Genome Rearrangements - Continued

Break
Points

Lessons from last time

1. With each reversal, one can remove at most 2 breakpoints

2. If there is any decreasing strip there exists a reversal that will remove at least one breakpoint

3. If breakpoints remain and there is no decreasing strip one can be created by reserving any
remaining strip

0.1.2.15.6,7.13.4.18.9 bp)=3 p(3.5)
207

0.1.2.17.6.5.13.4.18.9 bp)=3 p(6.7)

0.1.2.17.6.5.4.3.18.9 bp)=2 pB.7)

0.1.2.3.4.5.6,7.8.9 b(p)=0 Done!

An optimal algorithm would remove 2 breakpoints at every step. The last reversal always removes 2
breakpoints, thus if the number of breakpoints is odd, even the optimal algorithm must make at least
one reersal that removes only 1 breakpoint.

An Improved Breakpoint Reversal Sort

ImprovedBreakpointReversalSort(st)

while b(m) > 0
if m has a decreasing strip
Among all possible reversals, choose reversal p that minimizes b(m e« p)

Choose a reversal p that flips an increasing strip in m
. Mm~T *p
. output m

1.

2

3.

4. else
5

6

7

8. return

Improved Breakpoint Reversal Sort in Python

def improvedBreakpointReversalSort(seq, verbose=True):
seq = [0] + seq + [max(seq)+1] # Extend sequence
N =20
while hasBreakpoints(seq):
increasing, decreasing = getStrips(seq)
if len(decreasing) > 0:
removed, reversal = pickReversal(seq, decreasing)
else:
removed, reversal = 0, increasing[0] # No breakpoints can be removed
if verbose:
print "Strips:", increasing, decreasing
print "%d: %s rho%s" % (removed, seq, reversal)
raw_input("Press Enter:")
seq = doReversal(seq, reversal)
N +=1
if verbose:
print seq, "Sorted"
return N

pick a reversal that removes a decreasing strip

Also try: [1,9,3,4,7,8,2,6,5]
print improvedBreakpointReversalSort(([3,4,1,2,5,6,7,10,9,8], verbose=True)

Strips: [(1, 3), (3, 5), (5, 8)] [(8, 11)]

2: [0, 3, 4,1, 2, 5, 6, 7, 10, 9, 8, 11] rho(8, 11)
Press Enter:

Strips: [(1, 3), (3, 5)] []

©: [0, 3, 4,1, 2, 5, 6, 7, 8, 9, 10, 11] rho(1, 3)
Press Enter:

Strips: [(3, 5)] [(2, 3)]

1: [0, 4, 3, 1, 2, 5, 6, 7, 8, 9, 10, 11] rho(3, 5)
Press Enter:

Strips: [] [(1, 5)]

2: [0, 4, 3, 2,1, 5, 6, 7, 8, 9, 10, 11] rho(1, 5)
Press Enter:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] Sorted

4

Performance

« ImprovedBreakPointReversalSortis a greedy algorithm with a
performance guarantee of no worse than 4 when compared to an optimal

Can we obtain a
better

: erformance
algorlthm pguar'antee?
» It eliminates at least one breakpoint in every two steps (flip an increasing then
remove 1)

» That's at most: 2b(I1) steps
= An optimal algorithm could at most remove 2 breakpoints in every step, thus

. b(I1)
requiring —-— steps
» The approximation ratio is:

A 2bp(d0)
OPT(I1) @ B

« But there is a solution with far fewer flips

A Better Approximation Ratio

If there is a decreasing strip, the next reversal reduces b(st) by at least one.

The only bad case is when there is no decreasing strip.

Then we do a reversal that does not reduce b(m).

If we always choose a reversal reducing b(s;t) and, at the same time, select a permutation such that
the result has at least one decreasing strip, the bad case would never occur.

If all possible reversals that reduce b(st) create a permutation without decreasing strips, then there
exists a reversal that reduces b(st) by 2 (Proof not given)!

When the algorithm creates a permutation without a decreasing strip, the previous reversal must
have reduced b(zt) by two.

At most b(7) reversals are needed.

The improved Approximation ratio:

Anew(ID) _ b(AD))
OPT(II) b(z_H) B

Comparing Greedy Algorithms

SimpleReversalSort

« Attempts to extend the prefix(st) at each step
n—1

« Approximation ratio Zamn Steps

ImprovedBreakpointReversalSort

 Attempts to reduce the numbe of breakpoints at each step
b(IT)

« Approximation ratio 072

= 2 steps

Mouse (X chrom.)

9—.—4— ——
o\

\Nm®.-) —_ = ————
A Human (X chrom.)

Problem Set Time!

