Comp 555 - BioAlgorithms - Spring 2020

Finding Paths in Graphs

HAMILTONIAN PATHS
DE BrUITN SEAQVENCES
EVLERIAN PATHS
GRAPH
REPRESENTATIONS

PROBLEM SET #] IS
DVE NEXT TUESDAY.

€
S

From Last Time

We discussed how to turn a sequence into a graph

GACGGCGGCGCACGGCGCAA GGCGC] GCGCA]
GACGG : -
AggggG Our original sequence is l
just a path in this graph eGeae. | <7
Gggggc How would you £ind i#?
CGGOG \q ' CGGCG, ‘
GGCGC Q

GCGCA ‘, \/ ‘
CGCAC
GCACG
ACGGC GACGG
CGGCG
GGCGC
GCGCA GCGGC ‘
—1 ACGGC,

CGCAA
By placing edges connecting k-mers ‘ 2 “vv
whose k-1 suffix matches a k-1prefix caca

Comp 555 - Fall 2020

(7 «Pﬁ\\

Parlor games

Once finding paths in graphs was a popular form of entertainment...

Graphs would be printed in newspapers, and people would try to find paths in
them as a game.

The rules of our game

Every node, k-mer, can be used exactly once
The object is to find a path along edges that
visits every node one time

e This game was invented in the mid 1800's by
a mathematician called Sir William Hamilton

An example of Hamilton’s game:

Comp 555 - Fall 2020

Finding a Hamiltonian Path in our graph e

For our desired sequence:
GACGGCGGCGCACGGCGCAA sccac, || cocon, |
is indeed a path in this graph. /|

</

How would you write a program \' Y‘
o, ,)

To solve Hamilton's puzzles® ~"

Is the solution unique? GCG

Comp 555 - Fall 2020

&

(77

De Bruijn's Problem

Nicolaas de Bruijn Minimal Superstring Problem:
(1918-2012)

Find the shortest sequence that contains all [Z|¢ strings
of length k from the alphabet X as a substring.

Example: All strings of length 3 from the alphabet {'0',1'}.

binary3 = {'000', '001', '010", '011', '100, '101", '110', '111'}

101 100 111 100
001.111 001 101

Solution #1: 0001011100 Solution #2: 0001110100
000 011 000 110

010 110 011 010

A dutch mathematician noted for his many
contributions in the fields of graph theory,
number theory, combinatorics and logic.

He solved this problem by mapping it to a graph. Note, this
particular problem leads to cyclic sequence.

Comp 555 - Fall 2020

Another represention of k-mers in a graph

e Rather than making each k-mer a node, let's try making them an edge
e That seems odd, but it is related to the overlap idea
o The 5-mer GACGG has a prefix GACG and a suffix ACGG
o Think of the k-mer as the edge connecting a prefix to a suffix
o This leads to a series of simple graphs

GACG

ACGG

CGGC

GGCG

GACGG

ACGGC

CGGCG

GGCGG

()

ACGG

G

CGGC

.

GGCG

(e

CGGG

o Then combine all nodes with the same label

Comp 555 - Fall 2020

GCGG

CGGC

GGCG

GCGC

GCGGC

CGGCG

CGGC

GGCG

Ny

GGCGC

GCGC
GCGCA

CGCA

A De Bruijn Graph e,

This graph, like the previous one has the property that edges @
connect nodes where a k-1 suffix matches a k-1 prefix. Graphs
of this type are called "De Bruijn" graphs, after a famous
mathematician.

Recall that our original 5-mers are edges in this graph,
whereas they were nodes in the previous one.

Now, how might you infer the original sequence using this
graph?

GCAA

Comp 555 - Fall 2020

?

This leads to a new game

The rules of our new game

e Every edge, k-mer, can be used
exactly once

e The object is to find a path in the
graph that uses each edge only
one time

e This game was invented in the
late 1700's by a mathematician
called Leonhard Euler

A version of Euler's game:

Leonhard Euler

Bridges of Konigsberg: Find a city tour that
crosses every bridge just once

Comp 555 - Fall 2020

Two graphs, same problem KN

Two graphs representing 5-mers from the sequence "GACGGCGGCGCACGGCGCAA"

Hamiltonian Path: Eulerian Path:

Each k-mer is a vertex. Find a path that passes Each k-mer is an edge. Find a path that passes
through every vertex of this graph exactly once. through every edge of this graph exactly once.

Comp 555 - Fall 2020

177 aﬂ‘\

De Bruijn's Graphs

Or, equivalently, a Eulerian cycle of in a
(k-1)-dimensional De Bruijn graph. Here
edges represent the k-length substrings.

Minimal Superstrings can be constructed by
finding a Hamiltonian path of an
k-dimensional De Bruijn graph. Defined as a
graph with |2|¥ knodes and edges from nodes
whose k-1 suffix matches a node's k-1 prefix

0001 000

7

100

Comp 555 - Fall 2020

10

Solving Graph Problems on a Computer KN

Graph Representations An Adjacency Matrix:

A|B|C|D|E

An example graph:
Al0|1]0|0]1
B|0[0|1]1]0
c|i|olo|0]O
G/
' ° E|0[1|1]1]0

° is 1 if there is an edge
connecting the ith
vertex to the j" vertex
and 0 otherwise.

Comp 555 - Fall 2020

An n x n matrix where Aij

Adjacency Lists:

Edge =[(0,1), (0,4),
(1,2), (1.3),
(2,0),
(3,0),
(4,1), (4,2), (4,3)]

An array or list of vertex pairs
(i,j) indicating an edge from
the ith vertex to the j™ vertex.

11

An adjacency list graph object

In [1]: M class BasicGraph:

def

def

def

Comp 555 - Fall 2020

. init_ (self, vlist=[]):

""" Tnitialize a Graph with an optional vertex list """

self.index = {v:i for i,v in enumerate(vlist)} # looks up index given name
looks up name given index

self.vertex = {i:v for i,v in enumerate(vlist)}
self.edge = []
self.edgelabel = []

addVertex(self, label):

""" Add a labeled vertex to the graph """
index = len(self.index)

self.index[label] = index
self.vertex[index] = label

addeEdge(self, vsrc, vdst, label='', repeats=True):
""" Add a directed edge to the graph, with an optional label.
Repeated edges are distinct, unless repeats is set to False. """
e = (self.index[vsrc], self.index[vdst])
if (repeats) or (e not in self.edge):

self.edge.append(e)

self.edgelabel.append(label)

A\

(>

12

Usage example

Let's generate the vertices needed to find De Bruijn's superstring of 4-bit binary strings...

and create a graph object using them.

In [17]: 1 import itertools

build a list of binary number

'strings’

binary = [''.join(t) for t in itertools.product('01', repeat=4)]

print(binary)

#

S

16 of the destination vertex

11 61 = BasicGraph(binary)

12 for vsrc in binary:

13 G1.addEdge(vsrc, vsrc[1:]+'0")
14 G1.addEdge(vsrc, vsrc[1:]+'1")

build a graph with edges connecting binary strings where
the k-1 suffix of the source vertex matches the k-1 prefix

['ece0', 'GOO1', 'GO16', 'GO11', '6G100', '6161', '6110', '6111', '1000', '1001', '1010', '1011',

'1111']

Vertex indices = {'0000': 0, '0001': 1, '0010': 2, '0011': 3, '0100': 4, '0101': 5, '0110': 6,

1': 9, '1e10': 10, '1011': 11, '11e0': 12, '1101': 13, '1110': 14, '1111': 15}

Index to Vertex = {0: '0000', 1: '0001', 2: '0010', 3: '0011', 4:
'1001', 10: '1010', 11: '1011', 12: '1100', 13: '1101', 14: '1110', 15: '1111'}

'e100', 5: 'eiei', 6: 'e110',

'1100°',

‘1101, '1110°,

'e111': 7, '1000': 8, '100

7

'e111', 8:

‘1000, 9:

‘ p”.“nt(,), 3 3 o A Edges = [(0, 0), (O, 1), (1, 2), (1, 8), (2, 4), (2, 5), (3, 6), (3, 7), (4, 8), (4, 9), (5, 10), (5, 11), (6, 12), (6, 1

17 print("Vertex indices = ", G1.index) 3), (7, 14), (7, 15), (8, ©), (8, 1), (9, 2), (9, 3), (10, 4), (10, 5), (i1, 6), (11, 7), (12, 8), (12, 9), (13, 10), (13,
int() 11), (14, 12), (14, 13), (15, 14), (15, 15)]

2 prin 0: 0000 --> 0000 1: 0000 --> 0001 2: 0001 --> 0010 3: 0001 --> 0011

19 print("Index to Vertex = ", G1_vertex) 4: 0010 --> 0100 5: 0010 --> 0101 6: 0011 --> 0110 7: 0011 --> 0111

o . 8: 0100 --> 1000 9: 0100 --> 1001 10: 0101 --> 1010 11: 0101 --> 1011

2U prlnt() 12: 0110 --> 1100 13: 0110 --> 1101 14: 0111 --> 1110 15: 0111 --> 1111

)1 3 " =N 16: 1000 --> 0000 17: 1000 --> 0001 18: 1001 --> 0010 19: 1001 --> 0011

21 print("Edges » G1.edge) 20: 1010 --> 0100 21: 1010 --> 0101 22: 1011 --> 0110 23: 1011 --> 0111

2 24: 1100 --> 1000 25: 1100 --> 1001 26: 1101 --> 1010 27: 1101 --> 1011

23 for i, (src, dst) in enumerate(G1.edge): 28: 1110 --> 1100 29: 1110 --> 1101 30: 1111 --> 1110 31: 1111 --> 1111

24 print("%2d: %s --> %s" % (i, Gl.vertex[src], Gil.vertex[dst]), end =" ")

25 if (i % 4 == 3):
2 print()

Comp 555 - Fall 2020

13

The resulting graph

Comp 555 - Fall 2020

14

The Hamiltonian Path Problem

Next, we need an algorithm to find a path in a graph that visits every node exactly once,
if such a path exists.

How?

Approach:

® Enumerate every possible path (all permutations of N vertices).
Python's itertools.permutations() does this.

® Verify that there is an edge connecting all N-1 pairs of adjacent vertices

Comp 555 - Fall 2020

€
\‘g‘!

15

All vertex permutations = every possible path

A simple graph with 4 vertices

In [5]:

start = 1

for path in itertools.permutations([1,2,3,4]):

M import itertools

if (path[@] != start):
print()

(1, 2,
1, 3, 4),
(3, 1,
1, 2, 3),

Comp 555 - Fall 2020

start = path[0]
print(path, end=', '

3, 4),

2, 4),

(1, 2,
(2, 1,
(3, 1,
(4, 1,

4
4,
4,
3

NN W W

~

R R RN

NN WW

[S

[V S

R R RN

[V S S

NN WW

(7 ?ﬂg\

2

16

(7 ﬁﬂg\
|

A Hamiltonian Path Algorithm

e Test each vertex permutation to see if it is a valid path
e Let's extend our BasicGraph into an EnhancedGraph class
e Create the superstring graph and find a Hamiltonian Path

In [10]: M import itertools

class EnhancedGraph(BasicGraph):
def hamiltonianPath(self):
"nm A Brute-force method for finding a Hamiltonian Path.
Basically, all possible N! paths are enumerated and checked
for edges. Since edges can be reused there are no distictions
made for *which* version of a repeated edge. """
for path in itertools.permutations(sorted(self.index.values()))
for i in range(len(path)-1):
if ((path[i],path[i+1]) not in self.edge):
break
else:
return [self.vertex[i] for i in path]
return []

G1 = EnhancedGraph(binary)

for vsrc in binary:
G1l.addEdge(vsrc,vsrc[1:]+'0")
Gl.addEdge(vsrc,vsrc[1:]+'1")

WARNING: takes about 20 mins

%time path = Gl.hamiltonianPath()

print(path)

superstring = path[0] + ''.join([path[i][3] for i in range(1,len(path))])
print(superstring)

CPU times: user 18min 11s, sys: 52 ms, total: 18min 11s
wall time: 18min 11s
['e000', '6G0O1', '6010', '6160', '1601', '6611', 'e116', '1161', 'i1e16', 'e161', '1611', 'e6111', '1111', '1
110', '1100', '1000']
0000100110101111000
Comp 555 - Fall 2020

Visualizing the result

Comp 555 - Fall 2020

18

|s this solution unique? i,

How about the path ="0000111101001011000"

e Our Hamiltonian path finder produces a single path, if one exists.
e How would you modify it to produce every valid Hamiltonian path?
e How long would that take?

One of De Bruijn's contributions is that there are:

(G!)Gk—l

ok

paths leading to superstrings where o=|%|. C \ /

In our case 0=2 and k = 4, so there should be 28 / 2% = 16 paths.
(ignoring those that are just different starting points on the same cycle)

((((((

Comp 555 - Fall 2020 19

Brute Force is slow! KN

e There are N! possible paths for N vertices.
e Our 16 vertices give 20,922,789,888,000
possible paths
e There is a fairly simple Branch-and-Bound
evaluation strategy
o Extend paths using only valid edges
o Use recursion to extend paths along
graph edges
o Trick is to maintain two lists:
m The path so far, where each adjacent pair
of vertices is connected by an edge
m Unused vertices. When the unused list
becomes empty we've found a path

Comp 555 - Fall 2020 20

A Branch-and-Bound Hamiltonian Path Finder

In [9]:

Comp 555 - Fall 2020

M import itertools
class ImprovedGraph(BasicGraph):

def SearchTree(self, path, verticesLeft):
""" A recursive Branch-and-Bound Hamiltonian Path search.
Paths are extended one node at a time using only available
edges from the graph. """
if (len(verticesLeft) == 0):
self.Pathv2result = [self.vertex[i] for 1 in path]
return True
for v in verticesLeft:
if (len(path) == 0) or ((path[-1],v) in self.edge):

if self.SearchTree(path+[v], [r for r in verticesLeft if r != v]):

return True
return False

def hamiltonianPath(self):
"nmo A wrapper function for invoking the Branch-and-Bound
Hamiltonian Path search. """
self.Pathv2result = []
self.SearchTree([],sorted(self.index.values()))
return self.Pathv2result

Gl = ImprovedGraph(binary)
for vsrc in binary:
G1l.addEdge(vsrc,vsrc[1:]+'0")
G1l.addEdge(vsrc,vsrc[1:]+'1")
%timeit path = Gl.hamiltonianPath()
path = Gl.hamiltonianPath()
print(path)
superstring = path[0] + ''.join([path[i][3] for i in range(1,len(path))])
print(superstring)

81 ps + 684 ns per loop (mean = std. dev. of 7 runs, 10000 loops each)

['eeE0', '6001', '0010', '6100', '1061', 'e611', 'e116', '11e1', '1010', 'e161',
110', '11e0', '1000']

0000100110101111000

11011",

0111,

5 4 s L0

b

A

.

V\Ihy ish'+
+his aood
enough?

/ P

2

21

s there a better Hamiltonian Path Algorithm? o,

e Better in what sense?
e Better = number of steps to find a solution that is polynomial in either the number of edges or vertices
o Polynomial: variable®nstant
o Exponential: constant'@@'e or worse, variable'ariable NP Problems
o For example our Brute-Force algorithm was O(k") < O(V!) < O(VY)
where V is the number of vertices in our graph, a problem variable
e We can only practically solve only small problems if the algorithm NP Complete
for solving them takes a number of steps that grows exponentially o
with a problem variable (i.e. the number of vertices), or else be
satisfied with heuristic or approximate solutions ‘ |
e Can we prove there is no algorithm to find a Hamiltonian Path NP-Hard | NP-Hard
in a time that is polynomial in the number of vertices or edges in the graph? “
No one has, and here is a million-dollar reward if you can!
If instead of a brute who just enumerates all possible answers we
knew an oracle could just tell us the right answer (i.e. Nondeterministically)
o It's easy to verify that an answer is correct in Polynomial time.
o Alot of known problems will suddenly become solvable using your algorithm

NP-Complete

P=NP=
NP-Complete

NP

P = NP

Comp 555 - Fall 2020

22

What next?

Is there hope?

BRUTE-FORCE
SOLUT1ON:

o(n!)

DYNAMIC
PROGRAMMING
ALGORITHMS:

O:(n*2")

SELUNG ON ERAY:

0(1)

STILL WORKING
ON YOUR ROUTE?
\

e
SHUT THE
HEW VR

What if our k-mers are edges?

Comp 555 - Fall 2020

(>

23

