
Comp 555 - BioAlgorithms - Spring 2020

Comparing Sequences

● Problem set #3 is

due next Tuesday

● Midterm is set for

next Thursday, and

covers up to the

previous lecture.

● Open notes, open

internet sans

messaging apps.

● Jupyter Notebook

Comp 555 - Spring 2020

Sequence Similarity
● A common problem in biology

● All similar, but how similar?
● How do you measure similarity?
● Does Hamming distance work here?
● Uses

○ To establish a phylogeny
○ To identify functional or conserved components of the sequence

2

Comp 555 - Spring 2020

Hand Alignments
● Not that long ago, many alignments were done by hand

Human : MALWMRLLPLLALLALWGPdPAaAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQ_____________GSLQPLALEGs_LQKRGIVEQCCTSICSLYQLENYCN
 || |||||||||||||||||||||||||||||||||||||
 Dog : MALWMRLLPLLALLALWAPAPtRAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREvEDLQvrDVELaG_APGeGGLQPLALEGA_LQKRGIVEQCCTSICSLYQLENYCN
 || |||| | ||| ||||||||| | |||||||||||||||||||||||||
 Cat : MApWtRLLPLLALLsLWiPAPtRAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAEDLQgkDaEL_GeAPGaGGLQPsALE_APLQKRGIVEQCCaSvCSLYQLEHYCN
 || |||| | || |||||||||||| ||||||||||||||||||||||||
 Pig : MALWtRLLPLLALLAlWAPAPAqAFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAEnpQagaVEL_Gggl__GGLQaLALEGpP_QKRGIVEQCCTSICSLYQLENYCN
 AFVNQHLCGSHLVEALYLVCGERGFFYTPKARREAE QKRGIVEQCC SICSLYQLENYCN

● Long conserved regions are shown below
● Solution strategy?
● Is this a well defined problem?

○ Is there an optimal or best solution?
○ Did we find it?

● By the way, this is an easy case. Within vertebrates, the amino acid sequence
of insulin is strongly conserved.

3

Comp 555 - Spring 2020

The Alignment Game
Let's consider only 2 sequences, and estabish “alignment” rules as if it were a game.

● Rules:
○ You must remove all characters from both sequences
○ There are 3 possible moves at any point in the game.
○ Each move removes at least one character from one of the two given strings
○ Pressing [Match] removes one left-most character from both sequences

■ You get 1 point if the characters match, otherwise you get 0 points
○ Pressing [Del] removes the left-most character from the top sequence

■ You lose 1 point
○ Pressing [Ins] removes the left-most character from the bottom sequence

■ You lose 1 point
○ Your point total is allowed to go negative

● Objective: Get the most points

4

Comp 555 - Spring 2020

How do you get the highest possible score?
● The solution may not be unique
● How many presses?

○ Minimum moves = Max(len(top), len(bot))
○ Maximum moves = len(top) + len(bot)

● How many possible moves?
○ Less than 3len(top) + len(bot)

● How big for our problem instance?
○ len(Human) = 98, len(dog) = 110
○ 3208 ≈ 1.73 x 1090, almost a googol (not a google)

● What algorithm solves this problem?
○ Make each move by considering only a short horizon following the current aligment thus far

5

Comp 555 - Spring 2020

There is an effcient solution
● It relies on a rather suprising idea
● The best score can be found for the len(top) and len(bot) strings by finding

the best score for every pair of substrings len(top[0:n]) and len(bot[0:m])
for all values of n up to len(top) and m up to len(bot)

● Finding this solution requires only O(len(top)len(bot)) steps
● It also requires a table of size Max(len(top),len(bot))
● But before we solve this problem, let's look at another related related problem

Finding a best city tour on a Manhattan grid

6

Comp 555 - Spring 2020

Manhattan Tourist Problem (MTP)
Imagine seeking a path from a given source to given destination in a Manhattan-like city grid that maximizes the number of
attractions (*) passed. With the following caveat– at every step you must make progress towards the goal. We treat the city
map as a graph, with a vertices at each intersection, and weighted edges along each block. The weights are the number of
attractions along each block.

7

Comp 555 - Spring 2020

Manhattan Tourist Game

Goal: Find the maximum weighted shortest path in a grid.

Input: A weighted grid G with two distinct vertices, one labeled source and the other labeled destination

Output: A shortest path in G from source to destination with the greatest weight

● There are many shortest paths that
go south 4 blocks and east 4 blocks

● Of those paths, which sees the most sites?

8

Comp 555 - Spring 2020

MTP: A Greedy Algorithm Is Not Optimal

Different types of Greedy

● Short horizon: At each block select the direction where the next block offers the most attractions
● Long horizon: Look ahead at all streets between your current position and the destination, and then

go down streets with the most attractions

9

Comp 555 - Spring 2020

A New Solution Strategy

Dynamic Programming is a technique for computing recurrence relations efficiently by storing and reusing
intermediate results

Three keys to constructing a dynamic programming solution:

1. Formulate the answer as a recurrence relation
2. Consider all instances of the recurrence at each step

(In our case this means all paths that lead to a vertex or intersection).
3. Order evaluations so you will always have precomputed any needed partial results

Irony: Often the most effcient approach to solving a specific problem
 involves solving every smaller subproblem.

10

Comp 555 - Spring 2020

MTP Dynamic Program Solution

The solution may not be unique, but it will have the best possible, optimal, score

11

Comp 555 - Spring 2020

MTP Dynamic Program Strategy
● Instead of solving the Manhattan Tourist problem directly, (i.e. the path from (0,0) to (n,m)) we will

solve a more general problem: find the longest path from (0,0) to any arbitrary vertex (i,j).
● If the longest path from (0,0) to (n,m) passes through some vertex (i,j), then the path from (0,0) to

(i,j) must be the longest. Otherwise, you could increase the weight along your path by changing it.

12

Comp 555 - Spring 2020

MTP: Dynamic Program
● Calculate optimal path score for every vertex in the graph between our source and destination
● Each vertex’s score is the maximum of the prior vertices score plus the weight of the connecting

edge in between

13

Comp 555 - Spring 2020

MTP: Dynamic Program Continued

14

Comp 555 - Spring 2020

MTP: Dynamic Program Continued

15

Comp 555 - Spring 2020

MTP: Dynamic Program Continued

16

Comp 555 - Spring 2020

MTP: Dynamic Program Continued

17

Comp 555 - Spring 2020

MTP: Dynamic Program Continued

● Once the destination node (intersection) is reached, we’re done.
● Our table will have the answer of the maximum number of attractions stored in the entry associated with the destination.
● We use the links back in the table to recover the path. (Backtracking)

18

Comp 555 - Spring 2020

MTP: Recurrence
Computing the score for a point (i,j) by the recurrence relation:

The running time is nm for a n × m grid

● You visit all intersections once, add two numbers, compare which is larger, save it and it's direction

(n = # of rows, m = # of columns)

19

Comp 555 - Spring 2020

Manhattan Is Not A Perfect Grid

● Easy to fix. Just adds more recursion cases.
● The score at point B is given by:

20

Comp 555 - Spring 2020

Other ways to safely explore the Manhattan
● We chose to evaluate our table in a particular order.

Uniform distances from the source (all points one block away, then 2 blocks, etc.)
● Other strategies:

○ Column by column
○ Row by row
○ Radiate out along diagonals

● This choice can have performance implications

21

Comp 555 - Spring 2020

Next Time
● Return to sequence alignment
● Coding dynamic programs

22

