
Hidden Markov Models
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Dinucleotide Frequency

Consider all 2-mers in a sequence 

{AA,AC,AG,AT,CA,CC,CG,CT,GA,GC,GG,GT,TA,TC,TG,TT}

Given 4 nucleotides: each with a probability of occurrence of 

. 

Thus, one would expect that the probability of occurrence of

any given dinucleotide is .

However, the frequencies of dinucleotides in DNA sequences

vary widely.

In particular, CG is typically underepresented 

(frequency of CG is typically < )
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Example

From a 291829 base sequence

Expected value 0.0625

CG is 7 times smaller than expected
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Why so few CGs?

CG is the least frequent dinucleotide because C in CG is easily methylated. And, methylated Cs are

easily mutated into Ts.

However, methylation is suppressed around genes and transcription factor binding sites

So, CG appears at relatively higher frequency in these important areas

These localized areas of higher CG frequency are called CG-islands

Finding the CG islands within a genome is among the most reliable gene finding approaches
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CG Island Analogy

The CG islands problem can be modeled by a toy problem named 

"The Fair Bet Casino"

The outcome of the game is determined by coin flips with two possible

outcomes: Heads or Tails

However, there are two different coins

A Fair coin: 

Heads and Tails with same probability .

The Biased coin: 

Heads with prob. , 

Tails with prob. .
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The "Fair Bet Casino"

Thus, we define the probabilities: 

 

 

 

The house doesn’t want to get caught switching between coins, so

they do so infrequently

Changes between Fair and Biased coins with probability 10%
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Fair Bet Casino Problem

Input: A sequence  of observed coin tosses made by some combination of the two

possible coins (F or B).

Output: A sequence , with each  being either F or B indicating that  is the

result of tossing the Fair or Biased coin respectively.
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Problem Subtleties

Any observed outcome of coin tosses could have been generated by any combination of coin

exchanges

However, all coin-exchange combinations are not equally likely.

 Tosses: T H H H H 
 Coins1: F F F F F    P(Tosses|Coins1) = 1/2 1/2 1/2 1/2 1/2 = 1/32 
 Coins2: B B B B B    P(Tosses|Coins2) = 1/4 3/4 3/4 3/4 3/4 = 81/1024 
 Coins3: F F B B B    P(Tosses|Coins3) = 1/2 1/2 3/4 3/4 3/4 = 27/256 

We ask, "What coin-exchange combination has the highest probability of generating the observed

series of tosses?"

The coin tosses are a signal, and figuring out the most likely coin-exchange sequence is a Decoding

Problem
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Let's consider the extreme cases

Suppose that the dealer never exchanges coins.

Some definitions:

P(x|Fair): prob. of generating the x using the Fair coin.

P(x|Biased): prob. of generating x using the Biased coin .
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P(x|fair coin) vs. P(x|biased coin)

Where k is the number of Heads observed in x
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P(x|Fair coin) = P(x|Biased coin)

When is a sequence equally likely to have come from the Fair or Biased coin?

when 

So when the number of heads over a contiguous sequence of tosses is greater than 63% the dealer is

most likely used the biased coin
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Log-odds Ratio

We can define the log-odds ratio as follows:

The log-odds ratio is a means (threshold) for deciding which of two alternative hypotheses is most

likely

"Zero-crossing" measure:

If the log-odds ratio is > 0 then the numerator (Fair coin) is more likely

if the log-odds ratio is < 0 then the denominator (Biased coin) is more likely

They are equally likely if the log-odds ratio = 0
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Log-odds over a sliding window

Given a sequence of length n, consider the log-odds ratio of a sliding window of length w << n

, , , , ,…x1 x2 , , , ,x3 x4 x5 x6 x7
⎯ ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

x8 x9 x
n

Disadvantages:

The length of CG-island (appropriate window size) is not known in advance

Different window sizes may classify the same position differently

What about the rule that they don't swap out the coins frequently?
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Key Elements of the Problem

There is an unknown or hidden state for each observation (Was the coin the Fair or Biased?)

Outcomes are modeled probabilistically:

Transitions between states are modeled probabilistically:
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P( = Bias |  = Bias) = = 0.9πi πi−1 aBB

P( = Bias |  = Fair) = = 0.1πi πi−1 aFB

P( = Fair |  = Bias) = = 0.1πi πi−1 aBF

P( = Fair |  = Fair) = = 0.9πi πi−1 aFF



Hidden Markov Model (HMM)

A generalization of this class of problem

Can be viewed as an abstract machine with k hidden states that emits symbols from an alphabet Σ.

Each state emits outputs with its own probability distribution, and the machine switches between

states according to some other probability distribution.

While in a certain state, the machine makes 2 decisions:

What symbol from the alphabet Σ should I emit?

What state should I move to next?
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Why "Hidden"?

Observers see the emitted symbols of an HMM but cannot see which state the HMM is currently in.

Thus, the goal is to infer the most likely hidden states of an HMM based on the given sequence of

emitted symbols.
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HMM Parameters

Σ: set of emission characters. 

Example: Σ = {0, 1} for coin tossing

(0 for Tails and 1 Heads)

Σ = {1, 2, 3, 4, 5, 6} for dice tossing

Q: set of hidden states, emitting symbols from Σ. 

Q = {Fair,Bias} for coin tossing
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HMM for Fair Bet Casino

The Fair Bet Casino in HMM terms:

Σ = {0, 1} (0 for Tails and 1 Heads)

Q = {F,B} – F for Fair & B for Biased coin

Transition Probabilities A, Emission Probabilities E
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HMM as a Graphical Model

Directed graph with two types nodes and two types of edges

hidden states are shown as squares

emission outputs are shown as circles

transition edges

emission edges
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Hidden Paths

A path π = π … π  in the HMM is defined as a sequence of hidden states.

Consider

path π = FFFBBBBBFFF

sequence x = 01011101001

What is the probability of the given path ( FFFBBBBBFFF )?
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P(x|π) calculation

P(x|π): Probability that sequence x was generated by the path π:

How many such paths exist? 

What algorithmic approach would you use to find the best path? Branch and Bound? Divide and

Conquer? Dynamic Programming?
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Decoding Problem

Finding the optimal path in a graph is equivalent to a classical

problem of decoding a message using constellations. This is very

commonly used when a discrete set of symbols is encoded for

transport over an analog medium (e.x. modems, wired internet,

wireless internet, digital television).

A simple binary coding does not make good use of the dynamic range of a digital signal, however, if you

put the codes too close noise becomes a problem.

Goal: Find an optimal hidden path of state transitions given a set of observations.

Input: Sequence of observations x = x1…xn generated by an HMM M(Σ, Q, A, E)

Output: A path that maximizes P(x|π) over all possible paths π.

22



How do we solve this?

Brute Force approach:

Enumerate every possible path

Compute P(x1..n|π1..n) for each one

Keep track of the most probable path

A better approach:

Break any path in two parts, 

Will less than the highest  ever improve the total probability?

Thus to find the maximum  we need find the maximum of each subproblem , for i from 1 to n

What algorithm design approach does this remind you of?
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Building Manhattan for Decoding

In 1967, Andrew Viterbi developed a “Manhattan-like grid” (Dynamic

program) model to solve the Decoding Problem.

Every choice of  corresponds to a path in the graph.

The only valid direction in the graph is eastward.

This graph has  edges.
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Edit Graph for Decoding Problem
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Viterbi Decoding of Fair-Bet Casino

Each vertex represents a possible state at a given position in the output sequence

The observed sequence conditions the likelihood of each state

Dynamic programming reduces search space to: 

|Q|+transition_edges×(n-1) = 2+4×5 from naïve 2
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Decoding Problem Solution

The Decoding Problem is equivalent to finding a longest path in the directed acyclic graph (DAG),

where "longest" is defined as the maximum product of the probabilities along the path.
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Next Time

We'll find the DP recurrance equations

See examples and what it looks like in code

See how truth and maximum likelihood do not always agree

Apply to HMMs to problems of biological interest.
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