Comp 555 - BioAlgorithms - Spring 2020

- hamiltonian paths
- de bruitn sequences
- evlerian paths
- GRAPH

REPRESENTATIONS

- Problem set \#) 15 DUE NEXT TUESDAY.

Finding Paths in Graphs

From Last Time

We discussed how to turn a sequence into a graph
GACGGCGGCGCACGGCGCAA

GACGG

```
ACGGC
    CGGCG
        GGCGG
        GCGGC
                CGGCG
                GGCGC
                    GCGCA
                CGCAC
                GCACG
                    CACGG
                        ACGGC
                        CGGCG
                        GGCGC
                        GCGCA
                        CGCAA
```

Our original sequence is just a path in this graph. How would you find it?

By placing edges connecting k-mers whose k-1 suffix matches a k-1prefix

Parlor games

Once finding paths in graphs was a popular form of entertainment...
Graphs would be printed in newspapers, and people would try to find paths in them as a game.

The rules of our game

- Every node, k-mer, can be used exactly once
- The object is to find a path along edges that visits every node one time
- This game was invented in the mid 1800's by a mathematician called Sir William Hamilton

An example of Hamilton's game:

Co

Finding a Hamiltonian Path in our graph

For our desired sequence:
GACGGCGGCGCACGGCGCAA
is indeed a path in this graph.

How would you write a program To solve Hamilton's puzzles?

Is the solution unique?

De Bruijn's Problem

Nicolaas de Bruijn

 (1918-2012)

A dutch mathematician noted for his many contributions in the fields of graph theory, number theory, combinatorics and logic.

Minimal Superstring Problem:

Find the shortest sequence that contains all $|\Sigma|^{k}$ strings of length k from the alphabet Σ as a substring.

Example: All strings of length 3 from the alphabet $\left\{{ }^{\prime} 00^{\prime}, 1 '\right\}$.

```
binary3 = {'000', '001', '010', '011', '100', '101', '110', '111'}
            1 0 1 1 0 0
            0 0 1 1 1 1
Solution #1: 0001011100 Solution #2: 0001110100
    0 0 0 0 1 1 0 0 0 1 1 0
        0 1 0 1 1 0
    0 1 1 0 1 0
```

He solved this problem by mapping it to a graph. Note, this particular problem leads to cyclic sequence.

Another represention of k-mers in a graph

- Rather than making each k-mer a node, let's try making them an edge
- That seems odd, but it is related to the overlap idea
- The 5-mer GACGG has a prefix GACG and a suffix ACGG
- Think of the k -mer as the edge connecting a prefix to a suffix
- This leads to a series of simple graphs

- Then combine all nodes with the same label

A De Bruijn Graph

This graph, like the previous one has the property that edges connect nodes where a k - 1 suffix matches a $k-1$ prefix. Graphs of this type are called "De Bruijn" graphs, after a famous mathematician.

Recall that our original 5-mers are edges in this graph, whereas they were nodes in the previous one.

Now, how might you infer the original sequence using this graph?

This leads to a new game

The rules of our new game

- Every edge, k-mer, can be used exactly once
- The object is to find a path in the graph that uses each edge only one time
- This game was invented in the late 1700's by a mathematician called Leonhard Euler

Leonhard Euler

A version of Euler's game:

Bridges of Königsberg: Find a city tour that crosses every bridge just once

Two graphs, same problem

Two graphs representing 5-mers from the sequence "GACGGCGGCGCACGGCGCAA"

Hamiltonian Path:

Each k-mer is a vertex. Find a path that passes through every vertex of this graph exactly once.

Eulerian Path:

Each k-mer is an edge. Find a path that passes through every edge of this graph exactly once.

De Bruijn's Graphs

Minimal Superstrings can be constructed by finding a Hamiltonian path of an k-dimensional De Bruijn graph. Defined as a graph with $|\Sigma|^{k}$ knodes and edges from nodes whose k -1 suffix matches a node's $\mathrm{k}-1$ prefix

Or, equivalently, a Eulerian cycle of in a ($k-1$)-dimensional De Bruijn graph. Here edges represent the k-length substrings.

Solving Graph Problems on a Computer

Graph Representations
An example graph:

An Adjacency Matrix:

$$
\begin{array}{|l|l|l|l|l|l|}
\hline & \mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D} & \mathbf{E} \\
\hline \mathbf{A} & 0 & 1 & 0 & 0 & 1 \\
\hline \mathbf{B} & 0 & 0 & 1 & 1 & 0 \\
\hline \mathbf{C} & 1 & 0 & 0 & 0 & 0 \\
\hline \mathbf{D} & 1 & 0 & 0 & 0 & 0 \\
\hline \mathbf{E} & 0 & 1 & 1 & 1 & 0 \\
\hline
\end{array}
$$

An $n \times n$ matrix where $A_{i j}$ is 1 if there is an edge connecting the ith vertex to the $j^{\text {th }}$ vertex and 0 otherwise.

Adjacency Lists:

$$
\begin{aligned}
\text { Edge }= & {[(0,1),(0,4),} \\
& (1,2),(1,3), \\
& (2,0), \\
& (3,0), \\
& (4,1),(4,2),(4,3)]
\end{aligned}
$$

An array or list of vertex pairs (i,j) indicating an edge from the ith vertex to the $\mathrm{j}^{\text {th }}$ vertex.

An adjacency list graph object

```
In [1]: M class BasicGraph:
    def __init__(self, vlist=[]):
        """ Initialize a Graph with an optional vertex list """
        self.index = {v:i for i,v in enumerate(vlist)} # looks up index given name
        self.vertex ={ {i:v for i,v in enumerate(vlist)} # looks up name given index
        self.edge = []
        self.edgelabel = []
    def addVertex(self, label):
        """ Add a labeled vertex to the graph """
        index = len(self.index)
        self.index[label] = index
        self.vertex[index] = label
    def addEdge(self, vsrc, vdst, label='', repeats=True):
        """ Add a directed edge to the graph, with an optional label.
        Repeated edges are distinct, unless repeats is set to False. """
        e = (self.index[vsrc], self.index[vdst])
        if (repeats) or (e not in self.edge):
            self.edge.append(e)
            self.edgelabel.append(label)
```


Usage example

Let's generate the vertices needed to find De Bruijn's superstring of 4-bit binary strings...

 and create a graph object using them.
In [17]:

```
```

import itertools

```
```

import itertools

build a list of binary number "strings"

build a list of binary number "strings"

binary = [''.join(t) for t in itertools.product('01', repeat=4)]
binary = [''.join(t) for t in itertools.product('01', repeat=4)]
print(binary)
print(binary)

build a graph with edges connecting binary strings where

build a graph with edges connecting binary strings where

the k-1 suffix of the source vertex matches the k-1 prefix

the k-1 suffix of the source vertex matches the k-1 prefix

of the destination vertex

of the destination vertex

G1 = BasicGraph(binary) ['0001', '0001', '0010', '0011', '0100', '0101', '0110', '0111', '1000', '1001', '1010', '1011', '1100', '1101', '1110',
G1 = BasicGraph(binary) ['0001', '0001', '0010', '0011', '0100', '0101', '0110', '0111', '1000', '1001', '1010', '1011', '1100', '1101', '1110',
for vsrc in binary:
for vsrc in binary:
G1.addEdge(vsrc, vsrc[1:]+'0')
G1.addEdge(vsrc, vsrc[1:]+'0')
G1.addEdge(vsrc, vsrc[1:]+'1')
G1.addEdge(vsrc, vsrc[1:]+'1')
print()
print()
print("Vertex indices = ", G1.index)
print("Vertex indices = ", G1.index)
print()
print()
print()
print()
print()
print()
print("Edges =", G1.edge)
print("Edges =", G1.edge)
for i, (src, dst) in enumerate(G1.edge):
for i, (src, dst) in enumerate(G1.edge):
print("%2d: %s --> %s" % (i, G1.vertex[src], G1.vertex[dst]), end = " ")
print("%2d: %s --> %s" % (i, G1.vertex[src], G1.vertex[dst]), end = " ")
if (i % 4 == 3):
if (i % 4 == 3):
print()

```
        print()
```

```
    '1111']
```

 '1111']
 vertex indices = {'0000': 0, '0001': 1, '0010': 2, '0011': 3, '0100': 4, '0101': 5, '0110': 6, '0111': 7, '1000': 8, '100

```
vertex indices = {'0000': 0, '0001': 1, '0010': 2, '0011': 3, '0100': 4, '0101': 5, '0110': 6, '0111': 7, '1000': 8, '100
```



```
Index to vertex = {0: '0000', 1: '0001', 2: '0010', 3: '0011', 4: '0100', 5: '0101', 6: '0110', 7: '0111', 8: '1000', 9:
```

Index to vertex = {0: '0000', 1: '0001', 2: '0010', 3: '0011', 4: '0100', 5: '0101', 6: '0110', 7: '0111', 8: '1000', 9:
'1001', 10: '1010', 11: '1011', 12: '1100', 13: '1101', 14: '1110', 15: '1111'}
'1001', 10: '1010', 11: '1011', 12: '1100', 13: '1101', 14: '1110', 15: '1111'}
Edges =[(0,0),(0,1),(1,2),(1,3),(2,4),(2,5),(3,6),(3,7),(4,8),(4,9),(5,10),(5,11),(6,12),(6,1
Edges =[(0,0),(0,1),(1,2),(1,3),(2,4),(2,5),(3,6),(3,7),(4,8),(4,9),(5,10),(5,11),(6,12),(6,1
Edges=[(0,0),(0, 1),(1, 2),(1,3),(2,4),(2,5),(3,6),(3,7),(4, 8),(4,9),(5, 10),(5, 11),(6, 12),(6,1
Edges=[(0,0),(0, 1),(1, 2),(1,3),(2,4),(2,5),(3,6),(3,7),(4, 8),(4,9),(5, 10),(5, 11),(6, 12),(6,1
M11), (14, 12), (14, 13), (15, 14), (15, 15)]
M11), (14, 12), (14, 13), (15, 14), (15, 15)]
llllllllll
llllllllll
lllllllll
lllllllll
lal

```
    lal
```



```
    16: 1000 ->> 0000 17: 1000 M> 0001 18: 1001 分0010 19: 1001 lo> 0011
```

```
    16: 1000 ->> 0000 17: 1000 M> 0001 18: 1001 分0010 19: 1001 lo> 0011
```



```
    \mp@subsup{}{l}{2:}
```

```
    \mp@subsup{}{l}{2:}
```


The resulting graph

The Hamiltonian Path Problem

Next, we need an algorithm to find a path in a graph that visits every node exactly once, if such a path exists.

How?

Approach:

- Enumerate every possible path (all permutations of N vertices).

Python's itertools.permutations() does this.

- Verify that there is an edge connecting all N-1 pairs of adjacent vertices

All vertex permutations = every possible path

A simple graph with 4 vertices


```
In [5]: M import itertools
    start = 1
    for path in itertools.permutations([1,2,3,4]):
        if (path[0] != start):
            print()
            start = path[0]
        print(path, end=', ')
```


A Hamiltonian Path Algorithm

- Test each vertex permutation to see if it is a valid path
- Let's extend our BasicGraph into an EnhancedGraph class
- Create the superstring graph and find a Hamiltonian Path

In [10]: M import itertools
class EnhancedGraph(BasicGraph):
def hamiltonianPath(self)
""" A Brute-force method for finding a Hamiltonian Path
Basically, all possible N! paths are enumerated and checked
for edges. Since edges can be reused there are no distictions made for *which* version of a repeated edge. """
for path in itertools.permutations(sorted(self.index.values()))
for i in range(len(path)-1)
if ((path[i],path[i+1]) not in self.edge):
else:
return [self.vertex[i] for i in path]
return []
G1 = EnhancedGraph(binary)
for vsrc in binary:
G1.addEdge(vsrc, vsrc[1:]+'0')
G1. addEdge(vsrc, vsrc[1:]+'1')
\# WARNING: takes about 20 mins
\%time path $=$ G1. hamiltonianPath() print(path)
superstring $=\operatorname{path}[0]+$ ''.join([path[i][3] for i in range(1,len(path))]) print(superstring)
CPU times: user 18 min 11 s , sys: 52 ms , total: 18 min 11 s Wall time: 18min 11s
['0000', '0001', '0010', '0100', '1001', '0011', '0110', '1101', '1010', '0101', '1011', '0111', '1111', '1 110', '1100', '1000']
0000100110101111000

Visualizing the result

Is this solution unique?

How about the path = "0000111101001011000"

- Our Hamiltonian path finder produces a single path, if one exists.
- How would you modify it to produce every valid Hamiltonian path?
- How long would that take?

One of De Bruijn's contributions is that there are:

$$
\frac{(\sigma!)^{\sigma^{k-1}}}{\sigma^{k}}
$$

paths leading to superstrings where $\sigma=|\Sigma|$.

In our case $\sigma=2$ and $k=4$, so there should be $2^{8} / 2^{4}=16$ paths.
 (ignoring those that are just different starting points on the same cycle)

Brute Force is slow!

- There are N ! possible paths for N vertices.
- Our 16 vertices give $20,922,789,888,000$ possible paths
- There is a fairly simple Branch-and-Bound evaluation strategy
- Extend paths using only valid edges
- Use recursion to extend paths along graph edges
- Trick is to maintain two lists:

- The path so far, where each adjacent pair of vertices is connected by an edge
■ Unused vertices. When the unused list becomes empty we've found a path

A Branch-and-Bound Hamiltonian Path Finder

In [9]:
M import itertools
class ImprovedGraph(BasicGraph):
def SearchTree(self, path, verticesLeft):
""" A recursive Branch-and-Bound Hamiltonian Path search. Paths are extended one node at a time using only available edges from the graph
if (len(verticesLeft) == 0):
self.PathV2result = [self.vertex[i] for i in path]
return True
for v in verticesLeft
if $($ len $($ path $)==0)$ or ($($ path $[-1], v)$ in self.edge) :
if self. SearchTree(path $+[v],[r$ for r in verticesLeft if $r!=v$): return True
return False
def hamiltonianPath(self):
""" A wrapper function for invoking the Branch-and-Bound
Hamiltonian Path search. """
self.PathV2result = []
self.SearchTree([], sorted(self.index.values()))
return self.PathV2result
G1 = ImprovedGraph(binary)
for vsrc in binary:
G1. addEdge(vsrc, vsrc[1:]+'0')
G1. addEdge(vsrc, vsrc[1:]+'1')
\%timeit path = G1. hamiltonianPath()
path $=$ G1.hamiltonianPath()
print(path)
superstring $=\operatorname{path}[0]+$ ''.join([path[i][3] for i in range(1, len(path))])
print(superstring)
$81 \mu \mathrm{~s} \pm 684 \mathrm{~ns}$ per loop (mean \pm std. dev. of 7 runs, 10000 loops each)
['0000', '0001', '0010', '0100', '1001', '0011', '0110', '1101', '1010', '0101', '1011', '0111', '1111', '1
110', '1100', '1000']
0000100110101111000

Is there a better Hamiltonian Path Algorithm?

- Better in what sense?
- Better = number of steps to find a solution that is polynomial in either the number of edges or vertices
- Polynomial: variable ${ }^{\text {constant }}$
- Exponential: constant ${ }^{\text {variable }}$ or worse, variable ${ }^{\text {variable }}$
- For example our Brute-Force algorithm was $\mathrm{O}\left(\mathrm{k}^{\mathrm{V}}\right)<\mathrm{O}(\mathrm{V}!)<\mathrm{O}\left(\mathrm{V}^{\vee}\right)$ where V is the number of vertices in our graph, a problem variable
- We can only practically solve only small problems if the algorithm for solving them takes a number of steps that grows exponentially with a problem variable (i.e. the number of vertices), or else be satisfied with heuristic or approximate solutions
- Can we prove there is no algorithm to find a Hamiltonian Path in a time that is polynomial in the number of vertices or edges in the graph?
- No one has, and here is a million-dollar reward if you can!
- If instead of a brute who just enumerates all possible answers we knew an oracle could just tell us the right answer (i.e. Nondeterministically)
- It's easy to verify that an answer is correct in Polynomial time.
- A lot of known problems will suddenly become solvable using your algorithm

What next?

Is there hope?

SELUNG ON EBAY: O(1)

STILL WORKING ON YOUR ROUTE?

What if our k-mers are edges?

