
Randomized Algorithms

1

Motif finding using a Profile

Profile is generated by some consensus

Use to find the best match of motif in each sequence

These matches suggest a new consensus

Reds are probabilities that increase, and Blues decrease.

2

GreedyProfileMotifSearch Algorithm

import random

def GreedyProfileMotifSearch(DNA, k):
 s = [-1 for i in xrange(len(DNA))]
 newS = [random.randint(0,len(DNA[i])-k) for i in xrange(len(DNA))]
 while newS != s:
 s = [i for i in newS]
 P = Profile(DNA, s, k)
 newS = Score(DNA, P)
 return newS

3

Profile Code

def Profile(DNA, offset, k):
 profile = []
 t = len(DNA)
 for i in xrange(k):
 counts = {base : 0.01 for base in "ACGT"}
 for j in xrange(t):
 counts[DNA[j][offset[j]+i]] += 0.96 / t
 profile.append(counts)
 return profile

4

Score Code

from operator import mul

def Score(DNA, P):
 offset = []
 k = len(P)
 for j in xrange(len(DNA)):
 pBest, iBest = 0.0, -1
 for i in xrange(len(DNA[j])-k+1):
 p = reduce(mul, [P[l][DNA[j][i+l]] for l in xrange(k)], 1.0)
 if (p > pBest):
 pBest, iBest = p, i
 offset.append(iBest)
 return offset

5


First


Previous


Notebook


Next

Example Profile for [0,0,0,0,0,0,0,0]

DNA = ["CTATAAACGTTACATC",
 "ATAGCGATTCGACTGA",
 "CAGCCCAGAACCCTGG",
 "CGGTGAACCTTACATC",
 "TGCATTCAATAGCTTA",
 "TGTCCTGTCCACTCAC",
 "CTCCAAATCCTTTACA",
 "GGTCTACCTTTATCCT"]

{'A': 0.13, 'C': 0.49, 'T': 0.25, 'G': 0.13},
{'A': 0.13, 'C': 0.01, 'T': 0.37, 'G': 0.49},
{'A': 0.25, 'C': 0.25, 'T': 0.25, 'G': 0.25},
{'A': 0.13, 'C': 0.49, 'T': 0.25, 'G': 0.13},
{'A': 0.25, 'C': 0.37, 'T': 0.25, 'G': 0.13},
{'A': 0.49, 'C': 0.13, 'T': 0.25, 'G': 0.13}

6

Testing GreedyProfileMotifSearch

[1, 6, 3, 10, 4, 7, 1, 8]
TTCAAA 0.025390493905
cTATAAAcgttacatc
atagcgATTCGActga
cagCCCAGAaccctgg
cggtgaacctTACATC
tgcaTTCAATagctta
tgtcctgTCCACTcac
cTCCAAAtcctttaca
ggtctaccTTTATCct

Try running it a few times

DNA = ["CTATAAACGTTACATC",
 "ATAGCGATTCGACTGA",
 "CAGCCCAGAACCCTGG",
 "CGGTGAACCTTACATC",
 "TGCATTCAATAGCTTA",
 "TGTCCTGTCCACTCAC",
 "CTCCAAATCCTTTACA",
 "GGTCTACCTTTATCCT"]

k = 6
offsets = GreedyProfileMotifSearch(DNA, k)

P = Profile(DNA, offsets, k)
print offsets
print ''.join([b for p, b in [max([(v, b) for b, v in row.iteritems()]) for row in P]]),
print reduce(mul, [p for p, b in [max([(v, b) for b, v in row.iteritems()]) for row in P]], 1.0)
for i, j in enumerate(offsets):
 print DNA[i][:j].lower()+DNA[i][j:j+k]+DNA[i][j+k:].lower()

7

GreedyProfileMotifSearch() Analysis

Since we choose starting positions randomly, there is little

chance that our guess will be close to an optimal motif,

meaning it will take a very long time to find the optimal

motif.

It is unlikely that the random starting positions will lead

us to the correct solution at all.

In practice, such an algorithm would be run many times with the hope that some

random starting positions will be close to the optimum solution simply by chance.

8

Josiah W Gibbs

Gibbs Sampling

GreedyProfileMotifSearch is probably not the best way to

find motifs.

However, we can improve the algorithm by introducing

Gibbs Sampling, an iterative procedure that discards one

k-mer after each iteration and replaces it with a totally

new one.

Gibbs Sampling proceeds more slowly and chooses new k-

mers at random increasing the odds that it will converge to

the correct solution.

9

How Gibbs Sampling Works

1. Randomly choose starting positions and form the set of k-mers

associated with these starting positions.

2. Randomly choose one of the t sequences.

3. Create a profile P from the other t -1 sequences.

4. For each position in the removed sequence, calculate the probability that the k-mer

starting at that position was generated by P.

5. Choose a new starting position for the removed sequence at random based on the

probabilities calculated in step 4.

6. Repeat steps 2-5 until there is no improvement

10

= (, . . . ,)s
⎯⎯

s1 st

Gibbs Sampling: an Example

Input: t = 5 sequences, motif length, l = 8

 1. GTAAACAATATTTATAGC
 2. AAAATTTACCTCGCAAGG
 3. CCGTACTGTCAAGCGTGG
 4. TGAGTAAACGACGTCCCA
 5. TACTTAACACCCTGTCAA

11

Gibbs Sampling: an Example

1) Randomly choose starting positions, in the 5 sequences:

12

 s =6 GTAAACAATATTTATAGC
 s =10 AAAATTTACCTTAGAAGG
 s =8 CCGTACTGTCAAGCGTGG
 s =3 TGAGTAAACGACGTCCCA
 s =0 TACTTAACACCCTGTCAA

= (, , , ,)s
⎯⎯

s1 s2 s3 s4 s5

1

2

3

4

5

Gibbs Sampling: an Example

2) Choose one of the sequences at random: ex. Sequence 2

13

 s =6 GTAAACAATATTTATAGC
 s =10 AAAATTTACCTTAGAAGG
 s =8 CCGTACTGTCAAGCGTGG
 s =3 TGAGTAAACGACGTCCCA
 s =0 TACTTAACACCCTGTCAA

1

2

3

4

5

Profile Matrix for sequences 1,3,4, and 5

Gibbs Sampling: an Example

3) Remove it and create a profile from

the remaining sequences

14

 s =6 GTAAACAATATTTATAGC

 s =8 CCGTACTGTCAAGCGTGG
 s =3 TGAGTAAACGACGTCCCA
 s =0 TACTTAACACCCTGTCAA

1

3

4

5

Profile Matrix for sequences 1,3,4, and 5

Gibbs Sampling: an Example

4) Calculate the for every

possible k-mer in the removed sequence:

k-mer highligted in red p

AAAATTTACCTTAGAAGG .000732

AAAATTTACCTTAGAAGG .000122

AAAATTTACCTTAGAAGG 0

AAAATTTACCTTAGAAGG 0

AAAATTTACCTTAGAAGG 0

AAAATTTACCTTAGAAGG 0

AAAATTTACCTTAGAAGG 0

AAAATTTACCTTAGAAGG .000183

AAAATTTACCTTAGAAGG 0

AAAATTTACCTTAGAAGG 0

AAAATTTACCTTAGAAGG 0

15

prob(a|P)

Gibbs Sampling: an Example

5) Create a distribution of probabilities of k-mers , and randomly select a new

starting position based on this distribution.

To create this distribution, divide each probability by the total of all

probabilities:

Starting Position 1:

Starting Position 2:

Starting Position 8:

16

prob(a|P)

prob(a|P)

prob(AAAATTTA|P) = .000732/(.000732 + .000122 + .000183) = .706

prob(AAATTTAC|P) = .000122/(.000732 + .000122 + .000183) = .118

prob(ACCTTAGA|P) = .000183/(.000732 + .000122 + .000183) = .176

Gibbs Sampling: an Example

import random

def sample(cdf):
 t = random.random()
 for i in xrange(len(cdf)):
 if (t < cdf[i]):
 break
 return i

p = [0.000732, 0.000122, 0.0, 0.0, 0.0, 0.0, 0.0, 0.000183, 0.0, 0.0, 0.0]
pdf = [v/sum(p) for v in p]
cdf = [sum(pdf[:i]) for i in xrange(1,len(pdf))]

17


First


Next


Notebook


Previous

Gibbs Sampling: an Example

Assume we select the substring with the highest probability – then we are left with the

following new substrings and starting positions.

6) We then repeat the procedure with the above starting positions until we cannot

improve the score any more.

18

 s =6 GTAAACAATATTTATAGC
 s =0 AAAATTTACCTTAGAAGG
 s =8 CCGTACTGTCAAGCGTGG
 s =3 TGAGTAAACGACGTCCCA
 s =0 TACTTAACACCCTGTCAA

1

2

3

4

5

Gibbs Sampler in Practice

Gibbs sampling needs to be modified when applied to samples with biased

distributions of nucleotides (relative entropy approach).

Gibbs sampling often converges to a locally optimal motif rather than to the globally

optimal motif.

Should be run with many randomly chosen seeds to achieve good results.

19

Another Randomized Approach

A Random Projection Algorithm is a different way to solve the Motif Finding

Problem.

Guiding principle: Instances of a motif agree at a subset of positions.

However, it is unclear how to find these “non-mutated” positions.

To bypass the effect of mutations within a motif, we randomly select a subset of

positions in the pattern creating a projection of the pattern.

Search for that projection in a hope that the selected positions are not affected by

mutations in most instances of the motif.

20


First


Previous


Notebook


Next

Projections

Choose k positions in string of length l.

Concatenate nucleotides at chosen k positions to form k-tuple.

This can be viewed as a projection of l-dimensional space onto k-dimensional

subspace.

Projection = (1, 3, 4, 6, 10, 11, 12)

aTgGCaTtcaGATtc → TGCTGAT

21

Random Projections Algorithm

Select k out of l positions uniformly at random.

For each l-tuple in input sequences, hash into

buckets based on the k selected positions.

Recover motif from enriched buckets that contain

many l-tuples with at least one from each

sequence.

22

Random Projections Algorithm finer

points

Some projections will fail to detect motifs but if we try many of them the probability

that one of the buckets fills increases.

In the example below, the bucket --GC-AC is “bad” while the bucket AT--G-C is

“good”

23

Combining Random Projection and

Gibbs Sampling

Random Projection is a procedure for finding good starting points: every enriched

bucket is a potential starting point.

Feeding these starting points into existing algorithms (like Gibbs sampler) provides

good local search in vicinity of every starting point.

These algorithms work particularly well for “good” starting points.

24

It's over

Final Next Friday, 5/4

8:00am - 11:00am

This room: SN011

Open book, open notes,
Will covers material since midterm

Study session? Monday Night?

25

