
Comp 555 - BioAlgorithms - Spring 2020

Finding Paths in Graphs

● Hamiltonian Paths

● De Bruijn Sequences

● Eulerian Paths

● Graph

representations

● Problem set #1 is

due next Tuesday.

Comp 555 - Fall 2020

From Last Time
We discussed how to turn a sequence into a graph
GACGGCGGCGCACGGCGCAA
GACGG
 ACGGC
 CGGCG
 GGCGG
 GCGGC
 CGGCG
 GGCGC
 GCGCA
 CGCAC
 GCACG
 CACGG
 ACGGC
 CGGCG
 GGCGC
 GCGCA
 CGCAA

By placing edges connecting k-mers
whose k-1 suffix matches a k-1prefix

2

Our original sequence is
just a path in this graph.
How would you find it?

Comp 555 - Fall 2020

Parlor games
Once finding paths in graphs was a popular form of entertainment…
Graphs would be printed in newspapers, and people would try to find paths in
them as a game.

The rules of our game
● Every node, k-mer, can be used exactly once
● The object is to find a path along edges that

visits every node one time
● This game was invented in the mid 1800's by

a mathematician called Sir William Hamilton

3

An example of Hamilton’s game:

Comp 555 - Fall 2020

Finding a Hamiltonian Path in our graph
For our desired sequence:
 GACGGCGGCGCACGGCGCAA
is indeed a path in this graph.

How would you write a program
To solve Hamilton’s puzzles?

Is the solution unique?

4

Comp 555 - Fall 2020

De Bruijn's Problem
Minimal Superstring Problem:

Find the shortest sequence that contains all |Σ|k strings
of length k from the alphabet Σ as a substring.

Example: All strings of length 3 from the alphabet {'0','1'}.

He solved this problem by mapping it to a graph. Note, this
particular problem leads to cyclic sequence.

5

Nicolaas de Bruijn
(1918-2012)

A dutch mathematician noted for his many
contributions in the fields of graph theory,
number theory, combinatorics and logic.

Comp 555 - Fall 2020

Another represention of k-mers in a graph
● Rather than making each k-mer a node, let's try making them an edge
● That seems odd, but it is related to the overlap idea

○ The 5-mer GACGG has a prefix GACG and a suffix ACGG
○ Think of the k-mer as the edge connecting a prefix to a suffix
○ This leads to a series of simple graphs

○ Then combine all nodes with the same label

6

Comp 555 - Fall 2020

A De Bruijn Graph
This graph, like the previous one has the property that edges
connect nodes where a k-1 suffix matches a k-1 prefix. Graphs
of this type are called "De Bruijn" graphs, after a famous
mathematician.

Recall that our original 5-mers are edges in this graph,
whereas they were nodes in the previous one.

Now, how might you infer the original sequence using this
graph?

7

Comp 555 - Fall 2020

This leads to a new game
The rules of our new game

● Every edge, k-mer, can be used
exactly once

● The object is to find a path in the
graph that uses each edge only
one time

● This game was invented in the
late 1700's by a mathematician
called Leonhard Euler

8

Leonhard Euler

A version of Euler's game:

Bridges of Königsberg: Find a city tour that
crosses every bridge just once

Comp 555 - Fall 2020

Two graphs, same problem
Two graphs representing 5-mers from the sequence "GACGGCGGCGCACGGCGCAA"

9

Hamiltonian Path:

Each k-mer is a vertex. Find a path that passes
through every vertex of this graph exactly once.

Eulerian Path:

Each k-mer is an edge. Find a path that passes
through every edge of this graph exactly once.

Comp 555 - Fall 2020

De Bruijn's Graphs

10

Minimal Superstrings can be constructed by
finding a Hamiltonian path of an
k-dimensional De Bruijn graph. Defined as a
graph with |Σ|k knodes and edges from nodes
whose k−1 suffix matches a node's k−1 prefix

Or, equivalently, a Eulerian cycle of in a
(k−1)-dimensional De Bruijn graph. Here
edges represent the k-length substrings.

Comp 555 - Fall 2020

Solving Graph Problems on a Computer

11

 Graph Representations
 An example graph:

An Adjacency Matrix:

An n × n matrix where Aij
is 1 if there is an edge
connecting the ith
vertex to the jth vertex
and 0 otherwise.

Adjacency Lists:

Edge = [(0,1), (0,4),
 (1,2), (1,3),
 (2,0),
 (3,0),
 (4,1), (4,2), (4,3)]

An array or list of vertex pairs
(i,j) indicating an edge from
the ith vertex to the jth vertex.

Comp 555 - Fall 2020

An adjacency list graph object

12

Comp 555 - Fall 2020

Usage example
Let's generate the vertices needed to find De Bruijn's superstring of 4-bit binary strings...
and create a graph object using them.

13

Comp 555 - Fall 2020

The resulting graph

14

Comp 555 - Fall 2020

The Hamiltonian Path Problem
Next, we need an algorithm to find a path in a graph that visits every node exactly once,
if such a path exists.
How?

Approach:

● Enumerate every possible path (all permutations of N vertices).
Python's itertools.permutations() does this.

● Verify that there is an edge connecting all N-1 pairs of adjacent vertices

15

Comp 555 - Fall 2020

All vertex permutations = every possible path
A simple graph with 4 vertices

16

Comp 555 - Fall 2020

A Hamiltonian Path Algorithm
● Test each vertex permutation to see if it is a valid path
● Let's extend our BasicGraph into an EnhancedGraph class
● Create the superstring graph and find a Hamiltonian Path

17

Comp 555 - Fall 2020

Visualizing the result

18

Comp 555 - Fall 2020

Is this solution unique?
How about the path = "0000111101001011000"

● Our Hamiltonian path finder produces a single path, if one exists.
● How would you modify it to produce every valid Hamiltonian path?
● How long would that take?

One of De Bruijn's contributions is that there are:

paths leading to superstrings where σ=|Σ|.

In our case σ=2 and k = 4, so there should be 28 / 24 = 16 paths.
(ignoring those that are just different starting points on the same cycle)

19

Comp 555 - Fall 2020

● There are N! possible paths for N vertices.
● Our 16 vertices give 20,922,789,888,000

possible paths
● There is a fairly simple Branch-and-Bound

evaluation strategy
○ Extend paths using only valid edges
○ Use recursion to extend paths along

graph edges
○ Trick is to maintain two lists:

■ The path so far, where each adjacent pair
of vertices is connected by an edge

■ Unused vertices. When the unused list
becomes empty we've found a path

Brute Force is slow!

20

Comp 555 - Fall 2020

A Branch-and-Bound Hamiltonian Path Finder

21

Why isn’t
this good
enough?

Comp 555 - Fall 2020

Is there a better Hamiltonian Path Algorithm?
● Better in what sense?
● Better = number of steps to find a solution that is polynomial in either the number of edges or vertices

○ Polynomial: variableconstant

○ Exponential: constantvariable or worse, variablevariable

○ For example our Brute-Force algorithm was O(kV) < O(V!) < O(VV)
where V is the number of vertices in our graph, a problem variable

● We can only practically solve only small problems if the algorithm
for solving them takes a number of steps that grows exponentially
with a problem variable (i.e. the number of vertices), or else be
satisfied with heuristic or approximate solutions

● Can we prove there is no algorithm to find a Hamiltonian Path
in a time that is polynomial in the number of vertices or edges in the graph?

○ No one has, and here is a million-dollar reward if you can!
○ If instead of a brute who just enumerates all possible answers we

knew an oracle could just tell us the right answer (i.e. Nondeterministically)
○ It's easy to verify that an answer is correct in Polynomial time.
○ A lot of known problems will suddenly become solvable using your algorithm

22

Comp 555 - Fall 2020

What next?
Is there hope?

What if our k-mers are edges?

23

