
Divide and Conquer Algorithms

Problem Set #3 is graded

Problem Set #4 due on Thursday

1

The Essence of Divide and Conquer

Divide problem into sub-problems

Conquer by solving sub-problems recursively.

If the sub-problems are small enough, solve them in brute force fashion

Combine the solutions of sub-problems into a solution of the original problem

This is the tricky part

2

Divide and Conquer Applied to Sorting

Problem

Given an unsorted array of items

5 2 4 7 1 3 2 6

Reorganize them such that they are in non-decreasing order

1 2 2 3 4 5 6 7

3

Mergesort: Divide Phase

Step 1 - Divide

5 2 4 7 1 3 2 6

 ↓ ↓

5 2 4 7 1 3 2 6

 ↓ ↓ ↓ ↓

5 2 4 7 1 3 2 6

 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

5 2 4 7 1 3 2 6

 divisions to split an array of size n into single elements

4

lo (n)g2

Mergesort: Combine Solutions

Merge

2 arrays of size 1 can be easily merged to form a sorted array of size 2

5 2 → 2 5

4 7 → 4 7

2 5 4 7 → 2 4 5 7

Move the smaller first value of the two arrays to the next slot in the merged array. Repeat.

2 sorted arrays of size p and q can be merged in time to form a sorted array of size p+q

5

O(p + q)

Mergesort: Conquer Step

Step 2 - Conquer

5 2 4 7 1 3 2 6

O(n) ↓ ↓ ↓ ↓

2 5 4 7 1 3 2 6

O(n) ↓ ↓

2 4 5 7 1 2 3 6

O(n) ↓

1 2 2 3 4 5 6 7

 iterations, each iteration takes time, for a total time

6

lo (n)g2 O(n) O(nlog(n))

Now back to Biology

All algorithms for aligning a pair of sequences thus far have required quadratic memory

The tables used by the dynamic programming method

Space complexity for computing alignment path for sequences of length n and m is O(nm)

We kept a table of all scores and arrival directions in memory to reconstruct the final best path

(backtracking)

7

Computing Alignments with Linear Memory

If appropriately ordered, the space needed to compute just the score can be reduced to O(n)

For example, we only need the previous column to calculate the current column, and we can throw away

that previous column once we’re done using it

8

Recycling Columns

Only two columns of scores are needed at any given time

9

An Aside

Suppose that we reverse the source and destination of our Manhattan Tour

Does the path with the most attractions change?

10

More Aside

Now suppose that we made two tours

One from the source towards the destination

A second from the destination of towards the source

And we stop both tours at the middle column

Can we combine these two separate solutions to find the overall best score?

11

A Divide & Conquer Approach to

 find the best Alignment score

We want to calculate the longest path from (0,0) to (n,m) that passes through (i,m/2) where i ranges from 0

to n and represents the i-th row

Define Score(i) as the score of the path from (0,0) to (n,m) that passes through vertex (i, m/2)

12

Finding the Midline

Define (mid,m/2) as the vertex where the best score crosses the middle column.

How hard is the problem compared to the original DP approach?

What does it lack?

13

We know the Best Score

How do we find the best path?

We actually know one vertex on our path, (m/2, mid).

How do we find more?

Hint: Knowing mid actually constrains where the paths can go

14

A Mid's Mid

We can now solve for the paths from (0,0) to (m/2, mid) and (m/2, mid) to (m,n)

15

And Mid-Mid's Mids (recursively)

And repeat this process until the path is from (i,j) to (i,j)

16

Algorithm's Performance

On first level, the algorithm fills every entry in the matrix, thus it does work

17

O(nm)

Work done on a second pass

On second level, the algorithm fills half the entries in the matrix, thus it does work

18

O(nm)/2

Work done on an Alternate second pass

This is true regardless of what mid is

19

Work done on a third pass

On the third pass, the algorithm fills a quarter of the entries in the matrix, thus it does work

20

O(nm)/4

Sum of a Geometric Series

21

Can We Do Even Better?

Align in Subquadratic Time?

Dynamic Programming takes O(nm) for global alignment, which is quadratic assuming n ≈ m

Yes, using the Four-Russians Speedup

22

Partitioning the Alignment Grid

Into smaller blocks

23

Block Logic

How does a block relate to a correct alignment?

the alignment path passes through block

the path does not use the block

The alignment passes through O(n/t) total blocks

Paths enter from the top or left and exit from the right or bottom

If we know the best score at the boundaries, perhaps we can peice together a solution as we did before.

24

Recall our Bag of Tricks

A key insight of dynamic programming was to reuse repeated computations by storing them in a tableau

Are there any repeated computations in Block Alignments?

Let’s check out some numbers…

Lets assume n = m = 4000 and t = 4

n/t = 1000, so there are 1,000,000 blocks

How many possible many blocks are there?

Assume we are aligning DNA with DNA, so there sequences are over an alphabet of {A,C,G,T}

Possible sequences are 4t = 44 = 256,

Possible alignments are 4t x 4t = 65536

There are fewer possible alignments than blocks, thus we must be frequently revisiting block alignments!

25

Next Time

Hidden Markov Models

26

