Randomized Algorithms

[Tour oF AccounTING

OVER HERE
WE HAVE OUR
RANDOM NUMBER

GENERATOR.
%)
\ ?% ; A

NINE NINE
NINE NINE
NINE NINE

Ie|as]z) © 2001 United Fasture Syndicats, Ine.

ARE

You

SURE
THAT'S
RANDOM?

o Problem Set #4 has been graded
« Problem Set #5 by Thursday

THAT'S THE
PROBLEM
WITH RAN-
DOMMNESS:
YOU CAN
NEVER BE

Randomized Algorithms

Randomized algorithms incorporate random, rather than
deterministic, decisions ‘
Commonly used in situations where no exact and/or fast algorithm
is known

Works for algorithms that behave well on typical data, but poorly in g
special cases ‘ﬁé
Main advantage is that no input can reliably produce worst-case

results because the algorithm runs differently each time.

))

Select Algorithm

Select(L, k) finds the k 'h smallest element in L

Select(L,1) find the smallest element in a list:
= Well known O(n) algorithm
minv = HUGE
for v in L:

if (v < minv):
minv = v

Select(L, len(L)/2) finds the median...
= How?
» median = sorted(L)[len(L)/2] - O(nlogn)

Can we find medians, or 1st quartiles in O(n)?

Recursive Select

« Select(L, k) finds the k" smallest element in L
» Select an element m from unsorted list L and partition L into two smaller lists:
L;, - elements smaller than m
L;; - elements larger than m
iflen(;,) > k:
Select(L;,, k)
elifk > len(l;,) + 1:
Select(L;;, k-len(l;,)-1)
else:

m is the k™" smallest element

Example of Select(L,5)

Given the array: L = {6,3,2,8,4,5,1,7,0,9}

« Step 1: Choose the first element as m

L=1{6,3,2,8,4,5,1,7,0,9}
« Step 2: Split into two lists
LlO — {39 2949 59 19 O}
Ly ={8,7,9}

Example of Select(L,5) (continued)

« Step 3 Recurively call Select on either L;, or L;; until len(L;,) = k, then return m.

len(Lj,) > k=5 —

Select({3,2,4,5,1,0},5)

m =73 L, =1{2,1,0} Ly = {4,5}
k=5>len(L;,)+1 —

Select({4,5},5—-3—-1)

m =4 L, = {} Ly = {5}
k=1>len(l,)+1 —

return 4

Select in Python

def select(L, k):
value = L[0O]
Llo = [t for t in L if t < value]
Lhi = [t for t in L if t > value]
below = len(Llo) + 1
if (k < len(Llo)):
return select(Llo, k)
elif (k > below):
return select(Lhi, k - below)
else:
return value

print select([6,3,2,8,4,5,1,7,0,9], 5)

4

Select(L,k) Performance

Runtime depends on our selection of m:

o A good selection will split L evenly such that

I
|L10| == |th| = 7
e The recurrence relation is:
n
Tn) =T (—)
(n) 5

n n n _n
n+ -+—+—+ —+...=2n - 0n)
2 4 8 16

« which is the same as the seach for min(L) or max(L)

h 4

Z
©
2}

Select(L,k) with bad splits

However, a poor selection will split L unevenly and in the worst case, all elements will be greater
or less than m so that one Sublist is full and the other is empty.

 For a poor selection, the recurrence relation is:
Tn)=Tmhn-1)
« In this case, the runtime is O(n2), which is worse than sorting first and selecting the k™ value

Our dimemma: O(n) or O(n?) depending on the list... or O(n log) independent of it

Select(L,k) verdict

Select seems risky compared to sort

To improve Select, we need to choose m to give good ‘splits’

It can be proven that to achieve O(#) running time, we don’t need a perfect splits, just
reasonably good ones.

In fact, if both subarrays are at least of size n/4, then running time will be O(n).

This implies that half of the choices of m make good splitters.

10

A Randomized Approach

o To improve Select(L,k), randomly select m.

« Since half of the elements will be good splitters, if we choose m at random we will get a 50%
chance that m will be a good choice.

 This approach will make sure that no matter what input is received, the expected running
time is small.

11

Randomized Select

import random

def randomizedSelect(L, k):

value = random.choice(L)
Llo = [t for t in L if t < value]
Lhi = [t for t in L if t > value]
below = len(Llo) + 1
if (k < len(Llo)):

return randomizedSelect(Llo, k)
elif (k > below):

return randomizedSelect(Lhi, k-below)
else:

return value

print randomizedSelect([6,3,2,8,4,5,1,7,0,9], 5)
%timeit randomizedSelect(range(10000), 500)

5
100 loops, best of 3: 1.97 ms per loop

12

RandomizedSelect(L,k) Performance

Worst case runtime: O(n?)

Expected runtime: O(n)

Expected runtime is a good measure of the performance of randomized algorithms, often
more informative than worst case runtimes.

Worst case runtimes are rarely repeated

RandomizedSelect(L,k) always returns the correct answer, which offers a way to classify
Randomized Algorithms.

13

Two Types of Randomized Algorithms

 Las Vegas Algorithms — always produce the correct solution (i.e.
randomizedSelect)
« Monte Carlo Algorithms — do not always return the correct solution.

» Las Vegas Algorithms are always preferred, but they are often hard to
come by.

4

Previous

The Motif Finding Problem

Given a list of t sequences each of length n, find the “best” matching pattern of length /that
appears in each of the t sequences.

1=8
T DNA

cctgatagacgctatctggctatccaGgtacTtaggtectectgtgegaatectatgegtttecaaccat

agtactggtgtacatttgatCcAtacgtacaccggcaacctgaaacaaacgctcagaaccagaagtge
t_5 _| |aaacgtTAgtgcaccctctttcttegtggectctggeccaacgagggectgatgtataagacgaaaatttt

agcctccgatgtaagtcatagctgtaactattacctgccacccctattacatcttacgtCcAtataca

ctgttatacaacgcgtcatggecggggtatgegttttggtegtecgtacgectegategttaCegtacgGe

| |
T
n==69

A New Approach

« Motif Finding Problem: Given a list of t sequences each of length n, find the “best” pattern of
length /that appears in each of the t sequences.

o Previously: we solved the Motif Finding Problem using a Branch and Bound or a Greedy
technique.

« Now: Randomly select possible locations and find a way to greedily change those locations
until we converge to the hidden motif.

16

Profiles Revisited

e Lets = (sq,52,...,5;) be the starting l
positions for /-mers in our ¢ sequences.
 The substrings corresponding to these

starting positions will form:
» ¢ X [alignment matrix
» 4 X [profile matrix

« Normalized counts that they represent the
fraction of each base at each position

Qe p Qe
o000
Q@ uQ Q paQ
o & &
PO AP
o0 P 00
Q P Q A
@ &

0.6 0.0 0.2 0.0 0.6 0.2 0.20.0
0.4 0.80.00.00.20.80.00.0
0.0 0.2 0.80.00.00.00.60.2
0.0 0.0 0.01.00.20.00.20.8

}t
}4

Ha Q Pp

X a c g t a c g t

P(X|profile)=0.6*0.8*0.8*1.0%0.6*0.8*0.6*0.8 = 0.0885

17

Scoring Strings with a Profile

Let k-mer,a = ay,a>, a3, ...ax

Prob(alP) is defined as the probability that an k-mer a was created by the Profile P.
If a is very similar to the consensus string of Pthen Prob(alP) will be high

If a is very different, then Prob(alP) will be low.

!
Prob(alP) = H p(a;, i)
i=1

18

Scoring with a Profile

Given the profile: P =

base 1 2 3 4 5 6

A 1/2 7/8 3/8 o 1/8 o
C 1/8 o 1/2 5/8 3/8 o
T 1/8 1/8 o o 1/4 7/8

G 1/4 o 1/8 3/8 1/4 1/8

The probability of the consequence string:

Prob(aaacctlP) = 1/2 X 7/8 X 3/8 X 5/8 x 3/8 x 7/8 = 0.033646

The probability of a different string:
Prob(atacaglP) = 1/2 x 1/8 X 3/8 X 5/8 x 1/8 x 1/8 = 0.001602

P-Most Probable k-mer

« Define the P-most probable k-mer from a sequence as a k-mer in that sequence which has the
highest probability of being created from the profile P.

Given a sequence = cratasacctTacatc , find the P-most probable k-mer

base

1

2 3

4

5

A

C
T
G

1/2
1/8
1/8

1/4

Find the Prob(alP) of every possible 6-mer

CTATAAACCTTACATC
CTATAAACCTTACATC
CTATAAACCTTACATC
CTATAAACCTTACATC
CTATAAACCTTACATC
CTATAAACCTTACATC
CTATAAACCTTACATC
CTATAAACCTTACATC

7/8 3/8
o 1/2
1/8 [
o 1/8

[0}

5/8

[0}

3/8

1/8
3/8
1/4
1/4

20

Compute Prob(alP) of every possible 6-mer

P-Most Probable k-mer

String highlighted in red Path Prob
CTATAAACCTTACATC 1/8x1/8x3/8x0x1/8%0 o
CTATAAACCTTACATC 1/2x7/8x0%x0%1/8%0 0
CTATAAACCTTACATC 1/2x1/8%x3/8%x0%x1/8%0 (o}
CTATAAACCTTACATC 1/8x7/8x3/8x0%3/8x0 o
CTATAAACCTTACATC 1/2x7/8x3/8x5/8x3/8x7/8 0.0336
CTATAAACCTTACATC 1/2x7/8x1/2x5/8%1/4x7/8 0.0299
CTATAAACCTTACATC 1/2X0x1/2X0%X1/4x0 o]
CTATAAACCTTACATC 1/8x0x0x0x1/8%x0 [¢]
CTATAAACCTTACATC 1/8x1/8x0x0%x3/8%0 o]
CTATAAACCTTACATC 1/8x1/8x3/8x5/8x1/8x7/8 0.0004
CTATAAACCTTACATC 1/8x7/8x1/2x0x1/4x0 0

o anaccT is the P-most probable 6-mer

21

Dealing with Zeros

« In our toy example Prob(alP) in many cases. In practice, there will be enough sequences so
that the number of elements in the profile with a frequency of zero is small.

« To avoid many entries with Prob(alP), there exist techniques to equate zero to a very small
number so that one zero does not make the entire probability of a string zero (assigning a
prior probability, we will not address these techniques here).

22

P-Most Probable k-mers in Many

 Find the P-most probable k-mer in each of the “t” sequences.

Sequences

base 1 2 3 4 5 6
A 1/2 7/8 3/8 o 1/8 0
C 1/8 o 1/2 5/8 3/8 o)
T 1/8 1/8 o o 1/4 7/8
G 1/4 o 1/8 3/8 1/4 1/8

ctataaacgttacatc
atagcgattcgactga
cagcccagaaccctgg
cggtgaaccttacatc
tgcattcaatagctta
tgtcctgteccactcac
ctccaaatcctttaca
ggtctacctttatcct

h 4

Z
]
>
~

23

« A consensus of consensus

o When does randomization show up?

Next Time

o

-

-+ -+ ~| O (g} (o] 0 [0)¢]

SN | 2|0 MO | @

a1

8

(==}

Ol | ~|Q| &~| &~ ~]|0Q

o

N
O; (=) BNe} 0 0| o9 0 0| a9 0

4/8

o

1/8

3/8

6/8

O 8 Of | o 9| oo | | W[N =

2/8

W a1
QI O N V| +| V| +| V]| V| e~ D
[e) (e}

[
Ol oI N n| v
|

2/8

1/8

2/8

ctataaacgttacatc
atagcgattcgactga
cagcccagaaccctgg
cggtgaaccttacatc
tgcattcaatagctta
tgtcctgtccactcac
ctccaaatcctttaca
ggtctacctttatcct

24

