
Comp 555 - BioAlgorithms - Spring 2020

Sequence Alignment

● How our Manhattan Tour

relates to sequences

● Problem Set #3 is due

tonight

● Midterm is Thursday

● Midterm study session in

SN014 on W 5/4 2pm-3:15ish

in lieu of office hours

Comp 555 - Spring 2020

Comparing Sequences

● What makes two sequences similar?
● What is the best measure of similarity?
● Consider the two DNA sequences v and w :

 v: TAGACAAT
 w: AGAGACAT
 11111100 = 6

● The Hamming distance, dH(v, w) = 6, is large but the sequences seem to have more similarity
● What if we allowed for insertions and deletions?

2

Comp 555 - Spring 2020

Allowing Insertions and Deletions

● By shifting each sequence over one position:

 v: _TAGACAAT
 w: AGAGACAT_
 110000011 = 4

● The edit distance: dH(v, w) = 3.
● Hamming distance neglects insertions and deletions

Shifts and gaps:

v: _TAGACAAT
w: AGAGAC_AT
 110000100 = 3

3

Another one:

v: T_AGACAAT
w: AGAGACA_T
 110000010 = 3

Comp 555 - Spring 2020

Edit Distance

● Vladimir Levenshtein introduced the notion of an
“edit distance” between two strings as the minimum
number of elementary operations (insertions,
deletions, and substitutions) to transform one string
into the other in 1965.

● dL(v,w) = Minimum number of elementary operations
to transform v → w

● Computing Hamming distance is a trivial task

● Computing edit distance is less trivial

4

Vladimir Levenshtein
1935 - 2017

Comp 555 - Spring 2020

Edit Distance: Example
 TGCATAT → ATCCGAT in 5 steps

 TGCATAT → (DELETE last T)
 TGCATA → (DELETE last A)
 TGCAT → (INSERT A at front)
 ATGCAT → (SUBSTITUTE C for G)
 ATCCAT → (INSERT G before last A)
 ATCCGAT (Done)

What is the edit distance? 5? (Recall it has to be the minimum)

5

Comp 555 - Spring 2020

Edit Distance: Example (2nd Try)
 TGCATAT → ATCCGAT in 4 steps

 TGCATAT → (INSERT A at front)
 ATGCATAT → (DELETE 2nd T)
 ATGCAAT → (SUBSTITUTE G for 2nd A)
 ATGCGAT → (SUBSTITUTE C for 1st G)
 ATCCGAT (Done)

But is 4 the minimum edit distance? Is 3 possible?

● Edit sequences are invertible, i.e given v → w, one can generate w → v, without recomputing
● A little jargon: Since the effect of insertion in one string can be accomplished via a deletion in the

other string these two operations are correlated. Often algorithms will consider them together as a
single operation called INDEL

6

Comp 555 - Spring 2020

An aside: Longest Common Subsequence

● A special case of alignment where only matches, insertions, and deletions are allowed
● A variant of Edit distance, sometimes called LCS distance, where only indels are allowed
● A subsequence need not be contiguous, but the symbol order must be preserved

Ex. If v = ATTGCTA then AGCA and TTTA are subsequences of v, but TGTT and ACGA are not
● All substrings of v are subsequences, but not vice versa
● Edit distance, dLCS, is related to the length of the LCS, s, by the following relationship:

dLCS(u,w) = len(v) + len(w) – 2s(u,w)

7

Example:
ANUNCLEIKE
UNCBEATDUKE
 len LCS

 anUNC_lE____iKE 10 - 6 = 4
__UNCb_Eatdu_KE 11 - 6 = 5

Comp 555 - Spring 2020

LCS as a Dynamic Program

There are similarites between the LCS and MTP

● All possible possible alignments can be represented as a path
from the string’s beginning (source) to its end (destination)

● Horizontal edges add gaps in v
● Vertical edges add gaps in w
● Diagonal edges are a match
● Notice that we’ve only included valid diagonal edges for

"matches" in our graph

● An maximum LCS is a path from (ε,ε) to the end
of both strings that matches the most bases
(a.k.a. a Manhattan tour)

8

*

*

*

*

*
*

*
**

*

*
*

*

Comp 555 - Spring 2020

The "Space" of All Alignments

● Introduce coordinates for the grid
● All valid paths from the source to the destination represent

some alignment

 0 1 2 2 3 4 5 6 7 7
 v A T _ G T T A T _
 w A T C G T _ A _ C
 0 1 2 3 4 5 5 6 6 7

● Path:
(0,0), (1,1), (2,2), (2,3), (3,4), (4,5), (5,5), (6,6), (7,6), (7,7)

9

Comp 555 - Spring 2020

Alternate Alignment

● Introduce coordinates for the grid
● All valid paths from the source to the destination represent

some alignment

 0 1 2 2 3 4 5 6 6 7
 v A T _ G T T A _ T
 w A T C G _ T A C _
 0 1 2 3 4 4 5 6 7 7

● Path:
(0,0), (1,1), (2,2), (2,3), (3,4), (4,4), (5,5), (6,6), (6,7), (7,7)

10

Comp 555 - Spring 2020

Even Bad Alignments

● Introduce coordinates for the grid
● All valid paths from the source to the destination represent

some alignment

 0 0 0 0 0 0 1 2 3 4 5 6 7 7
 v _ _ _ _ _ A T G T T A T _
 w A T C G T A _ _ _ _ _ _ C
 0 1 2 3 4 5 6 6 6 6 6 6 6 7

● Path:
 (0,0), (0,1), (0,2), (0,3), (0,4), (0,5), (1,6),
 (2,6), (3,6), (4,6), (5,6), (6,6), (7,6), (7,7)

11

Comp 555 - Spring 2020

What makes a good alignment?

● Using as many diagonal segments, when they
correspond to matches, as possible. Why?

● The end of a good alignment from (j...k) begins with a
good alignment from (i..j)

● Same as Manhattan Tourist problem, where the sites
are only on the diagonal streets!

● Set diagonal street weights = 1, and horizontal and
vertical weights = 0

12

Comp 555 - Spring 2020

LCS: Dynamic Program

13

Comp 555 - Spring 2020

Step 1
Initialize 1st row and 1st column to all zeroes.

● Note intersections/vertices are cells/entries of this matrix

14

Comp 555 - Spring 2020

Step 2
Evaluate recursion for next row and/or next column

15

Comp 555 - Spring 2020

Step 3
Continue recursion for next row and/or next column

16

Comp 555 - Spring 2020

Step 4
Then one more row and/or column

17

Comp 555 - Spring 2020

Step 5
And so on...

18

Comp 555 - Spring 2020

Step 6
And so on...

19

Comp 555 - Spring 2020

Step 7
Getting closer

20

Comp 555 - Spring 2020

Step 8
Until we reach the last row and column

21

Comp 555 - Spring 2020

Finally
We reach the end, which corresponds to an LCS of length 5

Our answer includes both an optimal score, and a
path back to both the LCS and an alignment

22

w = ATCGT_A_C
v = AT_GTTAT_
 len(LCS) = 5

Comp 555 - Spring 2020

LCS Code
Let's see how well the code matches the approach we sketched out…

● The same score matrix that we found by hand
● "backtrack" keeps track of the "arrow" used

23

Comp 555 - Spring 2020

Backtracking

In our example we used arrows {↓, →, ↘}, which were represented in our matrix as {1,2,3} respectively.
This numbering is arbitrary, except that it does break ties in our implementation
(matches > w deletions > w insertions).

Now we need code that finds a path from the end of our strings to the beginning using our arrow matrix

24

Comp 555 - Spring 2020

Code to extract an answer
A simple recursive LCS() routine to return along the path of arrows that led to our best score.

25

Comp 555 - Spring 2020

But that’s not an alignment
● Technically correct, ATGTA is the LCS

w = ATcGT_A_c
v = AT_GTtAt_

● Notice that we only need one of v or w since both contain the LCS
● But we would like to get more than just the LCS
● For example, the corresponding alignment.

26

Comp 555 - Spring 2020

An alignment of v and w

27

Comp 555 - Spring 2020

Next Time
● Convert LCS to a general purpose sequence aligner
● Scoring matrices
● Global vs. Local alignments
● Affine gap penalites

28

