
Comp 555 - BioAlgorithms - Spring 2020

● Problem set #2 

is due tonight

● Problem set #3 

should be 

posted by 

tonight

● Midterm is set 

for March 5

Multi-String BWTs



Comp 555 - Spring 2020

MSBWT
A BWT of a string collection instead of just a single string

● Earliest: Mantaci et al. (2005), used concatenation approach
● Bauer et al. (2011) - proposed version we will discuss today

Analogy:

● Instead of searching for a substring within a single book, search every book of a library
○ Each book has it's own text, suffix array, and end-of-text delimiter
○ Searching allows us to find how many times a substring appears and in which texts

Bioinformatics?

● Search all genomes? You could, but that's not the main application.
● Search multiple chromosomes of an organism? You should, but even that is not the killer app

2



Comp 555 - Spring 2020

Naive Construction

● Create all rotations for all strings in the collection
● Sort all rotations together (Suffix Array)
● Store the predecessor of each suffix
● Strings are “cyclic”
● The predecessor is always from the same string
● Impossible to “jump” from one string to another
● Strings can have different lengths

3



Comp 555 - Spring 2020

MSBWT's FM-index

Identical Definition

● Find k-mer “CA”
● Initialize to full range ('')
● lo, hi = 0, 10
● Find occurrences of 'A'

○ lo = Offset['A'] + FMindex[lo]['A'] = 2 + 0 = 2
○ hi = Offset['A'] + FMindex[hi]['A'] = 2 + 5 = 7

● Find occurrences of “CA”
○ lo = Offset['C'] + FMindex[lo]['C'] = 7 + 0 = 7
○ hi = Offset['C'] + FMindex[hi]['C'] = 7 + 2 = 9

● Searching and extracting suffixes are identical to a BWT

4



Comp 555 - Spring 2020

Incremental MSBWT Construction

● A key tool missing from the BWTs toolbox--
adding new strings to an existing msBWT

● You could reconstruct the suffix array of the 
msBWT using suffix(i, fmindex) for all i, and 
then insert the suffixes of the new string.

● Variant of find(); Find the insertion point of 
new string's jth suffix, sj

● Add last character to msBWT
● Update the FMindex

5



Comp 555 - Spring 2020

Our original BWT code

6



Comp 555 - Spring 2020

Inserting a new BWT into an existing msBWT

7



Comp 555 - Spring 2020

Before and After

8

That was a little tricky...



Comp 555 - Spring 2020

Merging msBWTs
● BETTER YET! Rather than inserting new 

strings, build a BWT of the new strings and 
merge the new and old BWTs

● Suffixes of BTWs are already sorted
● BTWs are interleaved
● In the worse case (ties) the entire suffix must 

be considered, but general the longest 
common prefix of suffixes is smaller

● Minimal overhead
● Well suited for divide an conquer approaches 

(like merge sort)
● Easy to merge multiple data sets!
● Compression improves!

9



Comp 555 - Spring 2020

Merging Steps
msBWT merging alternates between sorting and interleaving

1. Consider the BWTs as a tuple of
(character, BWTid) pairs

2. Sort these tuples
3. Based on the BWTids after the

sort, select a new character 
For each tuple from the
original msBWTs

4. Repeat from Step 2 until
the sort is stable

5. The resulting characters
are the merged msBWT

6. Number of passes is
proportional to largest
LCP value.

10



Comp 555 - Spring 2020

In Python

11



Comp 555 - Spring 2020

MSBWT Applications

● Instead of building a BWT of a reference genome, build a MSBWT of every sequenced reads
● Arbitrary exact-match k-mer queries
● O(k) time
● Enables fast searches/counting
● Recover an arbitrary read of length L from MSBWT
● O(L) time
● Enables extraction of user-selected reads

12



Comp 555 - Spring 2020

Compression of high-throughput sequencing

● Using Run-length encoding again
● Reasons we expect compression:

○ True genomic repeats: gene families, long repeats, etc.
○ Over-sampling: 30x coverage means we expect 30 copies of every k-mer pattern

● Sequencing errors may break up runs
● Technical errors may cause biases for or against a particular pattern
● Real Mouse DNA-seq:

○ 368654191 × 151 × 2 = ~112 Giga-bases
○ Compresses to ~15.3 GB using RLE (1.09 bits/base)

● Real Mouse RNA-seq:
○ ~8.9 Giga-bases
○ ~1.2 GB using RLE (1.05 bits/base)

13



Comp 555 - Spring 2020

K-mer Search & Read Extraction
Basic Use:

Green: query k-mer. Red: forward reads. Blue: reverse-complement reads. Yellow: sequencing errors

● Search for all reads with a given k-mer
● Extract all reads with that k-mer and its reverse-complement
● Build a consensus

14



Comp 555 - Spring 2020

Moving over a little bit

15

Moving over 12 bases shows a different story 



Comp 555 - Spring 2020

Reference-based Searches

● Given a reference genome and region of that genome
● Split reference into k-mers
● Count the abundance of each k-mer and plot
● Fast - O(k) time per k-mer
● Similar to a post-alignment pileup

16



Comp 555 - Spring 2020

Iterative Reference Correction

17



Comp 555 - Spring 2020

Summary

● Burrows-Wheeler Transform
○ Permutation of characters that represents a suffix array
○ Run-length encoded for compression

● FM-index
○ Derived from BWT
○ Exploits LF-mapping property
○ O(k) search time for arbitrary k-mer, independent of BWT's size
○ Used in many fast aligners

● MSBWT
○ Applies to string collections
○ Enables database-like access to reads via k-mer searches

18


