
Comp 555 - BioAlgorithms - Spring 2020

Finding TFBS Motifs in our Lifetime

● Recall from last time that the Brute
Force approach for finding a common
10-mer motif common to 10
sequences of length 80 bases was
going to take up roughly 30,000 years

● Today well consider alternative and
non-obvious approaches for solving
this problem

● We will trade one old man (us) for
another (an Oracle)

There will be a Python/Jupyter crash

course next Tuesday night, Jan 28,

from 5:00pm-6:30pm. Room TBA...

Comp 555 - Fall 2020

Recall from last lecture
The following set of 10 sequences have an embedded noisy motif, TAGATCCGAA.

 1 tagtggtcttttgagtgTAGATCTGAAgggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat TAGATCTGAA
 2 cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagtTGGATCCGAAactggagtttaatcggagtcctt TGGATCCGAA
 3 gttacttgtgagcctggtTAGACCCGAAatataattgttggctgcatagcggagctgacatacgagtaggggaaatgcgt TAGACCCGAA
 4 aacatcaggctttgattaaacaatttaagcacgTAAATCCGAAttgacctgatgacaatacggaacatgccggctccggg TAAATCCGAA
 5 accaccggataggctgcttatTAGGTCCAAAaggtagtatcgtaataatggctcagccatgtcaatgtgcggcattccac TAGGTCCAAA
 6 TAGATTCGAAtcgatcgtgtttctccctctgtgggttaacgaggggtccgaccttgctcgcatgtgccgaacttgtaccc TAGATTCGAA
 7 gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgCAGATCCGAAcgtctctggaggggtcgtgcgcta CAGATCCGAA
 8 atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactgtgTAGATCCGTA TAGATCCGTA
 9 ttcttacacccttcttTAGATCCAAAcctgttggcgccatcttcttttcgagtccttgtacctccatttgctctgatgac TAGATCCAAA
10 ctacctatgtaaaacaacatctactaacgtagtccggtctttcctgatctgccctaacctacaggTCGATCCGAAattcg TCGATCCGAA
 9+9+9+9+9
 +8+9+9+8+10 = 89

2

Some notes:
1. There are no exact matches
2. The consensus motif gives a good score

Comp 555 - Fall 2020

Consensus Scoring Function
● We developed an O(k) consensus scoring function to address noise (inexact matches)
● But, we need to apply it an exponential number, O(NM) of times!
● Here's the scoring function...

3

Comp 555 - Fall 2020

And here's the Score we're looking for...

4

So even at a blazing 40μs we'll need many lifetimes to compute the 7010 scores

Comp 555 - Fall 2020

Pruning Trees
● One method for reducing the computational cost of a search algorithm is to prune the space of permutations that

could not possibly lead to a better answer than the current best answer.
● Pruning decisions are based on solutions to subproblems that appear early on and offer no hope
● How does this apply to our Motif finding problem?
● Consider any permutation of offsets that begins with the indices [25, 63, 10, 43,].

Just based on the first 4 indices the largest possible score is 17 + (6*10) = 77, which
assumes that all 6 remaining strings match perfectly at all 10 positions.

 DNA[0][25:35] a a g g g a a a g t
 DNA[1][63:73] g t t t a a t c g g
 DNA[2][10:20] a g c c t g g t t a
 DNA[3][43:53] t t g a c c t g a t

 a [2, 1, 0, 1, 1, 2, 1, 1, 1, 1]
 Profile c [0, 0, 1, 1, 1, 1, 0, 1, 0, 0]
 g [1, 1, 2, 1, 1, 1, 1, 1, 2, 1]
 t [1, 2, 1, 1, 1, 0, 2, 1, 1, 2]
 [2, 2, 2, 1, 1, 2, 2, 1, 2, 2] Score = 17

If the best answer so far is 79, there is no need to consider the 706 offset permuations that start with these 4 indices.

5

Comp 555 - Fall 2020

Search Trees
● Our standard method for enumerating permutations can be considered as a traversal of leaf nodes

in a search tree
● Suppose after checking the first few offsets we can determine that any score of children nodes

could not beat the best score seen so far?

6

Comp 555 - Fall 2020

Branch-and-Bound Motif Search
● Since each level of the tree goes deeper

into search, discarding a prefix discards
all following branches

● This saves us from looking at
(N–k+1)M−depth leaves

● Note our enumeration of tree-branches is
depth-first

● We'll formulate of trimming algorithm as
a recursive algorithm

7

Comp 555 - Fall 2020

Recursive Exploration of a Search Tree

8

Comp 555 - Fall 2020

Let’s try it

Recall that last time it took almost 13 mins to search the first 4 sequences.
Here we took nearly ¼ of that to search 6 sequences.

9

Comp 555 - Fall 2020

Observations
● For our problem instance, Branch-and-Bound Motif finding is significantly faster

○ It found a motif in the first 6 strings in less time than the Brute Force approach found a
solution in the first 4 strings

○ More than 702≈5000 times faster
○ It did so by trimming more than 8 Million paths
○ Trimming added extra calls to Score (no worse than doubling

the worst-case number of calls), but ended up saving even
more hopeless calls along longer paths.

○ In practice, Branch-and-Bound, significantly improved the
average performance

● Does this improve the worst-case performance from O(kNM)?
○ What if all of our motifs were found at the end of each DNA string?
○ How do we avoid these worse case data sets?
○ Randomize the search-tree tranversal order

10

Comp 555 - Fall 2020

We need a new approach
● Enumerating every possible permuation of motif positions is still not getting us the speed we want.
● Let's try another tried-and-tested approach to algorithm design, mixing up the problem

○ Suppose that some Oracle could tell us what the motif is
○ How long would it take us to find its position in each string?
○ We could compute the Hamming Distance from our given motif to the k-mer at every position

of each DNA sequence and keep track of the smallest distance and its position on each
string.

○ These positions are our best guess of where the motif can be found on each string
● Let's call this approach scanning-and-scoring to find a given motif.

11

Comp 555 - Fall 2020

Scanning-and-Scoring a Motif

Wow, we can test over 900 motifs per second!

12

Comp 555 - Fall 2020

Scan-and-Score Motif Performance
● There are M(N−k+1) positions to test the motif,

and each test requires k tests.

So each scan is O(MNk)

● So where where do we get candidate motifs?
● Can we try all of them?

○ There are 410 = 1048576 in our example.
○ 1048576 motifs × 1.09 mS ≈ 19 mins
○ Not fast, but much less than a lifetime

● This approach is called a Median String Motif Search
● Recall from last Lecture that a string that minimizes

Hamming distance is like finding a middle or median
string that is closer to all instances than the instances
are to each other.

13

Comp 555 - Fall 2020

Let’s do it!

The right answer in under 20 mins! Much less than a lifetime.

14

Comp 555 - Fall 2020

Notes on Median String Motif Search
● Similarities between finding and alignment with minimal Hamming Distance and maximizing a

Motif's consensus score.
● In fact, if instead of counting mismatches as in the code fragment:

HammingDist = sum([1 for i in range(k) if motif[i] != seq[s+i]])

we had counted matches
Matches = sum([1 for i in range(k) if motif[i] == seq[s+i]])

and found the maximum(TotalMatches) instead of the min(TotalHammingDistance)
we would be using the same measure as Score().

● Thus, we expect MedianStringMotifSearch() to give the same answer as either
BruteForceMotifSearch() or BranchAndBoundMotifSearch().

● However, the 4k term raises some concerns. If k were instead 20, then we'd have to Scan-and-Score
more than 1012 times. Another not-in-a-lifetime algorithm

● We can also apply the Branch-and-Bound approach to the Median string method, but, as before it
would only improve the average case.

15

Comp 555 - Fall 2020

Other ways to guess the motif?
● If we knew that the motif that we are looking for was contained somewhere in

our DNA sequences we could test the (N−k+1)t motifs from our DNA, giving
a O(N2t2) algorithm.

● Unfortunately, as you may recall, our motif does not appear actually appear in
our data.

● Let’s not be discouraged and try it anyway

16

Comp 555 - Fall 2020

Let's consider only Motifs seen in the DNA

Not exactly the motif we wanted (off by a 'g'), [17, 47, 18, 33, 21, 0, 46, 70, 16, 65], 11, 'tagatccgaa’,
but it was fast!

17

Comp 555 - Fall 2020

Insights from the consensus score matrix
If we call Score([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], seqApprox, 10)

DNA[0][17:27] t a g a t c t g a a
DNA[1][31:41] t a g a c c a a a a
DNA[2][18:28] t a g a c c c g a a
DNA[3][33:43] t a a a t c c g a a
DNA[4][21:31] t a g g t c c a a a
DNA[5][0:10] t a g a t t c g a a
DNA[6][46:56] c a g a t c c g a a
DNA[7][70:80] t a g a t c c g t a
DNA[8][16:26] t a g a t c c a a a
DNA[9][65:75] t c g a t c c g a a

 a [0, 9, 1, 9, 0, 0, 1, 3, 9,10]
 c [1, 1, 0, 0, 2, 9, 8, 0, 0, 0]
 g [0, 0, 9, 1, 0, 0, 0, 7, 0, 0]
 t [9, 0, 0, 0, 8, 1, 1, 0, 1, 0]
 [9, 9, 9, 9, 8, 9, 8, 7, 9,10] Score = 87
Consensus t a g a t c c g a a Our motif!

Any Ideas? 18

Comp 555 - Fall 2020

Contained-Consensus Motif Search

That was fast!
19

Comp 555 - Fall 2020

Dad, are we there yet?
● We got the answer that we were looking for, but
● How can we be sure it will always give the correct answer?

○ Our other methods were exhaustive, they examined every
possibility

○ This method considers only a subset of solutions, picks the best
one in a greedy fashion

○ What if there had been ties amoung the candidate motifs?
○ What if the consensus score (87% matches) had been lower
○ Would we, should we, be satisfied?

● It's one thing to be greedy, and another to be both greedy and biased
○ Our method is greedy in that it considers only the best contained

motif, greedy methods are subject to falling into local minimums
○ Since consider only subsequences as motifs we introduce bias

● Note that Consensus can generate motifs not seen in our data

20

Comp 555 - Fall 2020

A randomized approach to motif finding
● One way to avoid bias and local minima is to introduce randomness
● We can generate candidate motifs from our data by treating it as

distribution
○ Likely motif candidates from this distribution are those generated

by Consensus
○ Consensus strings can be tested by Scan-and-Score and their

alignments lead to new consensus strings
○ Eventually, we should converge to some local minimal answer

● To avoid finding a local minimum, we try several random starts, and
search for the best score amongst all these starts.

● A randomized algorithm does not guarantee an optimal solution. Instead
it promises a good/plausible answer on average, and it is not susceptible
to a worse-case data sets as our greedy/biased method was.

21

Comp 555 - Fall 2020

A Randomized Motif Search

22

Comp 555 - Fall 2020

Let’s try it

Randomized algorithms need to be run multiple times to insure a stable solution

23

Comp 555 - Fall 2020

Lessons Learned
● We can find Motifs in our lifetime

○ Practical exhaustive search algorithm for small k, MedianStringMotifSearch()
○ Practical fast algorthim RandomizedMotifSearch(DNA,k)

● Three algorithm design approaches "Branch-and-Bound", "Greedy", and "Randomized"
● Reversing the objective, pretending that you know the answer, and validating it
● The power of randomness

○ Not susceptable to worse case data
○ Avoids local minimums that plague some greedy algorithms

24

