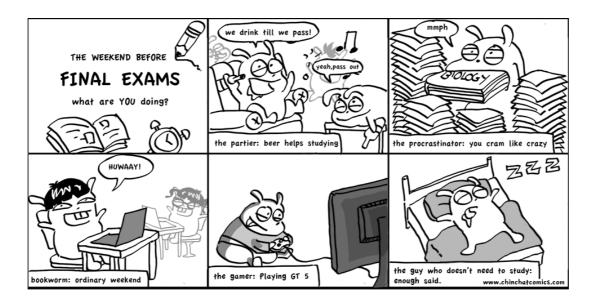
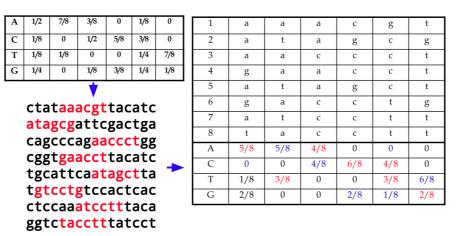
Randomized Algorithms



Motif finding using a Profile

- Profile is generated by *some* consensus
- Use to find the best match of motif in each sequence
- These matches suggest a new consensus



Reds are probabilities that increase, and Blues decrease.

```
import random

def GreedyProfileMotifSearch(DNA, k):
    s = [-1 for i in xrange(len(DNA))]
    newS = [random.randint(0,len(DNA[i])-k) for i in xrange(len(DNA))]
    while newS != s:
        s = [i for i i n newS]
        P = Profile(DNA, s, k)
        newS = Score(DNA, P)
    return newS
```

3

Profile Code

```
def Profile(DNA, offset, k):
    profile = []
    t = len(DNA)
    for i in xrange(k):
        counts = {base : 0.01 for base in "ACGT"}
        for j in xrange(t):
            counts[DNA[j][offset[j]+i]] += 0.96 / t
        profile.append(counts)
    return profile
```

4

Score Code

Example Profile for [0,0,0,0,0,0,0,0]

DNA = ["CTATAAACGTTACATC", "ATAGCGATTCGACTGA", "CAGCCCAGAACCCTGG", "CGGTGAACCTTACATC", "TGCATTCAATAGCTTA", "TGTCCTGTCCACTCAC", "CTCCAAATCCTTTACA", "GGTCTACCTTTATCCT"]

{'A': 0.13, 'C': 0.49, 'T': 0.25, 'G': 0.13}, {'A': 0.13, 'C': 0.01, 'T': 0.37, 'G': 0.49}, {'A': 0.25, 'C': 0.25, 'T': 0.25, 'G': 0.25}, {'A': 0.13, 'C': 0.49, 'T': 0.25, 'G': 0.13}, {'A': 0.25, 'C': 0.37, 'T': 0.25, 'G': 0.13}, {'A': 0.49, 'C': 0.13, 'T': 0.25, 'G': 0.13}

Testing GreedyProfileMotifSearch

Try running it a few times

```
DNA = ["CTATAAACGTTACATC",
"ATAGCGATTCGACTGA",
"CAGCCCAGAACCCTGG",
"CGGTGAACCTTACATC",
"TGCATTCAATAGCTTA",
"TGTCCTGTCCACTCAC",
"CTCCAAATCCTTTACA",
"GGTCTACCTTTATCCT"]
```

```
k = 6
```

```
offsets = GreedyProfileMotifSearch(DNA, k)
```

```
P = Profile(DNA, offsets, k)
print offsets
print ''.join([b for p, b in [max([(v, b) for b, v in row.iteritems()]) for row in P]]),
print reduce(mul, [p for p, b in [max([(v, b) for b, v in row.iteritems()]) for row in P]], 1.0)
for i, j in enumerate(offsets):
    print DNA[i][:j].lower()+DNA[i][j:j+k]+DNA[i][j+k:].lower()
```

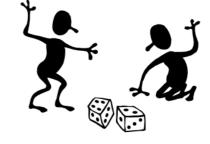
[1, 6, 3, 10, 4, 7, 1, 8]

TTCAAA 0.025390493905

CIAIAAAcgttacatc	
atagcgATTCGActga	7
cagCCCAGAaccctgg	,
cggtgaacctTACATC	
tgcaTTCAATagctta	
tgtcctgTCCACTcac	
cTCCAAAtcctttaca	
ggtctaccTTTATCct	

GreedyProfileMotifSearch() Analysis

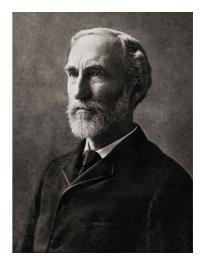
- Since we choose starting positions randomly, there is little chance that our guess will be close to an optimal motif, meaning it will take a very long time to find the optimal motif.
- It is unlikely that the random starting positions will lead us to the correct solution at all.



• In practice, such an algorithm would be run many times with the hope that *some* random starting positions will be close to the optimum solution simply by chance.

Gibbs Sampling

- GreedyProfileMotifSearch is probably not the best way to find motifs.
- However, we can improve the algorithm by introducing Gibbs Sampling, an iterative procedure that discards one k-mer after each iteration and replaces it with a totally new one.
- Gibbs Sampling proceeds more slowly and chooses new kmers at random increasing the odds that it will converge to the correct solution.



Josiah W Gibbs

How Gibbs Sampling Works

- 1. Randomly choose starting positions $\overline{s} = (s_1, \ldots, s_t)$ and form the set of k-mers associated with these starting positions.
- 2. Randomly choose one of the t sequences.
- 3. Create a profile P from the other t -1 sequences.
- 4. For each position in the removed sequence, calculate the probability that the k-mer starting at that position was generated by P.
- 5. Choose a new starting position for the removed sequence at random based on the probabilities calculated in step 4.
- 6. Repeat steps 2-5 until there is no improvement

Input: t = 5 sequences, motif length, l = 8

- 1. GTAAACAATATTTATAGC
- 2. AAAATTTACCTCGCAAGG
- 3. CCGTACTGTCAAGCGTGG
- 4. TGAGTAAACGACGTCCCA
- 5. TACTTAACACCCTGTCAA

1) Randomly choose starting positions, $\overline{s} = (s_1, s_2, s_3, s_4, s_5)$ in the 5 sequences:

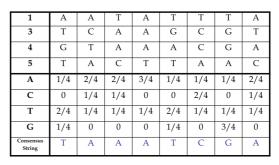
- s₁=6 GTAAACAATATTTATAGC
- s₂=10 AAAATTTACCTTAGAAGG
- s₃=8 CCGTACTGTCAAGCGTGG
- s₄=3 TGAGTAAACGACGTCCCA
- s₅=0 **TACTTAAC**ACCCTGTCAA

2) Choose one of the sequences at random: ex. Sequence 2

- s₁=6 GTAAACAATATTTATAGC
- s₂=10 AAAATTTACCTTAGAAGG
- s₃=8 CCGTACTGTCAAGCGTGG
- s₄=3 TGA<mark>GTAAACGA</mark>CGTCCCA
- s₅=0 TACTTAACACCCTGTCAA

3) Remove it and create a profile from the remaining sequences

s ₁ =6	GTAAACAATATTTATAGC		
s ₃ =8	CCGTACTGTCAAGCGTGG		
s ₄ =3	TGA <mark>GTAAACGA</mark> CGTCCCA		
s5=0	TACTTAAC ACCCTGTCAA		



Profile Matrix for sequences 1,3,4, and 5

14

4) Calculate the *prob*(*a*|*P*) for every possible k-mer in the removed sequence:

k-mer highligted in red	р
AAAATTTACCTTAGAAGG	.000732
AAAATTTACCTTAGAAGG	.000122
AAAATTTACCTTAGAAGG	0
AAAATTTACCTTAGAAGG	.000183
AAAATTTA <mark>CCTTAGAA</mark> GG	0
AAAATTTACCTTAGAAGG	0
AAAATTTACCTTAGAAGG	0

1	Α	А	Т	A	Т	Т	Т	Α
3	Т	С	А	А	G	С	G	Т
4	G	Т	А	Α	A	С	G	Α
5	Т	А	С	Т	Т	А	А	С
Α	1/4	2/4	2/4	3/4	1/4	1/4	1/4	2/4
С	0	1/4	1/4	0	0	2/4	0	1/4
Т	2/4	1/4	1/4	1/4	2/4	1/4	1/4	1/4
G	1/4	0	0	0	1/4	0	3/4	0
Consensus String	Т	А	А	Α	Т	С	G	А

Profile Matrix for sequences 1,3,4, and 5

15

5) Create a distribution of probabilities of k-mers prob(a|P), and randomly select a new starting position based on this distribution.

To create this distribution, divide each probability prob(a|P) by the total of all probabilities:

- Starting Position 1: prob(AAAATTTA|P) = .000732/(.000732 + .000122 + .000183) = .706
- Starting Position 2: prob(AAATTTAC|P) = .000122/(.000732 + .000122 + .000183) = .118
- Starting Position 8: prob(ACCTTAGA|P) = .000183/(.000732 + .000122 + .000183) = .176

import random def sample(cdf): t = random.random() for i in xrange(len(cdf)): if (t < cdf[i]): break return i p = [0.000732, 0.000122, 0.0, 0.0, 0.0, 0.0, 0.0, 0.000183, 0.0, 0.0, 0.0] pdf = [v/sum(p) for v in p]</pre>

cdf = [sum(pdf[:i]) for i in xrange(1,len(pdf))]

Assume we select the substring with the highest probability – then we are left with the following new substrings and starting positions.

- s₁=6 GTAAACAATATTTATAGC
- s₂=0 AAAATTTACCTTAGAAGG
- s₃=8 CCGTACTGTCAAGCGTGG
- s₄=3 TGAGTAAACGACGTCCCA
- s₅=0 TACTTAACACCCTGTCAA

6) We then repeat the procedure with the above starting positions until we cannot improve the score any more.

Gibbs Sampler in Practice

- Gibbs sampling needs to be modified when applied to samples with biased distributions of nucleotides (relative entropy approach).
- Gibbs sampling often converges to a locally optimal motif rather than to the globally optimal motif.
- Should be run with many randomly chosen seeds to achieve good results.

Another Randomized Approach

- A *Random Projection Algorithm* is a different way to solve the Motif Finding Problem.
- Guiding principle: Instances of a motif agree at a subset of positions.
- However, it is unclear how to find these "non-mutated" positions.
- To bypass the effect of mutations within a motif, we randomly select a subset of positions in the pattern creating a projection of the pattern.
- Search for that projection in a hope that the selected positions are not affected by mutations in most instances of the motif.

Projections

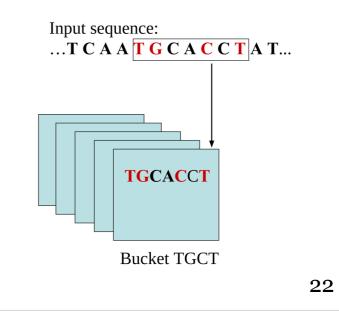
- Choose k positions in string of length l.
- Concatenate nucleotides at chosen k positions to form k-tuple.
- This can be viewed as a projection of l-dimensional space onto k-dimensional subspace.

Projection = (1, 3, 4, 6, 10, 11, 12)

aTgGCaTtcaGATtc \rightarrow TGCTGAT

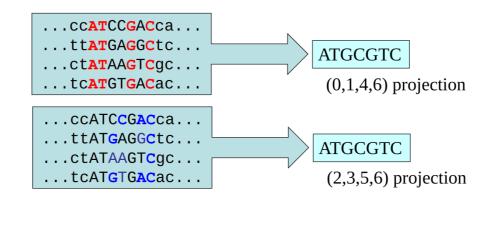
Random Projections Algorithm

- Select k out of l positions uniformly at random.
- For each l-tuple in input sequences, hash into buckets based on the k selected positions.
- Recover motif from enriched buckets that contain many l-tuples with at least one from each sequence.



Random Projections Algorithm finer points

- Some projections will fail to detect motifs but if we try many of them the probability that one of the buckets fills increases.
- In the example below, the bucket --GC-AC is "bad" while the bucket AT--G-C is "good"



Combining Random Projection and Gibbs Sampling

- Random Projection is a procedure for finding good starting points: every enriched bucket is a potential starting point.
- Feeding these starting points into existing algorithms (like Gibbs sampler) provides good local search in vicinity of every starting point.
- These algorithms work particularly well for "good" starting points.

It's over

- Final Next Friday, 5/4
- 8:00am 11:00am
- This room: SN011

Open book, open notes, Will covers material since midterm

Study session? Monday Night?

