
Randomized Algorithms

Problem Set #4 has been graded

Problem Set #5 by Thursday

1



Randomized Algorithms

Randomized algorithms incorporate random, rather than

deterministic, decisions

Commonly used in situations where no exact and/or fast algorithm

is known

Works for algorithms that behave well on typical data, but poorly in

special cases

Main advantage is that no input can reliably produce worst-case

results because the algorithm runs differently each time.

2



Select Algorithm

Select(L, k) finds the  smallest element in L

Select(L,1) find the smallest element in a list:

Well known  algorithm

      minv = HUGE 
      for v in L: 
          if (v < minv): 
              minv = v 

Select(L, len(L)/2) finds the median…

How?

median = sorted(L)[len(L)/2] → 

Can we find medians, or 1st quartiles in O(n)?

3

k th

O(n)

O(nlogn)



Recursive Select

Select(L, k) finds the  smallest element in L

Select an element m from unsorted list L and partition L into two smaller lists:

 - elements smaller than m 

 - elements larger than m 

if len( ) > k: 

    Select( , k) 

elif k > len( ) + 1: 

    Select( , k - len( ) - 1 ) 

else: 

    m is the  smallest element

4

k
th

Llo
Lhi

Llo
Llo
Llo

Lhi Llo

k th



Example of Select(L,5)

Given the array: 

Step 1: Choose the first element as m

Step 2: Split into two lists

5

L = {6, 3, 2, 8, 4, 5, 1, 7, 0, 9}

L = {6, 3, 2, 8, 4, 5, 1, 7, 0, 9}

Llo

Lhi

= {3, 2, 4, 5, 1, 0}

= {8, 7, 9}



Example of Select(L,5) (continued)

Step 3 Recurively call Select on either  or  until len( ) = k, then return m.

6

Llo Lhi Llo

len( ) > k = 5Llo

k = 5 > len( ) + 1Llo

k = 1 > len( ) + 1Llo

→

Select({3, 2, 4, 5, 1, 0}, 5)

m = 3 = {2, 1, 0} = {4, 5}Llo Lhi

→

Select({4, 5}, 5 − 3 − 1)

m = 4 = {} = {5}Llo Lhi

→

return 4



Select in Python

4 

def select(L, k):
    value = L[0]
    Llo = [t for t in L if t < value]
    Lhi = [t for t in L if t > value]
    below = len(Llo) + 1
    if (k < len(Llo)):
        return select(Llo, k)
    elif (k > below):
        return select(Lhi, k - below)
    else:
        return value
 
print select([6,3,2,8,4,5,1,7,0,9], 5)

7



Select(L,k) Performance

Runtime depends on our selection of m:

A good selection will split L evenly such that

The recurrence relation is:

which is the same as the seach for min(L) or max(L)

8

| | = | | =Llo Lhi

|L|

2

T(n) = T ( )
n

2

n + + + + +. . . = 2n → O(n)
n

2

n

4

n

8

n

16


First


Previous


Notebook


Next



Select(L,k) with bad splits

However, a poor selection will split L unevenly and in the worst case, all elements will be greater

or less than m so that one Sublist is full and the other is empty.

For a poor selection, the recurrence relation is:

In this case, the runtime is , which is worse than sorting first and selecting the  value

Our dimemma:  or  depending on the list... or  independent of it

9

T(n) = T(n − 1)

O( )n2 k th

O(n) O( )n2 O(n log n)



Select(L,k) verdict

Select seems risky compared to sort

To improve Select, we need to choose m to give good ‘splits’

It can be proven that to achieve  running time, we don’t need a perfect splits, just

reasonably good ones.

In fact, if both subarrays are at least of size , then running time will be .

This implies that half of the choices of m make good splitters.

10

O(n)

n/4 O(n)



A Randomized Approach

To improve Select(L,k), randomly select m.

Since half of the elements will be good splitters, if we choose m at random we will get a 50%

chance that m will be a good choice.

This approach will make sure that no matter what input is received, the expected running

time is small.

11



Randomized Select

5 
100 loops, best of 3: 1.97 ms per loop 

import random
 
def randomizedSelect(L, k):
    value = random.choice(L)
    Llo = [t for t in L if t < value]
    Lhi = [t for t in L if t > value]
    below = len(Llo) + 1
    if (k < len(Llo)):
        return randomizedSelect(Llo, k)
    elif (k > below):
        return randomizedSelect(Lhi, k-below)
    else:
        return value
 
print randomizedSelect([6,3,2,8,4,5,1,7,0,9], 5)
%timeit randomizedSelect(range(10000), 500)

12



RandomizedSelect(L,k) Performance

Worst case runtime: 

Expected runtime: 

Expected runtime is a good measure of the performance of randomized algorithms, often

more informative than worst case runtimes.

Worst case runtimes are rarely repeated

RandomizedSelect(L,k) always returns the correct answer, which offers a way to classify

Randomized Algorithms.

13

O( )n2

O(n)



Two Types of Randomized Algorithms

Las Vegas Algorithms – always produce the correct solution (i.e.

randomizedSelect)

Monte Carlo Algorithms – do not always return the correct solution.

Las Vegas Algorithms are always preferred, but they are often hard to

come by.

14


First


Next


Notebook


Previous



The Motif Finding Problem

Given a list of t sequences each of length n, find the “best” matching pattern of length l that

appears in each of the t sequences.

15



A New Approach

Motif Finding Problem: Given a list of t sequences each of length n, find the “best” pattern of

length l that appears in each of the t sequences.

Previously: we solved the Motif Finding Problem using a Branch and Bound or a Greedy

technique.

Now: Randomly select possible locations and find a way to greedily change those locations

until we converge to the hidden motif.

16


First


Previous


Next


Notebook



Profiles Revisited

Let  be the starting

positions for l-mers in our t sequences.

The substrings corresponding to these

starting positions will form:

 alignment matrix

 profile matrix

Normalized counts that they represent the

fraction of each base at each position

17

s = ( , , . . . , )s1 s2 st

t × l

4 × l



Scoring Strings with a Profile

Let k-mer, 

 is defined as the probability that an k-mer a was created by the Profile P.

If  is very similar to the consensus string of P then  will be high

If  is very different, then  will be low.

18

a = , , , . . .a1 a2 a3 ak
Prob(a|P)

a Prob(a|P)

a Prob(a|P)

Prob(a|P) = p( , i)∏
i=1

l

ai



Scoring with a Profile

Given the profile: 

base 1 2 3 4 5 6

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

The probability of the consequence string: 

The probability of a different string: 

19

P =

Prob(aaacct|P) = 1/2 × 7/8 × 3/8 × 5/8 × 3/8 × 7/8 = 0.033646

Prob(atacag|P) = 1/2 × 1/8 × 3/8 × 5/8 × 1/8 × 1/8 = 0.001602



P-Most Probable k-mer

Define the P-most probable k-mer from a sequence as a k-mer in that sequence which has the

highest probability of being created from the profile P.

base 1 2 3 4 5 6

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

Given a sequence = CTATAAACCTTACATC , find the P-most probable k-mer

Find the  of every possible 6-mer

           CTATAAACCTTACATC 
           CTATAAACCTTACATC 
           CTATAAACCTTACATC 
           CTATAAACCTTACATC 
           CTATAAACCTTACATC 
           CTATAAACCTTACATC 
           CTATAAACCTTACATC 
           CTATAAACCTTACATC 

20

Prob(a|P)



P-Most Probable k-mer

Compute  of every possible 6-mer

String highlighted in red Path Prob

CTATAAACCTTACATC 1/8×1/8×3/8×0×1/8×0 0

CTATAAACCTTACATC 1/2×7/8×0×0×1/8×0 0

CTATAAACCTTACATC 1/2×1/8×3/8×0×1/8×0 0

CTATAAACCTTACATC 1/8×7/8×3/8×0×3/8×0 0

CTATAAACCTTACATC 1/2×7/8×3/8×5/8×3/8×7/8 0.0336

CTATAAACCTTACATC 1/2×7/8×1/2×5/8×1/4×7/8 0.0299

CTATAAACCTTACATC 1/2×0×1/2×0×1/4×0 0

CTATAAACCTTACATC 1/8×0×0×0×1/8×0 0

CTATAAACCTTACATC 1/8×1/8×0×0×3/8×0 0

CTATAAACCTTACATC 1/8×1/8×3/8×5/8×1/8×7/8 0.0004

CTATAAACCTTACATC 1/8×7/8×1/2×0×1/4×0 0

AAACCT  is the P-most probable 6-mer

21

Prob(a|P)



Dealing with Zeros

In our toy example  in many cases. In practice, there will be enough sequences so

that the number of elements in the profile with a frequency of zero is small.

To avoid many entries with , there exist techniques to equate zero to a very small

number so that one zero does not make the entire probability of a string zero (assigning a

prior probability, we will not address these techniques here).

22

Prob(a|P)

Prob(a|P)



P-Most Probable k-mers in Many

Sequences

Find the P-most probable k-mer in each of the “t” sequences.

base 1 2 3 4 5 6

A 1/2 7/8 3/8 0 1/8 0

C 1/8 0 1/2 5/8 3/8 0

T 1/8 1/8 0 0 1/4 7/8

G 1/4 0 1/8 3/8 1/4 1/8

23


First


Previous


Notebook


Next



Next Time

A consensus of consensus

When does randomization show up?

24


First


Previous


Next


Notebook


