & \text { GCCGC-GAG }
\end{array}
\]

Induces:
\[
\begin{array}{lll}
x: A C G C G G-C ; & x: A C-G C G G-C ; & y: A C-G C G A G \\
y: A C G C-G A C ; & z: ~ G C C G C-G A G ; ~ & z: \text { GCCGCGAG }
\end{array}
\]

\section*{Inverse Problem}

\section*{Do Pairwise Alignments imply a Multiple Alignment?}
- Given 3 arbitrary pairwise alignments:
\(x\) : ACGCTGG-C;
x: AC-GCTGG-C;
y: AC-GC-GAG
y: ACGC--GAC
z: GCCGCA-GAG;
z: GCCGCAGAG
- Can we construct a multiple alignment that induces them?

NOT ALWAYS
- Why? Because pairwise alignments can be arbitrarily inconsistent

\section*{Combining Optimal Pairwise Alignments}
- In some cases we can combine pairwise alignments into a single multiple alignment
- But, in others we cannot because one alignment makes a choice that is inconsistent with the overall best choice


TTTTGGGG


AAAAGGGG
AAAA----GGGG
----TTTTGGGG
- Is there another way?


\section*{Multiple Alignment from Pairwise Alignments}
- From an optimal multiple alignment, we can infer pairwise alignments between all pairs of sequences, but they are not necessarily optimal
- It is difficult to infer a "good" multiple alignment from optimal pairwise alignments between all sequences
- Are we stuck, or is there some other trick?

\section*{Multiple Alignment using a Profile Scores}
- We used profile scores earlier when we discussed Motif finding
\begin{tabular}{lllllllllllllll} 
& - & \(A\) & \(G\) & \(G\) & \(C\) & \(T\) & \(A\) & \(T\) & \(C\) & \(A\) & \(C\) & \(C\) & \(T\) & \(G\) \\
& \(T\) & \(A\) & \(G\) & - & \(C\) & \(T\) & \(A\) & \(C\) & \(C\) & \(A\) & - & - & - & \(G\) \\
& \(C\) & \(A\) & \(G\) & - & \(C\) & \(T\) & \(A\) & \(C\) & \(C\) & \(A\) & - & - & - & \(G\) \\
& \(C\) & \(A\) & \(G\) & - & \(C\) & \(T\) & \(A\) & \(T\) & \(C\) & \(A\) & \(C\) & - & \(G\) & \(G\) \\
& \(C\) & \(A\) & \(G\) & - & \(C\) & \(T\) & \(A\) & \(T\) & \(C\) & \(G\) & \(C\) & - & \(G\) & \(G\) \\
& & & & & & & & & & & & & & \\
A & 0 & 5 & 0 & 0 & 0 & 0 & 5 & 0 & 0 & 4 & 0 & 0 & 0 & 0 \\
C & 3 & 0 & 0 & 0 & 5 & 0 & 0 & 2 & 5 & 0 & 3 & 1 & 0 & 0 \\
T & 0 & 0 & 5 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 2 & 5 \\
- & 1 & 0 & 0 & 0 & 0 & 5 & 0 & 3 & 0 & 0 & 0 & 0 & 1 & 0 \\
- & 1 & 0 & 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 4 & 2 & 0
\end{tabular}
- Thus far we have aligned sequences against other sequences
- Can we align a sequence against a profile?
- Can we align a profile against a profile?

\section*{Aligning Alignments}

A more general version of the multi-alignment problem:
- Given two alignments, can we align them?
```

x: GGGCACTGCAT
y: GGTTACGTC--
z: GGGAACTGCAG
w: GGACGTACC-- Alignment 2
v: GGACCT-----

```
- Idea: don't use the sequences, but align their profiles
```

x: GGGCAC=TGCAT
y: GGTTAC=GTC--
z: GGGAAC=TGCAG
|| || | |
w: GG==ACGTACC--
v: GG==ACCT

```

\section*{Profile-Based Multiple Alignment: A Greedy Approach}
- Choose the most similar pair of strings and combine them into a profile, thereby reducing alignment of \(k\) sequences to an alignment of of \(k-1\) sequences/profiles.
- Repeat
- This is a heuristic greedy method


\section*{Example}
- Consider these 4 sequences
\[
\begin{array}{ll}
\text { s1: } & \text { GATTCA } \\
\text { s2: } & \text { GTCTGA } \\
\text { s3: } & \text { GATATT } \\
\text { s4: } & \text { GTCAGC }
\end{array}
\]
- \(\quad\) with the scoring matrix: \(\{\) Match \(=1\), Mismatch \(=-1\), Indel \(=-1\}\)

\section*{Example (continued)}
- There are 4 choose \(2=6\) possible pairwise alignments
```

s}\mp@subsup{\mp@code{2}}{2}{: GTCTGA
s
s}\mp@subsup{\textrm{s}}{1}{\prime}\mathrm{ : GAT-TCA
s}\mp@subsup{s}{2}{}:\quadG-TCTGA (score = 1)
s}\mp@subsup{\textrm{s}}{1}{\prime}\mathrm{ : GAT-TCA
s
s
s
s}\mp@subsup{\textrm{s}}{2}{\prime}\mathrm{ : G-TCTGA
s
s
s

```
- The best pairwise score, 2, is between \(\mathrm{s}_{2}\) and \(\mathrm{s}_{4}\)

\section*{Example (continued)}
- Combine s2 and s4:

\(\rightarrow \quad \mathrm{s} 2,4: \mathrm{GTCt} / \mathrm{a}\) G a/c
- Giving a set of three sequences:
\begin{tabular}{cccccccc} 
s1 & \(:\) & \(G\) & \(A\) & \(T\) & \(T\) & \(C\) & \(A\) \\
s3 & \(:\) & \(G\) & \(A\) & \(T\) & \(A\) & \(T\) & \(T\) \\
s2, \(4:\) & \(G\) & \(T\) & \(C\) & \(t / a\) & \(G\) & \(a / c\)
\end{tabular}
- Repeat for 3 choose \(2=3\) possible pairwise alignments
```

s1 : GAT-TCA
s3 : GATAT-T (score = 1 + 1 + 1 - 1 + 1 - 1 - 1 = 1)
s1 : GAT-TCA
s2,4: G-TCtGa (score = 2-2 + 2-2 + 1/2-1 + 1/2=0)
s3 : GATAT-T
s2,4: G-TCtGa (score=2-2+2-2 +1/2-1-1 = -1/1/2)

```

\section*{Next Time}
- We'll take a look at proteins
- How the molecular weights of peptide sequences can be used to untangle a protein's sequence
```

