
Genome Rearrangements - Continued

1

A Greedy Algorithm for Sorting by

Reversals

When sorting the permutation, , one notices that the first three

elements are already in order.

So it does not make sense to break them apart.

The length of the already sorted prefix of is denoted as

This inspires the following simple greedy algorithm

while :

 perform a reversal such that increases by

at least 1.

Such a reversal must always exist

Finding, , is as simple as finding the index of the minimum value of the remaining

unsorted part

2

Π = 1, 2, 3, 6, 4, 5

Π pref ix(Π) = 3

pref ix(Π) < len(Π)
ρ(pref ix(Π) + 1, k) pref ix(Π)

k

First

Previous

Notebook

Next

Geedy Reversal Sort: Example

The number of steps to sort any permuation of length is at most

3

Step1 : Π1

Step2 : Π2

Done : Π3

= 1, 2, 3, , 5 ρ(4, 5)6, 4
⎯ ⎯⎯⎯⎯

= 1, 2, 3, 4, ρ(5, 6)6, 5
⎯ ⎯⎯⎯⎯

= 1, 2, 3, 4, 5, 6

n (n − 1)

Greedy Reversal Sort as code

rho(1, 4) = [1, 2, 4, 3, 5, 6, 7, 10, 9, 8]
rho(3, 4) = [1, 2, 3, 4, 5, 6, 7, 10, 9, 8]
rho(8,10) = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
3

def GreedyReversalSort(pi):
 t = 0
 for i in xrange(len(pi)-1):
 j = pi.index(min(pi[i:]))
 if (j != i):
 pi = pi[:i] + [v for v in reversed(pi[i:j+1])] + pi[j+1:]
 print "rho(%2d,%2d) = %s" % (i+1,j+1,pi)
 t += 1
 return t

print GreedyReversalSort([3,4,2,1,5,6,7,10,9,8])

4

First

Previous

Next

Notebook

Analyzing GreedyReversalSort()

GreedyReversalSort requires at most steps

For example, on ,

But there is a solution with far fewer flips

5

n − 1

Π = 6, 1, 2, 3, 4, 5 t = 5

Π1

ρ(1, 2)

ρ(2, 3)

ρ(3, 4)

ρ(4, 5)

ρ(5, 6)

: 6, 1, 2, 3, 4, 5

: 1, 6, 2, 3, 4, 5

: 1, 2, 6, 3, 4, 5

: 1, 2, 3, 6, 4, 5

: 1, 2, 3, 4, 6, 5

: 1, 2, 3, 4, 5, 6

Greed Gone Wrong

The same sequence sorted with two reversals

Note, this solution makes no progress (no elements of the permuation are placed in

their correct order) after its first move

Yet it beats a greedy approach handily.

So SimpleReversalSort(π) is correct (as a sorting routine), but non-optimal

For many problems there is no known optimal algorithm, in such cases

approximation algorithms are often used.

6

Π

ρ(1, 6)

ρ(1, 5)

: 6, 1, 2, 3, 4, 5

: 5, 4, 3, 2, 1, 6

: 1, 2, 3, 4, 5, 6

Approximation Algorithms

Today's algorithms find approximate solutions rather than optimal solutions

The approximation ratio of an algorthim, on input is:

where:

 is the number of steps using the given algorithm

 is the number of steps required using, a possibly unknown, optimal algorithm

7

 Π

r =
(Π)

OPT(Π)

(Π)

OPT(Π)

First

Previous

Notebook

Next

Performance Guarantees

On an occasional input our approximation algorithm may give an optimal result,

however we want to consider the value of r for the worst case input

When our objective is to minimize something (like reversals in our case)

Or when our ojective is to maximize something (like money)

Sounds cool in theory, but there are lots of open ends here

if we don't know how are we supposed to know how many steps it requires?

do we really need to test for all possible inputs?

8

r = ≥ 1.0max
i=0

len(Π)! ()Πi

OPT()Πi

r = ≤ 1.0max
i=0

len(Π)! ()Πi

OPT()Πi

OPT()Πi

len(Π)!

How do we get Approximation Ratios?

def GreedyReversalSort(pi):

 for i in xrange(len(pi)-1):

 j = pi.index(min(pi[i:]))

 if (j != i):

 pi = pi[:i]

 + [v for v in reversed(pi[i:j+1])]

 + pi[j+1:]

 return pi

 A(Π)

Step 0: 6 1 2 3 4 5

Step 1: 1 6 2 3 4 5

Step 2: 1 2 6 3 4 5

Step 3: 1 2 3 6 4 5

Step 4: 1 2 3 4 6 5

Step 5: 1 2 3 4 5 6

 OPT(Π)?

Step 0: 6 1 2 3 4 5

Step 1: 5 4 3 2 1 6

Step 2: 1 2 3 4 5 6

9

New Idea: Adjacencies

Recall breakpoints from last lecture. Adjacencies are the opposite.

Assume a permutation:

A pair of neighboring elements and are *adjacent if:

For example:

(3,4) and (7,8) and (6,5) are adjcencies.

10

Π = , , , . . . , ,π1 π2 π3 πn−1 πn

πi πi+1

= + 1πi+1 πi

Π = 1, 9, , , 2,3, 4
⎯ ⎯⎯⎯⎯⎯

7, 8
⎯ ⎯⎯⎯⎯⎯

6, 5
⎯ ⎯⎯⎯⎯⎯

First

Previous

Next

Notebook

Adjacencies and Breakpoints

Breakpoints occure between neighboring non-adjacent elements

There are 5 breakpints in our permuation between pairs (1,9), (9,3), (4,7), (8,2) and

(2,5)

We define as the number of breakpoints in permutation

11

Π = 1, | 9, | , | , | 2, |3, 4
⎯ ⎯⎯⎯⎯⎯

7, 8
⎯ ⎯⎯⎯⎯⎯

6, 5
⎯ ⎯⎯⎯⎯⎯

b(Π) Π

First

Previous

Notebook

Next

Extending Permutations

One can place two elements, and at the beginning and end of

respectively

An addtional breakpoint was created after extending

An extended permutation of length can have at most breakpoints

 between the original elements plus 2 for the extending elements

12

= 0π0 = n + 1πn+1 Π

Π = 0

1, | 9, | , | , | 2, |3, 4
⎯ ⎯⎯⎯⎯

7, 8
⎯ ⎯⎯⎯⎯

6, 5
⎯ ⎯⎯⎯⎯

⏐↓

1, | 9, | , | , | 2, | , | 103, 4
⎯ ⎯⎯⎯⎯

7, 8
⎯ ⎯⎯⎯⎯

6, 5
⎯ ⎯⎯⎯⎯

n (n + 1)

(n − 1)

First

Previous

Notebook

Next

How Reversals Effect Breakpoints

Breakpoints are the targets for sorting by reversals.

Once they are removed, the permutation is sorted.

Each "useful" reversal eliminates at least 1, and at most 2

breakpoints.

Consider the following application of

GreedyReversalSort(Extend())

13

Π

Π = 2, 3, 1, 4, 6, 5

0 | | 4| 6, 5| 7 b(Π) = 52, 3| 1
⎯ ⎯⎯⎯⎯⎯⎯⎯

0, 1| | 4| 6, 5| 7 b(Π) = 43, 2
⎯ ⎯⎯⎯⎯

0, 1, 2, 3, 4| | 7 b(Π) = 26, 5
⎯ ⎯⎯⎯⎯

0, 1, 2, 3, 4, 5, 6, 7 b(Π) = 0

First

Previous

Notebook

Next

Sorting By Reversals:

A second Greedy Algorithm

BreakpointReversalSort(π):

1. while :

2. Among all possible reversals, choose reversal ρ

minimizing

3.

4. output

5. return

14

b(π) > 0

b(π)

Π ← Π ρ(i, j)
˙
Π

New Concept: Strips

Strip: an interval between two consecutive breakpoints in a permutation

Decreasing strip: strip of elements in decreasing order (e.g. 6 5 and 3 2).

Increasing strip: strip of elements in increasing order (e.g. 7 8)

A single-element strip can be declared either increasing or decreasing.

We will choose to declare them as decreasing with exception of extension strips (with 0 and n+1)

15

, , , , , ,0, 1
⎯ →⎯⎯

9
←

4, 3
← ⎯⎯⎯

7, 8
⎯ →⎯⎯

2
←

5, 6
⎯ →⎯⎯

10
⎯→

Reducing the Number of Breakpoints

Consider

|

16

Π = 1, 4, 6, 5, 7, 8, 3, 2

, | , | , | , | , | b(p) = 50, 1
⎯ →⎯⎯

4
←

6, 5
← ⎯⎯⎯

7, 8
⎯ →⎯⎯

3, 2
← ⎯⎯⎯

9
→

Things to Consider

Consider

Choose the decreassing strip with the smallest elment k in

It'll always be the rightmost element of that strip

Find in the permutation

it'll always be flanked by a breakpoint

Reverse the segment between and

17

Π = 1, 4, 6, 5, 7, 8, 3, 2

, | | b(p) = 50, 1
⎯ →⎯⎯

, | , | , | ,4
←

6, 5
← ⎯⎯⎯

7, 8
⎯ →⎯⎯

3, 2
← ⎯⎯⎯

← ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

9
→

Π

k − 1

k k − 1

Things to Consider

Consider

Choose the decreassing strip with the smallest elment k in

It'll always be the rightmost element of that strip

Find in the permutation

it'll always be flanked by a breakpoint

Reverse the segment between and

18

Π = 1, 4, 6, 5, 7, 8, 3, 2

, | , | b(p) = 40, 1, 2, 3
⎯ →⎯⎯⎯⎯⎯⎯⎯⎯

, | , |8, 7
← ⎯⎯⎯

5, 6
⎯ →⎯⎯

4
←

← ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

9
→

Π

k − 1

k k − 1

First

Previous

Next

Notebook

Reversal Examples

Consider

Choose the decreasing strip with the smallest elment k in

It'll always be the rightmost element of that strip

Find in the permutation

it'll always be flanked by a breakpoint

Reverse the segment between and

19

Π = 1, 4, 6, 5, 7, 8, 3, 2

, | , | b(p) = 20, 1, 2, 3, 4
⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

6, 5
← ⎯⎯⎯

← ⎯⎯⎯

7, 8, 9
⎯ →⎯⎯⎯⎯⎯

Π

k − 1

k k − 1

Reversal Examples

Consider

Choose the decreasing strip with the smallest elment k in

It'll always be the rightmost element of that strip

Find in the permutation

it'll always be flanked by a breakpoint

Reverse the segment between and

20

Π = 1, 4, 6, 5, 7, 8, 3, 2

b(p) = 00, 1, 2, 3, 4, 5, 6, 7, 8, 9
⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

Π

k − 1

k k − 1

Things to Consider

Consider

21

Π = 1, 4, 6, 5, 7, 8, 3, 2

, | , | , | , | , |0, 1
⎯ →⎯⎯

4
←

6, 5
← ⎯⎯⎯

7, 8
⎯ →⎯⎯

3, 2
← ⎯⎯⎯

9
→

, | , | , | , |0, 1, 2, 3
⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯

8, 7
← ⎯⎯⎯

5, 6
⎯ →⎯⎯

4
←

9
→

, | , |0, 1, 2, 3, 4
⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

6, 5
← ⎯⎯⎯

7, 8, 9
⎯ →⎯⎯⎯⎯⎯

0, 1, 2, 3, 4, 5, 6, 7, 8, 9
⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

b(p) = 5

b(p) = 4

b(p) = 2

b(p) = 0

d(Π) = 3

First

Previous

Notebook

Next

Potential Gotcha

If there is no decreasing strip, there may be no

strip-reversal that reduces the number of

breakpoints (i.e. for any

reversal).

However, reversing an increasing strip creates a

decreasing strip, and the number of breakpoints

remains unchanged.

Then the number of breakpoints will be reduced in the following steps.

22

, | , | , | b(p) = 30, 1, 2
⎯ →⎯⎯⎯⎯⎯

5, 6, 7
⎯ →⎯⎯⎯⎯⎯

3, 4
⎯ →⎯⎯

8, 9
⎯ →⎯⎯

ρ

b(Π ρ(i, j)) ≥ b(Π)˙
ρ

Potential Gotcha

If there is no decreasing strip, there may be no

strip-reversal that reduces the number of

breakpoints (i.e. for any

reversal).

However, reversing an increasing strip creates a

decreasing strip, and the number of breakpoints

remains unchanged.

Then the number of breakpoints will be reduced in the following steps.

23

, | | , |0, 1, 2
⎯ →⎯⎯⎯⎯⎯

,5, 6, 7
⎯ →⎯⎯⎯⎯⎯

← ⎯⎯⎯⎯⎯⎯⎯

3, 4
⎯ →⎯⎯

8, 9
⎯ →⎯⎯

, | , | , |0, 1, 2
⎯ →⎯⎯⎯⎯⎯

7, 6, 5
← ⎯⎯⎯⎯⎯⎯

3, 4
⎯ →⎯⎯

8, 9
⎯ →⎯⎯

b(p) = 3

b(p) = 3

ρ
b(Π ρ(i, j)) ≥ b(Π)˙

ρ

First

Previous

Next

Notebook

Next Time

Look at the Code

How about performance?

24

First

Previous

Next

Notebook

