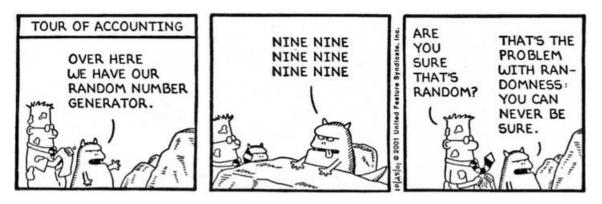
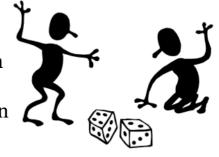
Randomized Algorithms



- Problem Set #4 has been graded
- Problem Set #5 by Thursday

Randomized Algorithms

- Randomized algorithms incorporate random, rather than deterministic, decisions
- Commonly used in situations where no exact and/or fast algorithm is known
- Works for algorithms that behave well on typical data, but poorly in special cases
- Main advantage is that no input can reliably produce worst-case results because the algorithm runs differently each time.



Select Algorithm

- *Select(L, k)* finds the *k*th smallest element in *L*
- *Select(L,1)* find the smallest element in a list:
 - Well known O(n) algorithm

```
minv = HUGE
for v in L:
    if (v < minv):
        minv = v</pre>
```

- *Select(L, len(L)/2)* finds the median...
 - How?
 - median = sorted(L)[len(L)/2] $\rightarrow O(nlogn)$
- Can we find medians, or 1st quartiles in O(n)?

Recursive Select

- *Select(L, k)* finds the *k*th smallest element in *L*
 - Select an element *m* from unsorted list *L* and partition *L* into two smaller lists:

```
\begin{array}{l} L_{lo} \ \text{-elements smaller than } m \\ L_{hi} \ \text{-elements larger than } m \\ \text{if len}(L_{lo}) > \text{k:} \\ \text{Select}(L_{lo}, \text{k}) \\ \text{elif } \text{k} > \text{len}(L_{lo}) + 1 \text{:} \\ \text{Select}(L_{hi}, \text{k} - \text{len}(L_{lo}) - 1) \\ \text{else:} \end{array}
```

m is the k^{th} smallest element

Example of *Select(L,5)*

Given the array: $L = \{6, 3, 2, 8, 4, 5, 1, 7, 0, 9\}$

• **Step 1:** Choose the first element as *m*

$$L = \{\mathbf{6}, 3, 2, 8, 4, 5, 1, 7, 0, 9\}$$

• **Step 2:** Split into two lists

 $L_{lo} = \{3, 2, 4, 5, 1, 0\}$ $L_{hi} = \{8, 7, 9\}$

Example of Select(L,5) (continued)

• **Step 3** Recurively call Select on either L_{lo} or L_{hi} until len $(L_{lo}) = k$, then return *m*.

$$len(L_{lo}) > k = 5 \rightarrow$$

$$Select(\{3, 2, 4, 5, 1, 0\}, 5)$$

$$m = 3 \qquad L_{lo} = \{2, 1, 0\} \qquad L_{hi} = \{4, 5\}$$

$$k = 5 > len(L_{lo}) + 1 \rightarrow$$

$$Select(\{4, 5\}, 5 - 3 - 1)$$

$$m = 4 \qquad L_{lo} = \{\} \qquad L_{hi} = \{5\}$$

$$k = 1 > len(L_{lo}) + 1 \rightarrow$$

$$return 4$$

\mathbf{U}

Select in Python

```
def select(L, k):
   value = L[0]
   Llo = [t for t in L if t < value]
   Lhi = [t for t in L if t > value]
   below = len(Llo) + 1
   if (k < len(Llo)):
      return select(Llo, k)
   elif (k > below):
      return select(Lhi, k - below)
   else:
      return value
```

```
print select([6,3,2,8,4,5,1,7,0,9], 5)
```

Select(L,k) Performance

Runtime depends on our selection of *m*:

• A *good* selection will split *L* evenly such that

$$|L_{lo}| = |L_{hi}| = \frac{|L|}{2}$$

• The recurrence relation is:

$$T(n) = T\left(\frac{n}{2}\right)$$

$$n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \frac{n}{16} + \ldots = 2n \to O(n)$$

• which is the same as the seach for *min(L)* or *max(L)*

Select(L,k) with bad splits

However, a poor selection will split *L* unevenly and in the worst case, all elements will be greater or less than *m* so that one Sublist is full and the other is empty.

• For a poor selection, the recurrence relation is:

$$T(n) = T(n-1)$$

• In this case, the runtime is $O(n^2)$, which is worse than sorting first and selecting the k^{th} value

Our dimemma: O(n) or $O(n^2)$ depending on the list... or $O(n \log n)$ independent of it

Select(L,k) verdict

- Select seems risky compared to sort
- To improve Select, we need to choose *m* to give good 'splits'
- It can be proven that to achieve O(n) running time, we don't need a perfect splits, just reasonably good ones.
- In fact, if both subarrays are at least of size n/4, then running time will be O(n).
- This implies that half of the choices of *m* make good splitters.

A Randomized Approach

- To improve *Select(L,k)*, randomly select *m*.
- Since half of the elements will be good splitters, if we choose *m* at random we will get a 50% chance that *m* will be a good choice.
- This approach will make sure that no matter what input is received, the expected running time is small.

Randomized Select

import random

```
def randomizedSelect(L, k):
    value = random.choice(L)
    Llo = [t for t in L if t < value]
    Lhi = [t for t in L if t > value]
    below = len(Llo) + 1
    if (k < len(Llo)):
        return randomizedSelect(Llo, k)
    elif (k > below):
        return randomizedSelect(Lhi, k-below)
    else:
        return value
```

```
print randomizedSelect([6,3,2,8,4,5,1,7,0,9], 5)
%timeit randomizedSelect(range(10000), 500)
```

5

100 loops, best of 3: 1.97 ms per loop

RandomizedSelect(L,k) Performance

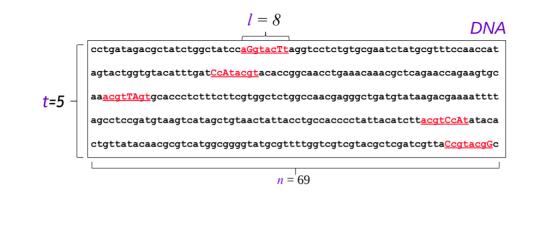
- Worst case runtime: $O(n^2)$
- Expected runtime: O(n)
- Expected runtime is a good measure of the performance of randomized algorithms, often more informative than worst case runtimes.
- Worst case runtimes are rarely repeated
- *RandomizedSelect(L,k)* always returns the correct answer, which offers a way to classify Randomized Algorithms.

Two Types of Randomized Algorithms

- *Las Vegas Algorithms* always produce the correct solution (i.e. randomizedSelect)
- *Monte Carlo Algorithms* do not always return the correct solution.
- Las Vegas Algorithms are always preferred, but they are often hard to come by.

The Motif Finding Problem

Given a list of *t* sequences each of length *n*, find the "best" matching pattern of length *I* that appears in each of the *t* sequences.

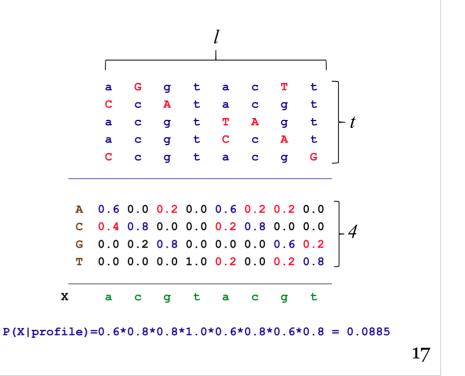


A New Approach

- *Motif Finding Problem:* Given a list of *t* sequences each of length *n*, find the "best" pattern of length *l* that appears in each of the *t* sequences.
- *Previously:* we solved the Motif Finding Problem using a Branch and Bound or a Greedy technique.
- *Now: Randomly* select possible locations and find a way to greedily change those locations until we converge to the hidden motif.

Profiles Revisited

- Let $s = (s_1, s_2, \dots, s_t)$ be the starting positions for *l*-mers in our *t* sequences.
- The substrings corresponding to these starting positions will form:
 - $t \times l$ alignment matrix
 - $4 \times l$ profile matrix
- Normalized counts that they represent the fraction of each base at each position



Scoring Strings with a Profile

- Let k-mer, $a = a_1, a_2, a_3, \dots a_k$
- *Prob*(*a*|*P*) is defined as the probability that an k-mer **a** was created by the Profile *P*.
- If a is very similar to the consensus string of P then Prob(a|P) will be high
- If a is very different, then Prob(a|P) will be low.

$$Prob(\boldsymbol{a}|P) = \prod_{i=1}^{l} p(a_i, i)$$

Scoring with a Profile

Given the profile: P =

base	1	2	3	4	5	6
Α	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

The probability of the consequence string: $Prob(aaacct|P) = 1/2 \times 7/8 \times 3/8 \times 5/8 \times 3/8 \times 7/8 = 0.033646$

The probability of a different string: $Prob(atacag|P) = 1/2 \times 1/8 \times 3/8 \times 5/8 \times 1/8 \times 1/8 = 0.001602$

P-Most Probable k-mer

• Define the **P**-most probable k-mer from a sequence as a k-mer in that sequence which has the highest probability of being created from the profile *P*.

base	1	2	3	4	5	6
Α	1/2	7/8	3/8	0	1/8	0
С	1/8	0	1/2	5/8	3/8	0
Т	1/8	1/8	0	0	1/4	7/8
G	1/4	0	1/8	3/8	1/4	1/8

Given a sequence = ctataaaccttacatc, find the P-most probable k-mer

Find the *Prob*(*a*|*P*) of every possible 6-mer

CTATAAACCTTACATC CTATAAACCTTACATC CTATAAACCTTACATC CTATAAACCTTACATC CTATAAACCTTACATC CTATAAACCTTACATC CTATAAACCTTACATC CTATAAACCTTACATC

P-Most Probable k-mer

Compute Prob(a|P) of every possible 6-mer

Path	String highlighted in red	Prob
1/8×1/8×3/8×0×1/8×0	CTATAAACCTTACATC	0
1/2×7/8×0×0×1/8×0	CTATAAA CCTTACATC	0
1/2×1/8×3/8×0×1/8×0	CTATAAACCTTACATC	0
1/8×7/8×3/8×0×3/8×0	CTATAAACCTTACATC	0
1/2×7/8×3/8×5/8×3/8×7/8	CTATAAACCTTACATC	0.0336
1/2×7/8×1/2×5/8×1/4×7/8	CTATAAACCTTACATC	0.0299
1/2×0×1/2×0×1/4×0	CTATAAACCTTACATC	0
1/8×0×0×0×1/8×0	CTATAAACCTTACATC	0
1/8×1/8×0×0×3/8×0	CTATAAACCTTACATC	0
1/8×1/8×3/8×5/8×1/8×7/8	CTATAAACCTTACATC	0.0004
1/8×7/8×1/2×0×1/4×0	CTATAAACCTTACATC	0

• AAACCT is the P-most probable 6-mer

Dealing with Zeros

- In our toy example *Prob*(*a*|*P*) in many cases. In practice, there will be enough sequences so that the number of elements in the profile with a frequency of zero is small.
- To avoid many entries with *Prob*(*a*|*P*), there exist techniques to equate zero to a very small number so that one zero does not make the entire probability of a string zero (assigning a *prior* probability, we will not address these techniques here).

P-Most Probable k-mers in Many Sequences

• Find the P-most probable k-mer in each of the "t" sequences.

base	1	2	3	4	5	6	
Α	1/2	7/8	3/8	0	1/8	0	
С	1/8	0	1/2	5/8	3/8	0	
Т	1/8	1/8	0	0	1/4	7/8	
G	1/4	0	1/8	3/8	1/4	1/8	

Next Time

- A consensus of consensus
- When does randomization show up?

ctat <mark>aaacgt</mark> tacatc	t	g	c	а	а	а	1
atagcgattcgactga	g	с с	g	a	t	a	2
	t	c	c	c	a	a	3
cagcccag <mark>aaccct</mark> gg	t	с	с	а	а	g	4
cggtgaaccttacatc	t	с	g	а	t	а	5
	g	t	С	с	а	g	6
tgcattca <mark>atagct</mark> ta	t	t	с	с	t	a	7
t <mark>gtcctg</mark> tccactcac	t 0	t 0	с 0	с 4/8	a 5/8	t 5/8	8 A
	0	4/8	6/8	4/8	0	0	C
ctccaa <mark>atcctt</mark> taca	6/8	3/8	0	0	3/8	1/8	Т
ggtc <mark>tacctt</mark> tatcct	2/8	1/8	2/8	0	0	2/8	G

