
Comp 555 - BioAlgorithms - Spring 2020

Adventures in Dynamic Programming

● Problem set #3

is due next

Tuesday

● Midterm is set

for next

Thursday

Comp 555 - Spring 2020

An aside… what is an Algorithm?
An algorithm is a sequence of instructions that solves a well-formulated problem.

2

Comp 555 - Spring 2020

Correctness

● An algorithm is correct only if it produces correct result for every valid input instance
○ An algorithm is incorrect answer if it cannot produce a

correct result for one or more input instances,
● Coin change problem

○ Input: an amount of money M in cents, and a list of coin denominations [c1,c2, ... ,cn]
○ Output: the smallest number of coins that add to M (may not be unique)

● US coin change problem

3

Comp 555 - Spring 2020

US Coin Change

4

Comp 555 - Spring 2020

Change Problem
● Input:

○ an amount of money M
○ an array of denominations c = (c1, c2, …,cd) in order of decreasing value

● Output: the smallest number of coins

5

Comp 555 - Spring 2020

A "Greedy" change approach
●

6

Comp 555 - Spring 2020

Another Approach?
● Let's bring back brute force
● Test every coin combination (where each denomination is less than 100)

to see if it adds up to our target
● Is there exhaustive search algorithm?

7

Comp 555 - Spring 2020

Correct, but costly
● Our algorithm now gets the right answer for every value 1..100
● It must, because it considers every possible answer

(that’s the good thing about brute force)
● There is a downside though

8

Comp 555 - Spring 2020

Other tricks?
A Branch-and-bound algorithm, almost identical to brute force

.

..Correct, and it works well for many cases, but can be as slow as an exhaustive search for some inputs
(try 99).

9

Comp 555 - Spring 2020

Is there another Approach?
Tabulating Answers

● If it is costly to compute the answer for a given
input, then there may be advantages to caching the
result of previous calculations in a table

● This trades-off time-complexity for space
● How could we fill in the table in the first place?
● Run our best correct algorithm
● Can the table itself be used to speed up the

process?

10

Comp 555 - Spring 2020

Solutions using a Table

● Suppose you are asked to fill-in the unknown table entry for 67¢
● It must differ from a previously known optimal result by at most one coin...
● So what are the possibilities?

○ BestChange(67¢) = 25¢ + BestChange(42¢), or
○ BestChange(67¢) = 20¢ + BestChange(47¢), or
○ BestChange(67¢) = 10¢ + BestChange(57¢), or
○ BestChange(67¢) = 5¢ + BestChange(62¢), or
○ BestChange(67¢) = 1¢ + BestChange(66¢)

11

Comp 555 - Spring 2020

A Recursive Coin-Change Algorithm

Oops… it got slower. Why?
(Not to mention, it found another “different” correct answer.)

12

Comp 555 - Spring 2020

Recursion Recalculations
● Recursion often results in many redundant calls
● Even after only two levels of recursion 6 different

change values are repeated multiple times
● How can we avoid this repetition?
● Cache precomputed results in a table!

13

Comp 555 - Spring 2020

Back to Table Evaluation

● When do we fill in the values of our table?
● We could solve for change for every value from 1 up to M, thus we'd be gaurenteed to have found

the best change for any value less than M when needed
● Thus, instead of just trying to find the minimal number of coins to change M cents,

we attempt the solve the superficially harder problem of solving for the optimal change
for all values from 1 to M

14

Comp 555 - Spring 2020

Change via Dynamic Programming

● BruteForceChange() was O(dM)
● DPChange() is O(Md)

15

Comp 555 - Spring 2020

A Hybrid Approach: Memoization
● Often we can simply modify a recursive algorithm to “cache” the result of previous invocations
● FIll in table lazily as needed… as each call to progresses from M down to 1
● This “lazy evaluated” form of dynamic programming is often called “Memoization”

16

Comp 555 - Spring 2020

Dynamic Programming

● Dynamic Programming is a general technique for computing recurrence
relations efficiently by storing partial or intermediate results

● Three keys to constructing a dynamic programming solution:
1. Formulate the answer as a recurrence relation
2. Consider all instances of the recurrence at each step
3. Order evaluations so you will always have precomputed the needed

partial results
● Memoization is an easy way to convert recursive solutions to a DP
● We'll see it again, and again

17

Comp 555 - Spring 2020

Next Time
● On to sequence alignment
● But first we'll learn how to navigate in Mathattan

18

