
Genome Rearrangements - Continued

1

Lessons from last time

1. With each reversal, one can remove at most 2 breakpoints

2. If there is any decreasing strip there exists a reversal that will remove at least one breakpoint

3. If breakpoints remain and there is no decreasing strip one can be created by reserving any

remaining strip

An optimal algorithm would remove 2 breakpoints at every step. The last reversal always removes 2

breakpoints, thus if the number of breakpoints is odd, even the optimal algorithm must make at least

one reersal that removes only 1 breakpoint.

2

, | | , |0, 1, 2
⎯ →⎯⎯⎯⎯⎯

,5, 6, 7
⎯ →⎯⎯⎯⎯⎯

← ⎯⎯⎯⎯⎯⎯⎯⎯

3, 4
⎯ →⎯⎯

8, 9
⎯ →⎯⎯

, | , | , |0, 1, 2
⎯ →⎯⎯⎯⎯⎯

7, 6, 5
← ⎯⎯⎯⎯⎯⎯

3, 4
⎯ →⎯⎯

8, 9
⎯ →⎯⎯

, | , |0, 1, 2
⎯ →⎯⎯⎯⎯⎯

7, 6, 5, 4, 3
← ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

8, 9
⎯ →⎯⎯

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

b(p) = 3

b(p) = 3

b(p) = 2

b(p) = 0

ρ(3, 5)

ρ(6, 7)

ρ(3, 7)

Done!

An Improved Breakpoint Reversal Sort

ImprovedBreakpointReversalSort(π)

1. while b(π) > 0
2. if π has a decreasing strip
3. Among all possible reversals, choose reversal ρ that minimizes b(π • ρ)
4. else
5. Choose a reversal ρ that flips an increasing strip in π
6. π ← π • ρ
7. output π
8. return

3

Improved Breakpoint Reversal Sort in Python

Strips: [(1, 3), (3, 5), (5, 8)] [(8, 11)]
2: [0, 3, 4, 1, 2, 5, 6, 7, 10, 9, 8, 11] rho(8, 11)
Press Enter:
Strips: [(1, 3), (3, 5)] []
0: [0, 3, 4, 1, 2, 5, 6, 7, 8, 9, 10, 11] rho(1, 3)
Press Enter:
Strips: [(3, 5)] [(1, 3)]
1: [0, 4, 3, 1, 2, 5, 6, 7, 8, 9, 10, 11] rho(3, 5)
Press Enter:
Strips: [] [(1, 5)]
2: [0, 4, 3, 2, 1, 5, 6, 7, 8, 9, 10, 11] rho(1, 5)
Press Enter:
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] Sorted
4

def improvedBreakpointReversalSort(seq, verbose=True):
 seq = [0] + seq + [max(seq)+1] # Extend sequence
 N = 0
 while hasBreakpoints(seq):
 increasing, decreasing = getStrips(seq)
 if len(decreasing) > 0: # pick a reversal that removes a decreasing strip
 removed, reversal = pickReversal(seq, decreasing)
 else:
 removed, reversal = 0, increasing[0] # No breakpoints can be removed
 if verbose:
 print "Strips:", increasing, decreasing
 print "%d: %s rho%s" % (removed, seq, reversal)
 raw_input("Press Enter:")
 seq = doReversal(seq,reversal)
 N += 1
 if verbose:
 print seq, "Sorted"
 return N

Also try: [1,9,3,4,7,8,2,6,5]
print improvedBreakpointReversalSort([3,4,1,2,5,6,7,10,9,8], verbose=True)

4

Performance

ImprovedBreakPointReversalSort is a greedy algorithm with a

performance guarantee of no worse than 4 when compared to an optimal

algorithm

It eliminates at least one breakpoint in every two steps (flip an increasing then

remove 1)

That's at most: steps

An optimal algorithm could at most remove 2 breakpoints in every step, thus

requiring steps

The approximation ratio is:

But there is a solution with far fewer flips

5

2b(Π)

b(Π)

2

= = 4
(Π)

OPT(Π)

2b(Π)

b(Π)

2

A Better Approximation Ratio

If there is a decreasing strip, the next reversal reduces b(π) by at least one.

The only bad case is when there is no decreasing strip.

Then we do a reversal that does not reduce b(π).

If we always choose a reversal reducing b(π) and, at the same time, select a permutation such that

the result has at least one decreasing strip, the bad case would never occur.

If all possible reversals that reduce b(π) create a permutation without decreasing strips, then there

exists a reversal that reduces b(π) by 2 (Proof not given)!

When the algorithm creates a permutation without a decreasing strip, the previous reversal must

have reduced b(π) by two.

At most b(π) reversals are needed.

The improved Approximation ratio:

6

= = 2
(Π)new

OPT(Π)

b(Π)

b(Π)

2

Comparing Greedy Algorithms

SimpleReversalSort

Attempts to extend the prefix(π) at each step

Approximation ratio steps

ImprovedBreakpointReversalSort

Attempts to reduce the numbe of breakpoints at each step

Approximation ratio steps

7

n−1

b(Π)/2

= 2
b(Π)

b(Π)/2

Problem Set Time!

8

