Genome Rearrangements - Continued

A Greedy Algorithm for Sorting by Reversals

- When sorting the permutation, $\Pi = 1, 2, 3, 6, 4, 5$, one notices that the first three elements are already in order.
- So it does not make sense to break them apart.
- The length of the already sorted prefix of Π is denoted as $prefix(\Pi) = 3$
- This inspires the following simple *greedy* algorithm

while $prefix(\Pi) < len(\Pi)$: perform a reversal $\rho(prefix(\Pi) + 1, k)$ such that $prefix(\Pi)$ increases by at least 1.

- Such a reversal must always exist
- Finding, *k*, is as simple as finding the index of the minimum value of the remaining unsorted part

Geedy Reversal Sort: Example

Step1 :
$$\Pi_1 = 1, 2, 3, 6, 4, 5$$
 $\rho(4, 5)$
Step2 : $\Pi_2 = 1, 2, 3, \overline{4}, \overline{6}, 5$ $\rho(5, 6)$
Done : $\Pi_3 = 1, 2, 3, 4, \overline{5}, \overline{6}$

• The number of steps to sort any permutaion of length *n* is at most (n - 1)

Greedy Reversal Sort as code

```
def GreedyReversalSort(pi):
    t = 0
    for i in xrange(len(pi)-1):
        j = pi.index(min(pi[i:]))
        if (j != i):
            pi = pi[:i] + [v for v in reversed(pi[i:j+1])] + pi[j+1:]
            print "rho(%2d,%2d) = %s" % (i+1,j+1,pi)
            t += 1
    return t
print GreedyReversalSort([3,4,2,1,5,6,7,10,9,8])
rho( 1, 4) = [1, 2, 4, 3, 5, 6, 7, 10, 9, 8]
rho( 3, 4) = [1, 2, 3, 4, 5, 6, 7, 10, 9, 8]
```

rho(8,10) = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

3

Analyzing GreedyReversalSort()

- GreedyReversalSort requires at most n 1 steps
- For example, on $\Pi = 6, 1, 2, 3, 4, 5, t = 5$

$$\Pi_{1}: 6, 1, 2, 3, 4, 5$$

$$\rho(1, 2): 1, 6, 2, 3, 4, 5$$

$$\rho(2, 3): 1, 2, 6, 3, 4, 5$$

$$\rho(3, 4): 1, 2, 3, 6, 4, 5$$

$$\rho(4, 5): 1, 2, 3, 4, 6, 5$$

$$\rho(5, 6): 1, 2, 3, 4, 5, 6$$

• But there is a solution with far fewer flips

Greed Gone Wrong

• The same sequence sorted with two reversals

$$\Pi: 6, 1, 2, 3, 4, 5$$

 $\rho(1, 6): 5, 4, 3, 2, 1, 6$
 $\rho(1, 5): 1, 2, 3, 4, 5, 6$

- Note, this solution makes no progress (no elements of the permuation are placed in their correct order) after its first move
- Yet it beats a greedy approach handily.
- So SimpleReversalSort(π) is correct (as a sorting routine), but non-optimal
- For many problems there is no known optimal algorithm, in such cases *approximation algorithms* are often used.

Approximation Algorithms

- Today's algorithms find approximate solutions rather than optimal solutions
- The *approximation ratio* of an algorithm, \mathcal{A} on input Π is:

$$r = \frac{\mathcal{A}(\Pi)}{OPT(\Pi)}$$

• where:

- $\mathcal{A}(\Pi)$ is the number of steps using the given algorithm
- $OPT(\Pi)$ is the number of steps required using, a possibly unknown, optimal algorithm

Performance Guarantees

- On an occasional input our approximation algorithm may give an optimal result, however we want to consider the value of *r* for the worst case input
- When our objective is to minimize something (like reversals in our case)

$$r = \max_{i=0}^{len(\Pi)!} \frac{\mathcal{A}(\Pi_i)}{OPT(\Pi_i)} \ge 1.0$$

• Or when our ojective is to maximize something (like money)

$$r = \max_{i=0}^{len(\Pi)!} \frac{\mathcal{A}(\Pi_i)}{OPT(\Pi_i)} \le 1.0$$

- Sounds cool in theory, but there are lots of open ends here
 - if we don't know $OPT(\Pi_i)$ how are we supposed to know how many steps it requires?
 - do we really need to test for all *len*(Π)! possible inputs?

How do we get Approximation Ratios?

		A	(П)				
Step	0:	6	1	2	3	4	5	
Step	1:	1	6	2	3	4	5	
Step	2:	1	2	<u>6</u>	3	4	5	
Step	3:	1	2	3	6	4	5	
Step	4:	1	2	3	4	6	<u>5</u>	
Step	5:	1	2	3	4	5	6	

		0	РΤ	(п)?		
Step	0:	<u>6</u>	1	2	3	4	5
Step	1:	<u>5</u>	4	3	2	1	6
Step	2:	1	2	3	4	5	6

New Idea: Adjacencies

- Recall breakpoints from last lecture. Adjacencies are the opposite.
- Assume a permutation:

$$\Pi = \pi_1, \pi_2, \pi_3, \ldots \pi_{n-1}, \pi_n,$$

• A pair of neighboring elements π_i and π_{i+1} are *adjacent if:

 $\pi_{i+1} = \pi_i + 1$

• For example:

$$\Pi = 1, 9, 3, 4, 7, 8, 2, 6, 5$$

• (3,4) and (7,8) and (6,5) are adjcencies.

Adjacencies and Breakpoints

• Breakpoints occure between neighboring non-adjacent elements

$$\Pi = 1, |9, |3, 4, |7, 8, |2, |6, 5$$

- There are 5 breakpints in our permuation between pairs (1,9), (9,3), (4,7), (8,2) and (2,5)
- We define $b(\Pi)$ as the number of breakpoints in permutation Π

Extending Permutations

• One can place two elements, $\pi_0 = 0$ and $\pi_{n+1} = n + 1$ at the beginning and end of Π respectively

$$1, |9, |3, 4, |7, 8, |2, |6, 5$$

$$\downarrow$$

$$\Pi = 0, 1, |9, |3, 4, |7, 8, |2, |6, 5, |10$$

- An additonal breakpoint was created after extending
- An extended permutation of length n can have at most (n + 1) breakpoints
- (n-1) between the original elements plus 2 for the extending elements

How Reversals Effect Breakpoints

- Breakpoints are the *targets* for sorting by reversals.
- Once they are removed, the permutation is sorted.
- Each "useful" reversal eliminates at least 1, and at most 2 breakpoints.
- Consider the following application of GreedyReversalSort(Extend(Π))

$$\Pi = 2, 3, 1, 4, 6, 5$$

$$0 | 2, 3 | 1 | 4 | 6, 5 | 7 \qquad b(\Pi) = 5$$

$$0, 1 | 3, 2 | 4 | 6, 5 | 7 \qquad b(\Pi) = 4$$

$$0, 1, 2, 3, 4 | 6, 5 | 7 \qquad b(\Pi) = 2$$

$$0, 1, 2, 3, 4, 5, 6, 7 \qquad b(\Pi) = 0$$

$$\begin{array}{l} required \\ reversals \\ \end{array} \geq \frac{b(\pi)}{2} \\ \hline \end{array}$$

Sorting By Reversals: A second Greedy Algorithm

<u>BreakpointReversalSort(π):</u>

- 1. while $b(\pi) > 0$:
- 2. Among all possible reversals, choose reversal ρ minimizing $b(\pi)$
- 3. $\Pi \leftarrow \Pi \cdot \rho(i,j)$
- 4. output Π
- 5. return

New Concept: Strips

- Strip: an interval between two consecutive breakpoints in a permutation
 - *Decreasing strip:* strip of elements in decreasing order (e.g. 6 5 and 3 2).
 - Increasing strip: strip of elements in increasing order (e.g. 78)
 - A single-element strip can be declared either increasing or decreasing.
 - We will choose to declare them as decreasing with exception of extension strips (with o and n+1)

$\overrightarrow{0,1}, \overleftarrow{9}, \overleftarrow{4,3}, \overrightarrow{7,8}, \overleftarrow{2}, \overrightarrow{5,6}, \overrightarrow{10}$

Things to Consider

• Consider $\Pi = 1, 4, 6, 5, 7, 8, 3, 2$

$$\overrightarrow{0,1}, |\overleftarrow{4}, |\overleftarrow{6,5}, |\overrightarrow{7,8}, |\overrightarrow{3,2}, |\overrightarrow{9}$$
 $b(p) = 5$

- Choose the decreassing strip with the smallest elment k in Π
 - It'll always be the rightmost element of that strip
- Find k 1 in the permutation
 - it'll always be flanked by a breakpoint
- Reverse the segment between k and k 1

Things to Consider

• Consider $\Pi = 1, 4, 6, 5, 7, 8, 3, 2$

$$\overrightarrow{0, 1, 2, 3}, |\overleftarrow{8, 7}, |\overrightarrow{5, 6}, |\overleftarrow{4}, |\overrightarrow{9} \qquad b(p) = 4$$

- Choose the decreassing strip with the smallest elment k in Π
 - It'll always be the rightmost element of that strip
- Find k 1 in the permutation
 - it'll always be flanked by a breakpoint
- Reverse the segment between k and k 1

Reversal Examples

• Consider $\Pi = 1, 4, 6, 5, 7, 8, 3, 2$

$$\overrightarrow{0, 1, 2, 3, 4}, |\overleftarrow{6, 5}, |\overrightarrow{7, 8, 9} \quad b(p) = 2$$

- Choose the decreasing strip with the smallest elment k in Π
 - It'll always be the rightmost element of that strip
- Find k 1 in the permutation
 - it'll always be flanked by a breakpoint
- Reverse the segment between k and k 1

Reversal Examples

• Consider $\Pi = 1, 4, 6, 5, 7, 8, 3, 2$

$$\overrightarrow{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}$$
 $b(p) = 0$

- Choose the decreasing strip with the smallest elment k in Π
 - It'll always be the rightmost element of that strip
- Find k 1 in the permutation
 - it'll always be flanked by a breakpoint
- Reverse the segment between k and k 1

Potential Gotcha

$$\overrightarrow{0,1,2}, | \overrightarrow{5,6,7}, | \overrightarrow{3,4}, | \overrightarrow{8,9}$$

- If there is no decreasing strip, there may be *no* strip-reversal ρ that reduces the number of breakpoints (i.e. b(Π ·ρ(i, j)) ≥ b(Π) for any reversal ρ).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.

- If there is no decreasing strip, there may be *no* strip-reversal ρ that reduces the number of breakpoints (i.e. b(Π · ρ(i, j)) ≥ b(Π) for any reversal ρ).
- However, reversing an increasing strip creates a decreasing strip, and the number of breakpoints remains unchanged.
- Then the number of breakpoints will be reduced in the following steps.

Next Time

- Look at the Code
- How about performance?

