Comp 555 - BioAlgorithms - Spring 2020

PROBLEM SET \#I
15 ON-LINE AND
DUE ON 2N12020

Finding Hidden Patterns in DNA

Initiating Transcription

- As a precursor to transcription (the reading of DNA to construct RNAs, that eventually leading to protein synthesis) special proteins bind to the DNA, and separate it to enable its reading.
- How do these proteins know where the coding genes are in order to bind?
- Genes are relatively rare
- $O(1,000,000,000)$ bases/genome
- O(10000) genes/genome
- $\mathbf{O}(1000)$ bases/gene
- Approximately 1% of DNA codes for genes $\left(10^{3} 10^{4} / 10^{9}\right)$

Regulatory Regions

- RNA polymerases seek out regulatory or promoting regions located 100-1000 bp upstream from the coding region
- They work in conjunction with special proteins called transcription factors (TFs) whose presence enables gene expression
- Within these regions are the Transcription Factor Binding Sites (TFBS), special DNA sequence patterns known as motifs that are specific to a given transcription factor
- A Single TF can influence the expression of many genes. Through biological experiments one can infer, at least a subset of these affected genes.

Transcription Factor Binding Sites 9

- A TFBS can be located anywhere within the regulatory region.
- TFBS may vary slightly across different regulatory regions since non-essential bases could mutate
- Transcription factors are robust (they will still bind) in the presence of small sequence differences by a few bases

Identifying Motifs: Complications

- We don't know the motif sequence for every TF
- We don't know where it is located relative to a gene's start
- Moreover, motifs can differ slightly from one gene to the next
- We only know that it occurs somewhere near genes that share a TF
- How to discern a Motif's frequent similar pattern from random patterns?
- How is this problem different that finding frequent k-mers from Lecture 2?

Let's look for an Easy Motif

1 tagtggtcttttgagtgtagatccgaagggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat
2 cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagttagatccgaaactggagtttaatcggagtcctt
3 gttacttgtgagcctggttagatccgaaatataattgttggctgcatagcggagctgacatacgagtaggggaaatgcgt
4 aacatcaggctttgattaaacaatttaagcacgtagatccgaattgacctgatgacaatacggaacatgccggctccggg
5 accaccggataggctgcttattagatccgaaaggtagtatcgtaataatggctcagccatgtcaatgtgcggcattccac
6 tagatccgaatcgatcgtgtttctccctctgtgggttaacgaggggtccgaccttgctcgcatgtgccgaacttgtaccc
7 gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgtagatccgaacgtctctggaggggtcgtgcgcta
8 atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactgtgtagatccgaa
9 ttcttacacccttctttagatccgaacctgttggcgccatcttcttttcgagtccttgtacctccatttgctctgatgac
10 ctacctatgtaaaacaacatctactaacgtagtccggtctttcctgatctgccctaacctacaggtagatccgaaattcg

Problem: Given \mathbf{M} sequences of length \mathbf{N} find any k-mer that appears in each sequence.

How would you go about finding a 10-mer that appears in every one of these 10 strings?

Sneak Peek at the Answer

1 tagtggtcttttgagtgTAGATCCGAAgggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat
2 cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagtTAGATCCGAAactggagtttaatcggagtcctt
3 gttacttgtgagcctggtTAGATCCGAAatataattgttggctgcatagcggagctgacatacgagtaggggaaatgcgt
4 aacatcaggctttgattaaacaatttaagcacgTAGATCCGAAttgacctgatgacaatacggaacatgccggctccggg
5 accaccggataggctgcttatTAGATCCGAAaggtagtatcgtaataatggctcagccatgtcaatgtgcggcattccac
6 TAGATCCGAAtcgatcgtgtttctccctctgtgggttaacgaggggtccgaccttgctcgcatgtgccgaacttgtaccc
7 gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgTAGATCCGAAcgtctctggaggggtcgtgcgcta
8 atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactgtgTAGATCCGAA
9 ttcttacacccttcttTAGATCCGAAcctgttggcgccatcttcttttcgagtccttgtacctccatttgctctgatgac
10 ctacctatgtaaaacaacatctactaacgtagtccggtctttcctgatctgccctaacctacaggTAGATCCGAAattcg

Now that you've seen the answer, how would you find it?

Meet Mr Brute Force

- He's often the best starting point when approaching a problem
- He'll also serve as a straw-man when designing new approaches
- Though he's seldom elegant, he gets the job done
- Often, we can't afford to wait for him

For our current problem a brute force solution would consider every k-mer position in all strings and see if they match. Given M sequences of length N, there are:

$$
(N-k+1)^{M}
$$

position combinations to consider.
How do you write M nested loops when M is a variable?

A Library of Helper Functions

- There's a tendancy to approach this problem with a series of nested for-loops, while the approach is valid, it doesn't generalize. It assumes a specific number of sequences.
- What we need is an iterator that generates all permutations of a sequence.
- This nested-for-loop iterator is called a Cartesian Product over sets.
- Python has a library to accomplish this

Using itertools

itertools: 3 loops over 2 things
In [4]:

```
import itertools
for number in itertools.product(range(2), repeat=3):
    print(number, sum(2**(len(number)-i-1)*bit for i, bit in enumerate(number)))
```

(0, 0, 0) 0
(0, 0, 1) 1
$(0,1,0) 2$
(0, 1, 1) 3
$(1,0,0) 4$
$(1,0,1) 5$
$(1,1,0) 6$
$(1,1,1) 7$
itertools: 2 loops over 3 things
In [4]: 1 for number in itertools.product(range(3), repeat=2): print(number)
$\left.\begin{array}{l}(0,0) \\ (0,1) \\ (0, \\ (1, \\ (1,\end{array}\right)$

Permutations of mixed types

In [14]: for section in itertools.product(("I", "II", "III", "IV"),"ABC", range(1, 3)): print(section)
('I', 'A', 1)
('I', 'A', 2)
('I', 'B', 1)
('I', 'B', 2)
('I', 'C', 1)
('I', 'C', 2)
('II', 'A', 1)
('II', 'A', 2)
('II', 'B', 1)
('II', 'B', 2)
('II', 'C', 1)
('II', 'C', 2)
('III', 'A', 1)
('III', 'A', 2)
('III', 'B', 1)
('III', 'B', 2)
('III', 'C', 1)
('III', 'C', 2)
('IV', 'A', 1)
('IV', 'A', 2)
('IV', 'B', 1)
('IV', 'B', 2)
('IV', 'C', 1)
('IV', 'C', 2)

Bruteforce Exact Search

```
In [15]: sequences = [
    'tagtggtcttttgagtgtagatccgaagggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat',
    cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagttagatccgaaactggagtttaatcggagtcctt',
    'gttacttgtgagcctggttagatccgaaatataattgttggctgcatagcggagctgacatacgagtaggggaaatgcgt',
    'aacatcaggctttgattaaacaatttaagcacgtagatccgaattgacctgatgacaatacggaacatgccggctccggg',
    'accaccggataggctgcttattagatccgaaaggtagtatcgtaataatggctcagccatgtcaatgtgcggcattccac',
    'tagatccgaatcgatcgtgtttctccctctgtgggttaacgaggggtccgaccttgctcgcatgtgccgaacttgtaccc',
    'gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgtagatccgaacgtctctggaggggtcgtgcgcta',
    'atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactgtgtagatccgaa',
    'ttcttacacccttctttagatccgaacctgttggcgccatcttcttttcgagtccttgtacctccatttgctctgatgac',
    'ctacctatgtaaaacaacatctactaacgtagtccggtctttcctgatctgccctaacctacaggtagatccgaaattcg']
def bruteForce(dna,k):
    """Finds a *k*-mer common to all sequences from a
        list of *dna* fragments with the same length"""
    M = len(dna) # how many sequences
    N = len(dna[0]) # length of sequences
    for offset in itertools.product(range(N-k+1), repeat=M):
        for i in range(1,len(offset)):
            if dna[0][offset[0]:offset[0]+k] != dna[i][offset[i]:offset[i]+k]:
                break
        else:
            return offset, dna[0][offset[0]:offset[0]+10]
```


Now let’s Test and Time it

```
In [16]: M = 4
position, motif = bruteForce(sequences[0:M], 10)
print(position, motif, '\n')
for i in range(M):
    p = position[i]
    print(sequences[i][:p]+sequences[i][p:p+10].upper()+sequences[i][p+10:])
print()
%timeit bruteForce(sequences[0:M], 10)
# you can try a larger value of M, but be prepared to wait
```

(17, 47, 18, 33) tagatccgaa
tagtggtcttttgagtgTAGATCCGAAgggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagtTAGATCCGAAactggagtttaatcggagtcctt gttacttgtgagcctggtTAGATCCGAAatataattgttggctgcatagcggagctgacatacgagtaggggaaatgcgt aacatcaggctttgattaaacaatttaagcacgTAGATCCGAAttgacctgatgacaatacggaacatgccggctccggg

```
6.25 s \pm 143 ms per loop (mean \pm std. dev. of 7 runs, 1 loop each)
```


Approximate Matching

Now let's consider a more realistic motif finding problem, where the binding sites do not need to match exactly.

1 tagtggtcttttgagtgTAGATCTGAAgggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat
2 cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagtTGGATCCGAAactggagtttaatcggagtcctt
3 gttacttgtgagcctggtTAGACCCGAAatataattgttggctgcatagcggagctgacatacgagtaggggaaatgcgt
4 aacatcaggctttgattaaacaatttaagcacgTAAATCCGAAttgacctgatgacaatacggaacatgccggctccggg
5 accaccggataggctgcttatTAGGTCCAAAaggtagtatcgtaataatggctcagccatgtcaatgtgcggcattccac
6 TAGATTCGAAtcgatcgtgtttctccctctgtgggttaacgaggggtccgaccttgctcgcatgtgccgaacttgtaccc
7 gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgCAGATCCGAAcgtctctggaggggtcgtgcgcta
8 atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactgtgTAGATCCGTA
9 ttcttacacccttcttTAGATCCAAAcctgttggcgccatcttcttttcgagtccttgtacctccatttgctctgatgac
10 ctacctatgtaaaacaacatctactaacgtagtccggtctttcctgatctgccctaacctacaggTCGATCCGAAattcg

Actually, none of the sequences have an unmodified copy of the original motif

Profile and Consensus

How to find approximate string matches?

- Align candidate motifs by their start indexes

$$
s=\left(s_{1}, s_{2}, \ldots, s_{t}\right)
$$

Alignment
a G g t a c T t C C A t a c gt
a c g t T A g t
a c gt C c At
Ccgtacg

A 30103110
Profile
C 24001400
G 014400031
T 00051014
Consensus

ACGTACGT

Consensus

- One can think of the consensus as an ancestor motif, from which mutated motifs emerged
- The distance between an actual motif and the consensus sequence is generally less than that for any two actual motifs
- Hamming distance is number of positions that differ between two strings

Consensus Properties

- A consensus string has a minimal hamming distance to all its source strings

Scoring Motifs

- Given $s=\left(s_{1}, s_{2}, \ldots, s_{t}\right)$ and DNA

$$
\operatorname{Score}(s, D N A)=\sum_{i=1}^{k} \max _{j \in A, C, G, T} \operatorname{count}(j, i)
$$

- So our approach is back to brute force
- We consider every candidate motif in every string
- Return the set of indices with the highest score

A	3	0	1	0	3	1	1	0
C	2	4	0	0	1	4	0	0
G	0	1	4	0	0	0	3	1
T	0	0	0	5	1	0	1	4

Let's try again allowing for errors

```
In [17]: def Score(s, DNA, k):
    """
        compute the consensus SCORE of a given k-mer alignment given
        offsets into each DNA string. s = list of starting indices.
        DNA = list of nucleotide strings. k = Target Motif length
    ""
    score = 0
    for i in range(k):
        # loop over string positions
        cnt = dict(zip("acgt",(0,0,0,0)))
        for j, sval in enumerate(s):
            base = DNA[j][sval+i]
            cnt[base] += 1
        score += max(cnt.values())
    return score
def BruteForceMotifSearch(dna,k):
    M = len(dna) # how many sequences
    N = len(dna[0]) # length of sequences
    bestScore = 0
    bestAlignment = []
    for offset in itertools.product(range(N-k+1), repeat=M):
        s = Score(offset,dna,k)
        if (s > bestScore):
            bestAlignment = [p for p in offset]
            bestScore = s
    print(bestAlignment, bestScore)
```


Test and time this one

In [13]: seqApprox $=$ [
'tagtggtcttttgagtgtagatctgaagggaaagtatttccaccagttcggggtcacccagcagggcagggtgacttaat', 'cgcgactcggcgctcacagttatcgcacgtttagaccaaaacggagttggatccgaaactggagtttaatcggagtcctt', 'gttacttgtgagcctggttagacccgaaatataattgttggctgcatagcggagctgacatacgagtaggggaaatgcgt', 'aacatcaggctttgattaaacaatttaagcacgtaaatccgaattgacctgatgacaatacggaacatgccggctccggg', 'accaccggataggctgcttattaggtccaaaaggtagtatcgtaataatggctcagccatgtcaatgtgcggcattccac', 'tagattcgaatcgatcgtgtttctccctctgtgggttaacgaggggtccgaccttgctcgcatgtgccgaacttgtaccc', 'gaaatggttcggtgcgatatcaggccgttctcttaacttggcggtgcagatccgaacgtctctggaggggtcgtgcgcta', 'atgtatactagacattctaacgctcgcttattggcggagaccatttgctccactacaagaggctactgtgtagatccgta', 'ttcttacacccttctttagatccaaacctgttggcgccatcttcttttcgagtccttgtacctccatttgctctgatgac', 'ctacctatgtaaaacaacatctactaacgtagtccggtctttcctgatctgccctaacctacaggtcgatccgaaattcg']
\%timeit Score([17, 47, 18, 33, 21, 0, 46, 70, 16, 65], seqApprox, 10)
\%time BruteForceMotifSearch(seqApprox[0:4], 10)
$47.4 \mu \mathrm{~s} \pm 5.52 \mu \mathrm{~s}$ per loop (mean \pm std. dev. of 7 runs, 10000 loops each)
[17, 47, 18, 33] 36
CPU times: user 12min 57s, sys: 50.2 ms , total: 12min 57s
Wall time: 12min 57s

Running Time of BruteForceMotifSearch

- Search ($N-k+1$) positions in each of M sequences, by examining $(N-k+1)^{M}$ sets of starting positions
- For each set of starting positions, the scoring function makes $O(M k)$ operations, so the complexity is:

$$
M k(N-k+1)^{M}=O\left(M k N^{M}\right)
$$

- That means that for $M=10, N=80, k=10$ we must perform approximately 10^{21} computations
- Generously assuming $10^{9} \mathrm{comps} / \mathrm{sec}$ it will require only 10^{12} secs

$$
\frac{10^{12}}{(60 \times 60 \times 24 \times 365)}>30000 \text { years }
$$

- Want to wait?

How conservative is this estimate?

- For the example we just did $M=4, N=80, k=10$
- So that gives $\approx 4.0 \times 10^{9}$ operations
- Using our 10^{9} operations per second estimate, it should have taken only 4 secs.
- Instead it took closer to 700 secs, which suggests we are getting around 5.85 million operations per second.
- So, in reality it will even take longer!

How can we find Motifs in our lifetime?

- Should we give up on Python and write in C? Assembly Language?
- Will biological insights save us this time?
- Are there other ways to find Motifs?
- Consider that if you knew what motif you were looking for, it would take only

$$
k(N-k+1) M=O(k N M)
$$

to find its indices in each string.

- Is that significantly better?

